Studying the top quark-Higgs boson coupling at ATLAS

Peter Onyisi

Cornell Journal Club, 29 Apr 2016

Fermion Masses

- Want to check whether fermion mass generation mechanism is that of SM
 - a priori EWSB is a *different* problem
- SM Higgs couples ∝ to fermion mass, decay rate ∝ mass²
 - only interactions with the heaviest fermions are observable
- Assuming generation independence ... need to constrain
 - $H \rightarrow$ leptons: $H \rightarrow TT$
 - $H \rightarrow$ down-type fermions: $H \rightarrow$ bb, $H \rightarrow \tau\tau$
 - $H \rightarrow$ up-type fermions: pp \rightarrow ttH, pp \rightarrow H (gluon-gluon fusion)
- Higgs boson may have other couplings to the top quark than the SM ones

How to measure the ttH Coupling?

- Highest rate way: $gg \rightarrow H$ through top loop
- However effects of top are not distinguishable from new physics in gg \rightarrow H or qq \rightarrow H
- A tree-level measurement is possible: $pp \rightarrow t\bar{t}H$

Constraints on Higgs Couplings

 Need ttH to simultaneously constrain top coupling and new physics in ggF loop

ATLAS-CONF-2014-009 outdated – for illustration...

29 Apr 2016

ttH + EFT

Explicit example of degeneracy between dim-6 operators affecting pp → H and pp → ttH

Higgs-gluon coupling: $\mathcal{O}_{HG} = \frac{c_{HG}}{2\Lambda^2} (H^{\dagger}H) G^{\mu\nu}_a G^a_{\mu\nu}$

Top chromomagnetic dipole: $\mathcal{O}_{hgt} = \frac{c_{hgt}}{\Lambda^2} (\bar{Q}_L H) \sigma^{\mu\nu} T^a t_R G^a_{\mu\nu}$

Blue band shows constraint from ggF

Bramante, Delgado, Martin PRD 89, 093006 (2014)

And other new physics ...

- We do a very careful study of phase space rarely covered by new physics searches
 - high multiplicity but not super-high energy/missing transverse energy events
- Potential sensitivity to scenarios like compressed spectra

Process xsec

Rarest "major" production process – but distinct signature

Finding ttH

- Signature is top pair decay + Higgs decay
- Top quarks decay ~ 100% via t \rightarrow W b
 - W decays 68% of the time to quarks, ~ 11% to each of e, μ , τ
- Top quark pair can be dileptonic, semileptonic ("lepton+jets"), or all hadronic
 - dileptonic with e and $\mu \sim 4\%$ of tt decays
 - all hadronic must be separated from pure QCD multijet events

$H \rightarrow \gamma \gamma$

- H → γγ gives clean Higgs tag, can use mass sidebands. Channel so clean that main challenge is contamination from other Higgs production modes
 - A bump at 125 GeV is a Higgs: but is it ttH?
- Split by top pair decays:
 - lepton + jets: lepton and b-tag requirement enough to remove all other major Higgs production mechanisms
 - all hadronic: contaminated by gluon-gluon fusion. Strict cuts applied to improve purity of observed signal
 PLB 740 222 (2015)

Category	N_H	ggF	VBF	WH	ZH	tīH	tHqb	WtH	N_B
7 TeV leptonic selection	0.10	0.6	0.1	14.9	4.0	72.6	5.3	2.5	$0.5^{+0.5}_{-0.3}$
7 TeV hadronic selection	0.07	10.5	1.3	1.3	1.4	80.9	2.6	1.9	$0.5^{+0.5}_{-0.3}$
8 TeV leptonic selection	0.58	1.0	0.2	8.1	2.3	80.3	5.6	2.6	$0.9^{+0.6}_{-0.4}$
8 TeV hadronic selection	0.49	7.3	1.0	0.7	1.3	84.2	3.4	2.1	$2.7^{+0.9}_{-0.7}$

Diphoton Results

tΗ

- SM has destructive interference between H emission from top and from W: if relative sign of top coupling flips, have large constructive interference
- Can resolve relative sign of fermionic and bosonic Higgs couplings
 - interplay with Br(H $\rightarrow \gamma\gamma$), which also depends on HWW/Htt interference

$H \rightarrow bb$

- H \rightarrow bb is 58% of the SM Higgs width @ 125 GeV
 - Mass resolution is much worse than for $\gamma\gamma$
 - Background (tt + heavy flavor jets) tricky to model
- Strategy: sort events by number of jets and b-tags, then in each channel use a multivariate discriminant
 - use background-rich channels to constrain background and detector systematics
- Have used lepton+jets, dilepton, and all-hadronic channels (new!)
 - talk about the leptonic channels first, then allhad

EPJ C 75, 349 (2015) (I+jets, dilep) arxiv:1604.03812 (allhad)

Backgrounds

 leptonic channels: dominated by tt + heavy flavor jets in all signal-rich regions

Top Reweighting

- To improve agreement of MC and data, **reweight** the tt pair p_{τ} and the top quark p₋ with scalings derived from 7 TeV data
 - Powheg+Pythia spectra generally too hard
 - tt+light, tt+cc events only; tt+bb handled differently

top kinematics: JHEP 06(2015) 100

tt+bb Reweighting

- Powheg+Pythia tt+bb reweighted to shower-matched NLO calculation of Sherpa+OpenLoops
 - particular attention paid to separation of b quarks
- Provides theoretically-motivated systematics (Sherpa scale, PDF, shower variations)

NN construction

- Variables that are well modeled in background-dominated channels are used to construct neural network discriminants (with NeuroBayes)
 - even in signal-rich channels, checked modeling after applying anti-NN cut ("partial unblinding")
- lepton+jets 6-jet channels also have matrix element discriminant

	2b	3b	4b
4j	H_{T}^{had}	H_{T}^{had}	H_{T}^{had}
5j	H_{T}^{had}	NN †	NN
6j	H_{T}^{had}	NN[ME]	NN[ME]

lepton + jets

dilepton

	2b	3b	4b
2ј	Η _τ		
Зј	Η _τ	NN	
4j	Η _τ	NN	NN

† trained for tt+HF vs tt+LF

NN Variable Separation

Four highest ranked variables shown

 $D1 = \frac{\mathcal{L}_{t\bar{t}H}}{\mathcal{L}_{t\bar{t}H} + 0.23 \cdot \mathcal{L}_{t\bar{t}+b\bar{b}}}$

I+jets ≥6j ≥4b

Variable Modeling

29 Apr 2016

Fit effect on Signal-Rich Regions

Profile fit collapses systematics – large correlations

Fit Results

29 Apr 2016

ttH[bb] all-hadronic

- Expect events with ≥ 8 jets, of which ≥ 4 b-tagged
 - acquire events with multijet triggers
- Multijet backgrounds critical in all categories
 - need data-driven model for MJ properties
- Proceed as per leptonic channels: coupled fit of BDT distributions in each category, same systematic treatment

allhad ttH: multijet TRF

- Bootstrap multijet distributions with high # b-jets from regions with low # b-jets
- Take low #b-jet events and assign b-jet probabilities based on p_{τ} , η , distance from other b-jets
 - e.g. more likely to be a b-jet if near another b-jet

BDTs

- A number of event shape and object variables are used (e.g. centrality, M(bb) for closest b-jet pair, ...)
- Also a simple "likelihood" variable Λ is used to distinguish events with peaking m_w, m_{top}, m_{Higgs} from combinatorics

29 Apr 2016

allhad fits

ttH[bb] Results

- Combined obs (exp) limit 3.3 (2.1) x SM
 - median limit with SM signal = 3.0 x SM
- Best fit rate (1.4 ± 1.0) x SM
- Many systematics (e.g. tt+HF normalization) will be reduced with more data

ttH, H \rightarrow WW/ $\tau\tau$

- Complex topologies: WWWWbb or TTWWbb
 - rich set of final states with high multiplicities
 - backgrounds mostly tt + EWK, not tt + QCD
- Take advantage of final states not reachable from tt production
 - \geq 3 leptons, or 2 same sign leptons
- H → TT worth exploiting
 - $\sigma(ttZ)$ and $\sigma(ttH)$ similar: no overwhelming Z bkg to H $\rightarrow \tau\tau$

PLB 749, 519 (2015)

ttH multilepton decays

 $H \rightarrow ZZ$ not very important due to low BF and Z vetoes

Backgrounds

Main bkg: non-prompt leptons, ttZ, ttW, diboson + jets, fake τ

- non-prompt lepton bkg estimated from extrapolation in isolation, ID variables, p_{τ}
- other backgrounds estimated from Monte Carlo, checked in various validation regions

29 Apr 2016

Fake Lepton Backgrounds

- Slightly different techniques in each channel.
 - $2\ell 0\tau$, 3ℓ , $2\ell 1\tau$: variants on "fake factor" methods
 - 4ℓ : limit from MC
 - 1ℓ2τ: predict fake τ bkg from MC (well modeled with looser event cuts)

e.g. 2ℓ OT: control region cuts: lower # jets than SR sideband leptons: non-isolated electrons, low-p_T muons

Fake predictions cross checked with other ATLAS methods

top-Higgs coupling at ATLAS

ttH, $H \rightarrow WW/\tau\tau$

ttH, H \rightarrow WW/ $\tau\tau$

Combined multilepton channels:

 $\mu = 2.1^{+1.4}_{-1.2}$ $\mu < 4.7 \text{ obs } (2.4 \text{ exp}) @ 95\% \text{ CL}$

Consistent with SM

Leading systematics:

non-prompt lepton rate in 2ℓ OT acceptance for ttW+jets cross sections for ttW, ttZ

Full ttH Combination

• Best fit $\mu = 1.7 \pm 0.8$ (all analyses)

- μ < 3.1 (1.4 exp) @ 95% CL

arxiv:1604.03812

- Can perform coupling analysis entirely using ttH channels
 - assume fermions share common Higgs coupling strength modifier κ_{F} , bosons share modifier κ_{V}
 - compatible with SM

ttH Prospects in Run 2

- Each fb⁻¹ worth more @ 13 TeV
 - $\sigma(ttH)$ up a factor ~ 4
- new pixel layer, b-tagging algorithm improvements give better mistag rate
- Analysis improvements

IBL insertion

ttH observation at 5σ is very likely in Run 2 after combination of channels

Flavor-Changing Neutral Currents

- In the SM, there are no vertices involving the Higgs and two different fermions
 - such interactions generally strongly constrained by low energy precision measurements ... except for the third generation
- A detectable tqH (q=u, c) coupling is still allowed
 - if one assumes the tqH coupling is the geometric mean of the ttH and qqH couplings, BR(t \rightarrow Hc) \sim 0.2% !

FCNC t \rightarrow Hq

- Dedicated ATLAS studies done in $H \rightarrow \gamma\gamma$, $H \rightarrow bb$; we also repurposed the ttH[WW/TT] search
 - challenge: FCNC signal contaminates regions used for nonprompt lepton estimation
 - lesson: new physics will not necessarily restrict itself to search regions

JHEP 12(2015) 061

Combination of channels: Limit BR(t \rightarrow Hc) < 0.46% (0.25% exp) @ 95% CL Best-fit BR(t \rightarrow Hc) = (0.22 ± 0.14)%

Summary

- ttH is a key channel to measure the top Yukawa coupling and constrain new physics
 - Multiple channels are available to search for the signal
 - discovery will be from combination, not from a single channel
 - Run 1 analyses done, look forward to increased statistics of Run 2!
- Can also look for non-SM-like couplings
 - t → Hc search entering interesting region and is very exciting for Run 2

ttH 2ℓ 1T candidate

Extra

How to look for ttH?

- Generic signature is top pair
 + a Higgs decay
 - $H \rightarrow \gamma \gamma$ has a narrow bump
 - H \rightarrow bb has a large rate
 - $H \rightarrow WW, H \rightarrow \tau\tau$ produce multilepton events
 - $H \rightarrow ZZ \rightarrow 4\ell$ has too low a rate
- Top pairs have a characteristic signatures of leptons, jets, and b-tagged jets

[8 TeV] Diphoton Selection

- trigger: diphoton, $p_{\tau} > (35, 25)$ GeV
- photons: leading (subleading) $p_{\tau} > 0.35 (0.25) \times m_{\gamma\gamma}$; require == 2 photons
- leptons: $p_T > 15 \text{ GeV}; \mu p_T > 10 \text{ GeV}$
- leptonic channel: ≥1 lepton, M(eγ) not in [84, 94] GeV, ≥ 1j @ 25 GeV, ≥ 1b @ 80% WP, ETmiss > 20 GeV if only one b-jet
- hadronic channel: no leptons
 - ≥ 6j @ 25 GeV, ≥ 2b @ 80% OR
 - ≥ 5j @30 GeV, ≥ 2b @ 70% OR
 - ≥ 6j @30 GeV, ≥ 1b @ 60%

Category	N_H	ggF	VBF	WH	ZH	tīH	tHqb	WtH	N_B
7 TeV leptonic selection	0.10	0.6	0.1	14.9	4.0	72.6	5.3	2.5	$0.5^{+0.5}_{-0.3}$
7 TeV hadronic selection	0.07	10.5	1.3	1.3	1.4	80.9	2.6	1.9	$0.5_{-0.3}^{+0.5}$
8 TeV leptonic selection	0.58	1.0	0.2	8.1	2.3	80.3	5.6	2.6	$0.9^{+0.6}_{-0.4}$
8 TeV hadronic selection	0.49	7.3	1.0	0.7	1.3	84.2	3.4	2.1	$2.7^{+0.9}_{-0.7}$

Diphoton Coupling Interpretation

κ_t scales the SM Yukawa coupling (1=SM)

top-Higgs coupling at ATLAS

Categories

top-Higgs coupling at ATLAS

Event Selection

- trigger: single lepton triggers (e or μ); full efficiency @ 25 GeV
- leptons: leading $p_{\tau} > 25$ GeV, subleading $p_{\tau} > 15$ GeV (dilepton channel)
 - 1, 2-lep channels have no overlap
 - dilepton: MII > 15 GeV, veto events with MII = $M_z \pm 8$ GeV for same flavor; $H_\tau > 130$ GeV for $e\mu$
- jets: anti- k_{T} 0.4, p_{T} > 25 GeV, $|\eta| < 2.5$
- b tagging: 70% efficiency working point

Top Pair Modeling

- Simulations of top quarks + extra jets are still not supersophisticated
 - Leading order matched simulations (MadGraph/Sherpa) can certainly do a consistent job
 - NLO generation for extra heavy flavor just becoming available, not yet possible to do *full* (light+heavy quark) matched NLO with mass effects
- The vast majority of tt+bb in the relevant kinematic regions comes from parton shower, even in LO matched simulations
 - guessing the kinematic regions where ME and PS are important (which you need to do for Alpgen matching) is a **bad idea**
- We find best agreement in control regions with Powheg+Pythia (NLO) – this is our baseline

Pre-Fit Yields

 Most tt+light in I+jets 3b comes from W → cs tags

- no analog in 2l

The Fit

- Systematic uncertainties are "profiled" in the fit: we provide an initial constraint and allow data to update the values & errors
 - in particular this constrains background systematics using bkg-rich regions, and allows in situ charm tagging measurement
- All control and signal regions for lepton + jets and dileptons fit simultaneously
 - of course we can cross check between the channels; excellent agreement seen on central value of systematic nuisance parameters

bb Systematics

Systematic uncertainty	Type	Comp.				
Luminosity	Ν	1				
Physics Objects						
Electron	SN	5				
Muon	SN	6				
Jet energy scale	SN	22				
Jet vertex fraction	SN	1				
Jet energy resolution	SN	1				
Jet reconstruction	SN	1				
b-tagging efficiency	SN	6				
c-tagging efficiency	SN	4				
Light-jet tagging efficiency	SN	12				
High- $p_{\rm T}$ tagging efficiency	SN	1				
Background Model						
$t\bar{t}$ cross section	Ν	1				
$t\bar{t}$ modelling: $p_{\rm T}$ reweighting	SN	9				
$t\bar{t}$ modelling: parton shower	SN	3				
$t\bar{t}$ +heavy-flavour: normalisation	Ν	2				
$t\bar{t}+c\bar{c}$: $p_{\rm T}$ reweighting	SN	2				
$t\bar{t}+c\bar{c}$: generator	SN	4				
$t\bar{t}+b\bar{b}$: NLO Shape	SN	8				
W+jets normalisation	Ν	3				
$W p_{\rm T}$ reweighting	SN	1				
Z+jets normalisation	Ν	3				
$Z p_{\rm T}$ reweighting	SN	1				
Lepton misID normalisation	Ν	3				
Lepton misID shape	S	3				
Single top cross section	Ν	1				
Single top model	SN	1				
Diboson+jets normalisation	Ν	3				
$t\bar{t} + V$ cross section	Ν	1				
$t\bar{t} + V \mod l$	SN	1				
Signal Model						
$t\bar{t}H$ scale	SN	2				
$t\bar{t}H$ generator	SN	1				
$t\bar{t}H$ hadronisation	SN	1				
$t\bar{t}H$ PDF	SN	1				

Largest effects come from tt+HF normalization, the tt reweighting, and b-tagging

Fit effect in Background-Rich Regions

S/B Visualization

Combination, Couplings

Start to constrain top coupling independent of gluon, photon loops

29 Apr 2016

Vacuum Metastability

Another reason to care about the top Yukawa: SM vacuum apparently metastable given m_H and m_t (aka, y_t). If actual y_t is different from SM, this issue has a different resolution

ttH in MSSM

- Scans of "pMSSM" models surviving experimental constraints
- Top coupling possibly strongly modified

Cahill-Rowley, Hewett, Ismail, Rizzo arxiv:1308.0297

