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MicroBooNE, and beyond




Neutrino Physics

e In the Standard Model neutrinos are neutral massless leptons that only
interact via the Weak force.

® Three generations (or flavors) of neutrinos with similar properties.
e All three flavors of neutrino have been observed.

e Neutrinos are very elusive, making experimental inquiry a tough job.

Fundamental Particles of the Standard Model




Neutrino Physics

e In the late 1960s the number of neutrinos from the Sun was measured by Ray Davis
and colleagues in the Homestake Mine to be ~2/3 lower than predicted.

» This experiment was located deep underground so that only neutrinos could penetrate down through the rock

» This deficit of neutrinos was referred to as the “Solar Neutrino Problem”

e This was one of the first hints of what we now know as neutrino oscillations.
Half-life of 35 days.

~ - o 37 37 —
100,000,000,000 neutrinos from the Sun stream through _ Ve Cl — AI' e
every square centimeter on the Earth every second! :

From the Sun

pr+p" — "HAet + v

Solar Fusion o ~600 tons of C,Cl4




Neutrino Physics

® The relation between neutrino flavor and mass states is parameterized by a mixing

matrix, U.
® Probability for a neutrino to oscillate flavors is dependent on:
» The length (L) over which the neutrino travels before detection.

» The energy (E) of the neutrino
» The square of the mass-splitting (Am?) between neutrino mass states.

» A rotation angle from the mass to flavor states (6 )
¢ A neutrino that’s initially 100% muon neutrino can evolve into an electron neutrino.
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Neutrino Physics

® We know there are three active flavors of neutrinos, three corresponding mixing
angles, two independent mass splittings, and one phase.

» There is also a matrix that depends on Majorana nature of neutrino...doesn’t impact oscillation probabilities.

Three possible rotations

vy when all neutrino flavors are
o included
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) Mixing Matrix:
1 0 0 cos(f013) 0 sin(f3)e % cos(f12) sin(f12) O
U= 0 008(923) Sin(923) X 0 1 0 X —Sil’l(elg) COS((912) 0
0 —sin(f23) cos(fs3) —sin(f13)e?® 0 cos(f3) 0 0 1




Neutrino Physics

¢ Mixing angles and mass splittings have all been measured
e>m < 0.3 eV (total mass of the 3 generations of neutrino)
e Don’t yet know the value of the CP phase, or the ordering of the mass states.

CKM PMNS
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Refs:

1.) New Physics from Flavor, S. Stone, ICHEP 2012 Conference Proceedings




Some Neutrino Physics Goals

e Measure the CP-ViOlatng phase, Ocp (Could this explain matter /antimatter asymmetry of universe?)
® Determine Mass Hierarchy:

A
V3 I X? I A1 Am2, = Am2, = 80108 . 1056V
(Mass)? or Am2, ~ Am2, = Am2,,, = 2.4106 . 10-3eV?
V2
V1 I V3 v
Normal Hierarchy Inverted Hierarchy

-Ve WV, Vg

Intense neutrino beam and massive detector with good background
rejection required for much of this physics....




Studying Neutrinos

¢ To study neutrino oscillations we need:
» A source (many different types available...intensity is important)
»Big Detectors (to accumulate sizeable statistics...interaction cross-sections are small)
»Good understanding of signal vs. background

Nuclear Reactors i,y The Sun
Cosmic Ray Showers

Astrophysical (SuperNova/Big Bang) The Earth (Radioactive Elements) Accelerators




Studying Neutrinos

® Accelerator neutrino experiments look for oscillations by studying the data

observed when a very pure beam of muon neutrinos is aimed at a far detector:
» “appearance” - Do we see an excess of electron neutrino events?
» “disappearance” - Do we see a deficit of muon neutrino events?

® Charged-Current interactions are the “signal” events that allow the neutrino
flavor to be identified, via identification of the charged lepton flavor.

. Ve CC Event - ,, V. CC Event
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Studying Neutrinos

® Background processes can confuse a measurement.
® There are background processes in appearance and disappearance analyses.

» Example: Neutral Current (NC n°) events where a n© is produced can fake CC V if one of the
gammas from the n° decay get misidentified as an electron.

. Ve CC Event - NC Event

Ve Ve

n,p n,p

“appearance” signal “appearance” background



Studying Neutrinos

V,, charged-current cross-sections
¢ Energy range of current/future b
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Cerenkov Detectors.

Particles traversing medium faster than light emit Cerenkov light at a characteristic angle.
*Cerenkov light collected and produces signals on PhotoMultiplier Tubes (PMTs)

Muons: straight trajectories lead to crisp rings
Electrons: showering and multiple scattering produce fuzzy rings
n°s: decay into two gammas, which each appear as electron-like rings
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Scintillator Tracking detectors:

e Use scintillator distributed throughout detector that produces light when particles pass through.
e Collect scintillator light via fiber optic readout that connects to a PMT.
® Reconstruct event in 3D by merging information from alternate coordinate views.
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Neutrino Detectors

We already are thinking about the next generation of experiments...

love to have a neutrino detector with the image
quality of a bubble-chamber, and a few modern

upgrades:

1.) Scalable

2.) Not infinitely expensive
3.) Fast electronic readout

Are there any modern bubble-chambers?
Yes! Liquid-Argon Detectors



Liquid Argon Neutrino Detectors

e Jonization produced in neutrino interactions is drifted along E-field to finely segmented wireplanes.
e Timing of wire pulse information is combined with known drift speed to determine drift-direction coordinate.
e Calorimetry information is extracted from wire pulse characteristics.

e Abundant scintillation light, which LAr is transparent to, also available for collection and triggering.
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Refs: n
1.) Liquid-argon ionization chambers as total-absorption detectors, W. Willis and V. Radeka, Nuclear Instruments and Methods 120 (1974), no. 2, 221-236.
2.) The Liquid-argon time projection chamber: a new concept for Neutrino Detector, C. Rubbia, CERN-EP/77-08 (1977)
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Neutrino Interaction in ArgoNeuT

Pixel size:
4mm x 0.3mm

Drift Coordinate —

Color is proportional to
amount of charge collected

Drift Coordinate —




Why Noble Liquids for Neutrinos?

¢ Abundant ionization electrons and scintillation light can both be used for detection.
e If liquids are highly purified (<0.1ppb), ionization can be drifted over long distances.
e Excellent dielectric properties accommodate very large voltages.

® Argon is relatively cheap and easy to obtain (1% of atmosphere).

e Noble liquids are dense, so they make a good target for neutrinos.

e Drawbacks?...no free protons...nuclear effects.

e Ne Ar Kr X B8

Boiling Point [K] @ 47 . 87.3 120.0 165.0

latm

Density [g/cm’] 0.125 |.2 |.4 2.4 3.0

Radiation Length [em] /55,2 . 14.0 4.9 2.8
dE/dx [MeV/cm] 0.24 : 2.1 3.0 3.8

Scintillation [y Mev] 19,000 : 40,000 25,000 42,000
Scintillation A [nm] 80 |50 | 75
Price [$/Liter] ~10 ~300 ~3000




Liquid Argon Properties

Kinetic energy vs. range
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Liquid Argon Properties

Vi @S a function of E-field

Vi (MM/us)
|

— T=91.3

.............................................................................

e |CARUS Data

| | | | | | | | | | | | | | | | | |
0.5 0.6 0.7

0 0.1 0.2 0.3 0.4
f

E-field (kV/cm)
Example: MicroBooNE T
has 2.5m max. drift length.

@ |.5mm/us, that will
take |.6ms.

Canonical operating field of LArTPCs (500 V/cm)



Advantages of LAr TPCs

excellent e/Y separation — superior background rejection

e Particle identification comes primarily from dE/dx (energy deposited) along track.
»Millimeter wire spacing plus appropriate sampling provides fine-grained resolution

eV, appearance: Excellent signal (CC v,) efficiency and background (NC m° ) rejection
» Topological cuts will also improve signal /background separation

® Appear scalable to large sizes.
e Beautiful, bubble-chamber like events!

Energy loss in the first 24mm of track: 250 MeV electrons vs. 250 MeV gammas |
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LAr Worldwide

Completed / Ongoing / Potential / Proposed / Suggested LAr Projects,
separated by location of the detectors.

US Europe Japan
Materials Test Stand 3-ton prototype Test-Beam (T32) at ]-PARC
ArgoNeuT 50-liter @ CERN 100 kTon @ Okinoshima island
Liquid Argon Purity Demonstrator 10m3
MicroBooNE ICARUS
LBNE LArTPC in B-Field
1 kTon LArTPC LANDD @ CERN
Test-Beam @ FNAL (LArIAT) ArgonTube @ Bern
Test-Beam @ Los Alamos (CAPTAIN) UV Laser
GLADE GLACIER/LAGUNA
RADAR Double-LAr @ CERN-PS

Message is that majority of these ideas are <5 years
old, demonstrating growing interest.

*LAr also pursued for Dark Matter: DarkSide, ArDM, DEAP/CLEAN, WARP, Depleted Argon, ...



Recent/Future LAr Activity in the U.S.

Materials/ Electronics Test Stand

LATIAT

100%
Physics

: ArgoNeuT

Yale Tracks

LBNE

Refs:
I.) A Regnerable Filter for Liquid Argon Purification Curioni et al, NIM A605:306-311 (2009)
2.) A system to test the effect of materials on electron drift lifetime in liquid argon and the effect of water Andrews et al, NIM A608:251-258 (2009)



Recent/Future LAr Activity in the U.S.

Volume of LAr TPC Detectors with Time

LBNE LAr40
LBNE LArl 2 cryostats
1 kton
prototype
OUU gaetecto
550 m3
LAr Purity icroBooNE
~4Demonstrator Experiment
19/ /7 — 199()'s (LA D
C. Rubbia LBNE 3
ICARUS =ion
program membrane
cryostat
prototype
we===ArgoNeut Experiment T-962
aterial test stands
1 '“fﬁ%’»"l 2012 2014 2016 2018
- Year

Russ Rucinski, TIPP 2011



e ArgoNeuT deployed a ~175 liter LArTPC in Fermilab NuMI neutrino beam.
¢ [ ocated upstream of MINOS near detector, which provides muon reconstruction and sign selection.
® Collected 1.35%10% Protons on Target (POT), predominantly in antineutrino mode.

) '

S

ArgoNeuT in the NuMI Tunnel

1.) The ArgoNeuT detector in the NuMI low-energy beam line at Fermilab, C. Anderson et al., JINST 7 P10019, Oct. 2012, arXiv:1205.6747

Refs:




The ArgoNeuT Project

Cryocooler
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Neutrino Interaction in ArgoNeuT

CCQE v, candidate
(Sept. 2009)
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ArgoNeuT T P °
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J. ArgoNeuT: Physics
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® Analysis Selection: Inclusive CC cross-section

» Track originating within ArgoNeuT fiducial region. oo (uz> N. measured.i — N, background,i
» Match to corresponding track in MINOS near detector. ————— = : :
» MINOS track is negatively charged. ou A’LLZ €; N, targ ()

Refs:
1.) First Measurements of Inclusive Muon Neutrino Charged Current Differential Cross Sections on Argon, C. Anderson et al., PRL 108 (2012) 161802, arXiv:1111.0103
2.) Neutrino cross section measurements, J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012)



ArgoNeuT

ArgoNeuT: Physics

e ArgoNeuT has highlighted need to consider nuclear effects (e.g. - Multinucleon
Correlations, final-state activity) when analyzing LArTPCs.
® Repeat of CC-Inclusive analysis in antineutrino mode.

. B Yy anti-neutrino mode run B Vu  anti-neutrino mode run
3 £ F
® Papers in progress. S EoEl
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1.) Exclusive Topologies reconstruction in LAr-TPC experiments: a Novel Approach for precise Neutrino-Nucleus Cross-Sections Measurements, O. Palamara, K. Partyka, F. Cavanna, arXiv:1309.7480
2.) New Results from ArgoNeuT, T. Yang, NuFACT2013, hep-ex/1311.2096
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The MicroBooNE Experiment

® MicroBooNE will operate in the Booster neutrino beam at Fermilab starting in 2014.

e Combines physics with hardware R&D necessary for the evolution of LArTPCs.
»MiniBooNE low-energy excess
» Low-Energy (<1 GeV) neutrino cross-sections
» Cold Electronics (preamplifiers in liquid)
» Long drift (2.5m)
» Purity without evacuation.

Refs:
1.) Proposal for a New Experiment Using the Booster and NuMI Neutrino Beamlines, H. Chen et al., FERMILAB-PROPOSAL-0974




e Address the MiniBooNE low energy excess

»MiniBoone is a Cerenkov detector that looked for v, appearance from a beam of v,

» Does MicroBooNE confirm the excess?

»Is the excess due to a electron-like or gamma-like process?
e Prove effectiveness of electron/gamma separation technique (using dE/dX information).
e Low Energy Cross-Section Measurements (CCQE, NC r°, A—Ny , Photonuclear, ...)
¢ Continue development of automated reconstruction (building on ArgoNeuT’s effort).
MiniBooNE v. Appearance Result
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MicroBooNE Physics

MiniBooNE Result Excess

200-300MeV: 45.2+26.0 events
300-475MeV: 83.7+24.5 events

MicroBooNE will have 50 significance for electron-
like excess, 3.30 for photon-like excess.

1.) Unexplained Excess of Electron-Like Events From a 1-GeV Neutrino Beam MiniBooNE Collaboration, Phys. Rev. Lett. 102, 101802 (2009)



MicroBooNE: TPC Detector

150 Tons

8256
CMOS (87 K)

3 mm (3mm)

2.5m (1.5ms)

B

MicroBooNE TPC (Nov. 2013)
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MicroBooNE: Cold Electronics

® CMOS preamplifiers located in liquid, attached to TPC, to minimize noise.
® 12-bit ADCs sampled at 2MHz (i.e. - 500ns per sample) for 4.8ms (x3 drift window).

® Several hour data buffering for Supernova analysis (triggered by receipt of alert signal
from SNEWS).

_ _ DAQ in Detector Hall
Single Vessel Cryostat with 8-10% Ullage
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( : On Board Memory
|
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and Wire Bias  jn [ Ar @ ~90K [~2-5m] [~10-20 m] ) |
Receiver |
] [
|
T i ‘ |
| Warm Intermediate Amplifier |
Feedthrough Line Driver | FEM (Front End Module)
8256 TPC channels Faraday Cage Extension Ba""P’a"el
B oy

Transmit Module Optical Link
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Transmit Module Optical Link
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PMT Readout Board .
Digitizing Section Data Handling Section Tri gger
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On Board Memory
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| FEM (Front End Module)

Board
Refs:

| Beam Gate
1.) Readout Electronics Design Considerations for LAr TPC, H. Chen, ANT2013 Conference



e 30 8” Hamamatsu (R5912-02mod) cryogenic PMTs facing into the TPC volume.
* Tetraphenyl Butadiene coated plate in front of PMT to shift wavelength of UV scintillation light.
* PMTs are essential in disentangling out-of-time cosmic tracks from in-time neutrino interactions.

Plate (that will be) coated with
wavelength shifter

|

}jg
_'-!-—-.'J.!J!

'h-

PMT System Installed in Cryostat (Sept. 2013). PMT Assembly

Refs:
1.) Testing of Cryogenic Photomultiplier Tubes for the MicroBooNE Experiment, T. Briese et al., hep-ex/1304.0821



MicroBooNE: Status

N\ wiiia G

All detectors installed...finalizing a
few things before sealing up.



MicroBooNE: Status

® We will move sealed-up detector over to new LArTF enclosure in Spring 2014.

® Commissioning begins in summer of 2014.
® Cryogenic recirculation system already installed and being tested prior to arrival of cryostat.

Rendering of cryostat + “hair” in LArTF Liquid Argon Test Facility (LArTF)




LAr Purity R&D @ Fermilab

e [ BNE pursuing membrane cryostats, using experience from industry.

® Built 35-ton membrane cryostat to demonstrate liquid purity without initial
evacuation as has previously been demonstrated by Liquid Argon Purity
Demonstrator (LAPD) in a “traditional” cryostat.

. DO
Membrane Cryostat for industrial

B M

LAPD 35-ton
(30-ton cryostat) Membrane Cryostat LNG shipping




LAr Purity R&D @ Fermilab

* Argon gas acts like a piston, pushing atmosphere up and out of cryostat.
* Gas is cycled through cryostat until desired Oxygen concentration is reached.
 LAPD has routinely achieved LAr lifetimes >3 ms, (LBNE/MicroBooNE require ~1.5

ms)

Refs:
1.) LAPD Update, B. Rebel, 2012 Fermilab PAC Meeting

Oxygen Content (PPM)
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LArIAT

® Dedicated test-beam exposure of LArTPC to charged-particles in
appropriate energy regime will provide invaluable calibration
information to feed into simulations.

® Liquid Argon In A Testbeam (LArIAT) experiment envisions two
phases of running...initially with a small ArgoNeuT-sized detector
(starting 2014), followed by a larger MicroBooNE scale detector.
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® Coupling a 1-kiloton “far detector” (LAr1) with existing MicroBooNE
experiment would create fantastic short-baseline neutrino program at Fermilab.

® First phase is to install “near detector” (LAr1-ND) in vacant SciBooNE enclosure.
Active volume of ~75 tons.

® [everage LBNE design work; provide beam test of the hardware.
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Refs:
1.) LAr1-ND: Testing Neutrino Anomalies with Multiple LAyTPC Detectors at Fermilab, C. Adams et al., arXiv:1309.7987
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Figure 18:  Sensitivity to v, disappearance with the full LArl experiment, a program of three
LArTPC detectors on the Booster Neutrino Beamline at Fermilab (left). v, disappearance prob-
ability at E, = 700 MeV as a function of distance in a sterile neutrino model with Am? = 1 eV?
and sin? 20, = 0.1 (right). The vertical colored lines indicate the proposed locations of LAr1-ND,
MicroBooNE and LArl-FD.




LBNE

® All of this technology development culminates in the multi-kiloton LBNE far-detector,

which will use a LArTPC to search for CP violation, proton decay, supernova neutrinos,
etc...

® Detector will be located underground at 4850 ft. level in the Sanford Underground Research
Facility (SURF), in the path of an intense beam originating at Fermilab.
» Reminder: this is the site of the original Ray Davis experiment!

9400 tons (x2 = 18600 tons)

5000 tons (x2 = 10000 tons)

~150k / cryostat (x2 = ~300k)

CMOS (87 K)

~5 mm

2.3m (1.4ms)

Acrylic bars with TPB

Refs:
1.) Scientific Opportunities with the Long-Baseline Neutrino Experiement, C. Adams et al., hep-ex/1307.7335




LBNE

® Two separate membrane cryostats each with 9.4 kiloton volume.

® TPC is formed by alternating rows of cathode (CPAs) and anode (APAs)
assemblies that are hung from the ceiling of the cryostat.
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LBNE

® Massive storage of cryogenic liquids not such a crazy idea....ultra-high purity is the big
unknown.

¢ Industrial companies use ocean liners to transport Liquified Natural Gas (LNG) since it’s
the most economical way (gas density is 1/600 of liquid) to move a large quantity of gas.

¢ LNG cooled to -162C (111 K)...almost as cold as LAr (87 K).

® “Membrane” cryostats are built piece-by-piece inside an enclosure. Small vacuum levels
possible.

Q-Max LNG Carrier
Capacity: 266,000m?3 “Membrane” Interior



LBNE Physics
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e Extracting physics results from LArTPC data presents its own challenges that
must be overcome and will require significant effort.

¢ Developing generators, simulation, reconstruction, etc... that fully encapsulate
neutrino interactions in a LArTPC is a challenge that (in my opinion) rivals the
hardware development. Deserves more attention than I'm giving it here.
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Refs:
1.) https:/ / cdcvs.fnal.gov / redmine/ projects/larsoftsvn / wiki



https://cdcvs.fnal.gov/redmine/projects/larsoftsvn/wiki
https://cdcvs.fnal.gov/redmine/projects/larsoftsvn/wiki

Conclusions

® LArTPCs are powerful detectors for studying neutrinos.

® Tremendous progress in recent years in U.S. efforts to develop this
technology. Growing interest, which is good since there is lots of
work to be done.

® Next few years should be very exciting as experiments come online,
and as development of kiloton-scale experiments continues.
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LBNE

® APAs are formed by wrapping angled wires around perimeter of
frame. This allows readout all to come off the ends of the assembly,
and helps to control the channel count.

® Light detection systems could be placed inside the APAs,
minimizing their impact on active volume of LAr.

/

Prototype APA at University of Wisconsin

APA Design

Physical Sciences Laboratory



