Searches for Long-Lived Particles with a Displaced-Vertex Signature

Abi Soffer Tel Aviv University

> Cornell University Journal Club February 2016

Outline

- Motivation and general comments
- Search at ATLAS: **PRD 92 072004**
 - Scenarios
 - Analysis & results
- Search at BABAR: **PRL 114, 171801**
 - Scenarios
 - Analysis & results
- Summary & outlook

The usual introduction

- The standard model works really well
- But:
 - The hierarchy problem
 - Dark matter
 - The baryon asymmetry
 - Origin of flavor
 - Smallness of m_{ν}
 - Dark energy (?)

The usual introduction

- The standard model works really well
- But:
 - The hierarchy problem
 - Dark matter
 - The baryon asymmetry
 - Origin of flavor
 - Smallness of m_{ν}
 - Dark energy (?)
- So we search everywhere we can for new physics

	reserved in	1000			1000		J2.00		= (4.7 - 20.3) 10	43 - 7,010
	Model	ε.γ	Jets	ET	∫£ dt[fb	[-1]	Limit			Reference
	ADD GKK + E/q	-	≥1j	Yes	20.3	Mg		5.25 TeV	n = 2	1502.01518
	ADD non-resonant (/	2e. µ		-	20.3	Mi		4.7 TeV	n = 3 HLZ	1407.2410
	ADD QBH $\rightarrow \ell q$	1 e.µ	1 j	-	20.3	Mah	5,2 TeV		n = 6	1311.2006
2	ADD QBH	-	21	-	20.3	Ma		5.82 TeV	n = 6	1407.1376
Ş	ADD BH high Nork	2 µ (SS)	-	-	20.3	Ma		4.7 TeV	n = 6, M _D = 3 TeV, non-rot BH	1308.4075
E.	ADD BH high $\sum pT$	≥1 e,µ	≥2]	-	20.3	Ma		5.8 TeV	$n = 6$, $M_D = 3$ TeV, non-rot BH	1405.4254
Ĕ	ADD BH high multijet	-	≥2j	-	20.3	Ma		5.8 TeV	$n = 6$, $M_D = 3$ TeV, non-rot BH	1503.08988
8	HS1 G _{RK} → <i>t</i> ℓ	2e,µ	-	-	20.3	Gitx mass		2.68 TeV	$k/M_{Pl} = 0.1$ $k/\overline{M}_{Pl} = 0.1$	1405.4123
12	Put PC 77 anti	200	21/11	-	20.3	Wax mass	200 000	2.00 101		1504.05511
ũ.	Bulk PS C I MM I april	20,0	21/11		20.3	Mage manage	740 GBV		$K/M_{Pl} = 1.0$	1409.6190
	Bulk PS Course HH -> bbbb	1 e.µ	46	Tes	10.5	Gran mass	500-720 GeV		$k/M_{PT} = 1.0$	1505.04077
	Bulk BS may at t	1.0 11	10/ 210214	2 Yes	20.3	For man	300-720 GBV	$R/m_{Pl} = 1.0$ BB = 0.925	1505.07018	
	2UED/RPP	2 e. µ (SS)	≥1b,≥1	j Yes	20.3	KK mass	960 GeV		011-0.040	1504.04605
-	SSM 7" -> //	204	-	-	20.3	2 mars		2.0 TeV		1405 4123
\$	SSM $Z' \rightarrow \tau \tau$	21	-	-	19.5	Z' mass	2.02 TeV			1502.07177
6	SSM $W' \rightarrow \ell r$	1 e.µ	-	Yes	20.3	W mass		3.24 TeV		1407.7494
ő	EGM $W' \rightarrow WZ \rightarrow t_Y \ell' \ell'$	3 e. µ	-	Yes	20.3	W' mass	1.52	TeV		1406.4456
6	EGM $W' \rightarrow WZ \rightarrow qq\ell\ell$	2 e. µ	21/1J	-	20.3	W mass	1.59	TeV		1409.6190
9	EGM $W' \rightarrow WZ \rightarrow qqqq$	-	21	-	20.3	W' mass	1.3-1.5	TeV	$g_V = 1$	1506.00962
10	HVT W" → WH → ℓvbb	1 e, µ	25	Yes	20.3	W mass	1.47	leV.		1503.08089
	LRSM $W'_R \rightarrow tb$	1 e. µ	2 b, 0-1 j	Yes	20.3	W mass	1.92 TeV			1410.4103
	LRSM $W'_R \rightarrow tb$	0 e, µ	≥10,13	-	20.3	W' mass	12	76 TeV		1408.0886
-	Cl qqqq - 2j - 17.3		A 12.0 TeV η _{LL} = -1		1504.00357					
0	Cl qqtt	2 e, µ 2 e, µ (SS)	≥1b,≥1	i Yes	20.3	A	4.3 TeV		$ C_{LL} = 1$	1504.04605
5	FFT D5 operator (Dirac)	0.04	>1i	Ver	20.3	M	974 GeV		at 90% CL for m(v) < 100 GeV	1502 01518
5	EFT D9 operator (Dirac)	0 e, µ	$1J_i \leq 1j$	Yes	20.3	м,		2.4 TeV	at 90% CL for $m(\chi) < 100 \text{ GeV}$	1309.4017
~	Scalar LQ 1st gen	2 e	≥2j		20.3	LQ mass	1.05 TeV		$\beta = 1$	Preliminary
2	Scalar LQ 2 nd gen	2μ	≥2j	-	20.3	LO mass	1.0 TeV		$\beta = 1$	Preliminary
	Scalar LQ 3rd gen	1 e, µ	≥1 b, ≥3 j	Yes	20.3	LQ mass	640 GeV		$\beta = 0$	Preliminary
	VLQ $TT \rightarrow Ht + X$	1 e.µ	$\geq 2b, \geq 3$	j Yes	20.3	Timass	855 GeV		T in (T,B) doublet	1505.04306
ž	$VLQ YY \rightarrow Wb + X$	1 e,µ	$\geq 1b, \geq 3$	Yes	20.3	Y mass	770 GeV		Y in (B,Y) doublet	1505.04306
B	$VLQ BB \rightarrow Hb + X$	1 e.µ	≥2b,≥3	j Yes	20.3	8 mass	735 GeV		isospin singlet	1505.04306
	VLQ $BB \rightarrow Zb + X$	2/23 e, µ	22/210	i	20.3	B mass	755 GeV		B in (B,Y) doublet	1409.5500
	Fundad and at							She want to the second	1000.00120	
5	Excited quark $q^* \rightarrow qq$	1.7	21	_	20.3	a man		3.5 TeV	only u and d^* , $\Lambda = m(q^*)$	1309.3230
2	Excited quark k" W/r	10/201	th 2inrt	i Mar	47		870 CeV	9.00 Idv	left bacded coupling	1901 1599
E	Excited lepton (* -+ /v	20 1 1 2		1 100	13.0	P mass	0/0 001	2 2 ToV	A = 2.2 TeV	1308 1364
. 2	Excited lepton $v^* \rightarrow \ell W, \nu Z$	3 e, µ, T	-	-	20.3	v" mass	1.6 TeV		$\Lambda = 1.6 \text{ TeV}$	1411.2921
-	LSTC ar → Wy 1 e.u. 1 y - Yes 20.3			a- mass	960 GeV			1407.8150		
	LRSM Majorana v	2 e. µ	21	-	20.3	N ^o mass	2.0 TeV		$m(W_R) = 2.4$ TeV, no mixing	1506.06020
	Higgs triplet $H^{aa} \rightarrow \ell \ell$	2 e. µ (SS)	-	-	20.3	H ⁴⁴ mass	551 GeV		DY production, BR(H ^{t+} → ℓℓ)=1	1412.0237
9	Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$	3 e. µ. T	-	-	20.3	Hex mass	400 GeV		DY production, $BR(H_L^{++} \rightarrow \ell \tau)=1$	1411.2921
5	Monotop (non-res prod)	1 e.µ	1 b	Yes	20.3	spin-1 invisible particle mass	657 GeV		a _{ron-ma} = 0.2	1410.5404
	Multi-charged particles	-	-	-	20.3	multi-charged particle mass	785 GeV		DY production, q = 5e	1504.04188
	Magnetic monopoles	-	-	-	7.0	monopole mass	1.34 Te	V	DY production, $ g = 1g_0$, spin 1/2	Preliminary

Another angle

- Discovering the SM involved steady and slow progress
 - Discovery of the c, τ, b (1970s)
 - Discovery of the W and Z (1983)
 - Precision EW measurements (1990s)
 - Discovery of the *t* quark (1995)
 - Direct observation of v_{τ} (2000)
 - Precision CP violation (2000s)
 - Neutrino oscillations (\rightarrow 2000s)
 - Discovery of the Higgs boson (2012)

Another angle

- Discovering the SM involved steady and slow progress
 - Discovery of the c, τ, b (1970s)
 - Discovery of the W and Z (1983)
 - Precision EW measurements (1990s)
 - Discovery of the *t* quark (1995)
 - Direct observation of v_{τ} (2000)
 - Precision CP violation (2000s)
 - Neutrino oscillations (\rightarrow 2000s)
 - Discovery of the Higgs boson (2012)
- What (and when) will the next discovery be?
 - Search everywhere
 - Think of new ideas and new techniques

New long-lived particles (L)

- Why:
 - Unambiguous signature for new physics
- Who:
 - L decay should be suppressed (long lifetime)
 - *L* production should be relatively strong (produced in colliders)
- How:
 - For displacements of 100s of μ m to 10s of cm, use the tracker - the innermost part of the detector.
 - Other methods for decays in outer detector regions

Other searches (hopefully missing only a few)

ATLAS:

- 1210.0435: displaced lepton jets
- 1304.6310, 1409.5542: non-pointing *γ*
- 1310.6584: R-hadrons stopped in CAL
- 1411.6795: detector-stable "muons"
- 1501.04020: decays in HCAL
- 1504.03634: vertices in MS or ID (in jet)
- 1506.05332: high dE/dx

CMS:

- 1211.2472 , 1409.4789, 1411.6977: displaced dileptons (different flavors)
- 1411.6530: displaced $q\bar{q}$
- 1506.00424: possibly displaced muons

LHCb:

- 1412.3021: displaced jet pairs
- 1508.04094 displaced μ 's in $B \to K^* \mu^+ \mu^-$

D0:

- hep-ex/0607028: displaced $\mu\mu$
- 0906.1787: displaced $b\overline{b}$
- (Non-pointing γ ?)
- CDF:
 - hep-ex/9805017: displaced Z
- ALEPH
 - hep-ex/0203024: non-pointing γ
- Belle:
 - 1301.1105: $B \rightarrow D^{(*)}\ell\nu_h$, $\nu_h \rightarrow \ell\pi$

Displaced-vertex search at ATLAS

9

Considered scenarios - 1

- Decay suppressed by small coupling
- E.g., SUSY with R-parity violation (RPV) \rightarrow long-lived decaying $\tilde{\chi}^0$

Considered scenarios - 2

- Decay suppressed by large propagator mass
 - E.g., "split SUSY": $m_{\tilde{g}} \ll m_{\tilde{q}} \Rightarrow \Gamma_{\tilde{g}} \propto \frac{m_{\tilde{g}}^5}{m_{\tilde{q}}^4}$ \rightarrow long-lived decaying \tilde{g}

Or by a high scale, e.g., general gauge mediation; q
 - m_{\tilde{\chi_1}^0} ≪ SUSY breaking scale √F
 → long-lived decaying \tilde{\chi_1}^0

There are other scenarios

- Hidden valley
 - e.g., hep-ph/0604261 (Strassler, Zurek)

- Higgs \rightarrow long-lived
 - 1508.01522 (Csaki Kuflik, Lombardo, Slone)

Analysis history

- 33 pb⁻¹ of 7 TeV (2010) 1109.2242 (PLB)
 DV+μ
- 4.4 fb⁻¹ of 7 TeV (2011) 1210.7451 (PLB)
 - DV+ μ improved (retracking, background estimate)
- 20.3 fb-1 of 8 TeV (2012) 1504.05162 (PRD)
 - More improvements (background estimate, material description)
 - DV+ μ
 - DV+*e*
 - DV+jets
 - DV+ E_{miss}^T
 - Dilepton DV

Analysis history

- 33 pb⁻¹ of 7 TeV (2010) 1109.2242 (PLB) - $DV+\mu$
- 4.4 fb⁻¹ of 7 TeV (2011) 1210.7451 (PLB)
 - DV+ μ improved (retracking, background estimate)
- 20.3 fb-1 of 8 TeV (2012) 1504.05162 (PRD)
 - More improvements (background estimate, material description)
 - DV+ μ
 - DV+*e*
 - DV+jets
 - DV+ E_{miss}^T
 - Dilepton DV

- N. Barlow (Cambridge)
- G. Cottin (Cambridge)
- M. Flowerdew (MPI)
- M. Goblirsch-Kolb (MPI)
- T.J. Khoo (Cambridge)
- O. Jinnouchi (Tokyo Tech)
- H. Otono (Kyushu)
- N. Pettersson (Tokyo Tech)
- A. Soffer (Tel Aviv)
- N. Taiblum (Tel Aviv)

From the previous analyses:

- F. Brochu (Cambridge)
- J. Ernst (Albany)
- K. Horn (SLAC)
- V. Jain (Albany)
- H.J. Kim (Stockholm)
- Kreisel (Tel Aviv)
- C.W. Loh (Indiana)
- N. Soni (Adelaide)

ATLAS

Trigger (might miss the DV tracks)

- DV+*µ*
 - Muon-spectrometer only, $p_T^{\mu} > 50$ GeV
- DV+*e*
 - Photon, $p_T^{\gamma} > 120 \text{ GeV}$
- DV+jets
 - $-4 \times 80 \parallel 5 \times 55 \parallel 6 \times 45 \text{ GeV}$
- $DV + E_T^{miss}$
 - $E_{miss}^T > 80 \text{ GeV}$
- Dilepton DV
 - $p_T^{\mu} > 50 \parallel p_T^{\gamma} > 120 \parallel 2\gamma \times 40 \text{ GeV}$

Tracking displaced tracks

- ATLAS tracks must have impact parameter $d_0 < 10 \text{ mm}$
 - Severely limits sensitivity for highly displaced vertices
- We perform offline "retracking":
 - Keep detailed information (DESD) for triggered events
 - Offline: retrack with unused hits and $d_0 < 300$ mm, $z_0 < 1500$ mm

 Obtain significant efficiency improvement at large vertex distances:

Vertex reconstruction efficiency (details later) before and after retracking 18

Vertex reconstruction

- Tracks:
 - $-p_T \ge 1 \text{ GeV}, d_0 > 2 \text{ mm}$
- Displaced vertex (DV):
 - Vertex track pairs
 - Iterative process to associate 1 track \rightarrow 1 DV, merge vertices within 3 σ or 1 mm
 - -r > 4 mm
 - Veto vertices in material
- Multitrack final selection:
 - # tracks in DV: $N_t \ge 5$
 - DV mass: m > 10 GeV
- Dilepton final selection:
 - Lepton $p_T > 10 \text{ GeV}$
 - m > 10 GeV

$DV+\mu$ efficiency (examples)

Efficiency vs. lifetime

- Optimal range of lifetimes
- Easier at high mass
 - Easier triggers
 - More tracks and mass in vertex

A selection of efficiency corrections/validations

- Displaced track reconstruction efficiency:
 - K_S efficiency data-MC comparison
- Muon ID efficiency vs. d_0 :
 - cosmic muons: select with ΔR , verify with Δp_T
- Electron ID efficiency vs. d_0 :
 - No source of clearly identifiable displaced electrons
 - Use $Z \rightarrow e^+e^-$ data-MC comparison as a function of z_0
- Jet efficiency vs. displacement:
 - p_T variation in MC

Dominant background: multitrack

- Falls rapidly with #-of-tracks and mass
- Dominant source: low-mass material-interaction vertex accidentally crossed by high- p_T track
- Estimated by combining low-mass vertices with a track from another event, separately in 6 radial regions

 $207 \pm 9 \pm 29$

DV+electron

Minor background: multitrack

- Merged low-multiplicity vertices
- Studied from the distribution of the distance between vertices in different events (model) (after η weighting)
- Validated with vertices in same event (data)

- 0.02 ± 0.02 events in DV+lepton
- 0.03 ± 0.03 events in DV+jets/MET

Dominant background: dilepton

- Random crossings of leptons
- Studied by
 - Selecting 2 leptons from different events
 - Rotating one in steps of $\delta \phi < 0.03$
 - Vertex fitting at each step
 - If vertex passes cuts, assign weight $\delta \phi/2\pi$
 - \sum weights = random dilepton vertex prob.
- Validated using
 - MC
 - Non-leptonic tracks

Channel	No. of background vertices $(\times 10^{-3})$
e^+e^-	$1.0 \pm 0.2 \stackrel{+0.3}{_{-0.6}}$
$e^{\pm}\mu^{\mp}$	$2.4 \pm 0.9 \ ^{+0.8}_{-1.5}$
$\mu^+\mu^-$	$2.0 \pm 0.5 \ ^{+0.3}_{-1.4}$

Multitrack Results

No events observed in the signal regions

(a)

ATLAS

√s = 8 TeV, 20.3 fb⁻¹

Ν.,

DV+E+ Data 📃 Signal MC m_{DV} [GeV] Signal Region 10² 10⁻² 10 10⁻³ - $DV + E_{miss}^T$ 10^{-4} 46 50 6 7 8 910 30 5 20

Similar plots for dilepton channels

Example limits for RPV scenario

BABAR Energy and data

 $L[\Upsilon(4S)] = 424 \text{ fb}^{-1} \quad \#[\Upsilon(4S)] = 471 \times 10^{6}$ $L[\Upsilon(3S)] = 28 \text{ fb}^{-1} \quad \#[\Upsilon(3S)] = 121 \times 10^{6}$ $L[\Upsilon(2S)] = 14 \text{ fb}^{-1} \quad \#[\Upsilon(2S)] = 99 \times 10^{6}$

$$\sim 1.3 \times 10^9 \ e^+e^- \rightarrow c\bar{c}$$

$$\sim 0.9 \times 10^9 \ e^+e^- \rightarrow \tau^+\tau^-$$

Belle data ended mid-2010, $L(4S) = 711 \text{ fb}^{-1}, L(5S) = 121 \text{ fb}^{-1}$

Scenarios - 1

- "Higgs portal": new scalar ϕ mixes with SM Higgs (e.g., 1310.8042)
 - $-\phi$ produced with large coupling m_b or m_t
 - If $m_{\phi} < 2m_{\mu}$, the ϕ decays with small coupling m_{μ} , long-lived

Scenarios – 1.5

• E.g., inflaton mixes with the SM Higgs (1303.4395)

$$egin{split} \mathcal{L}_{XN} &= rac{1}{2} \partial_\mu X \partial^\mu X + rac{1}{2} m_X^2 X^2 - rac{eta}{4} X^4 - \lambda \left(H^\dagger H - rac{lpha}{\lambda} X^2
ight)^2 \ \mathcal{L}_{ ext{grav}} &= - rac{M_P^2 + \xi X^2}{2} R, \end{split}$$

- Predicted parameters suitable for B-factory sensitivity:
 - $B(b \to sX) \sim 10^{-6}$
 - $B(inflaton \rightarrow 2 tracks)$
 - Inflaton lifetime

Scenarios - 2

- Dark photon production (e.g., 0910.1602, 0903.3941)
 - A' decays promptly into hidden-sector scalars that decay as DV
 - A' is stable but undergoes dark-Higgsstrahlung with subsequent DV

Analysis "history"

- Only one previous long-lived-particle search at a B factory: Belle search for
 - $\begin{array}{c} B \to D^{(*)} \ell \nu_h \\ \to \ell^- \pi^+ \end{array}$

(1301.1105)

- Ours is the first search that is production-model independent, relying on 2-track DV as only signature
 - D. Peimer & A. Soffer

Event selection

- Vertex track pairs:
 - $e^+e^-, \mu^+\mu^-, e^\pm\mu^\mp, \pi^+\pi^-, K^+K^-, \pi^\pm K^\mp$
- Require
 - Track impact parameter $d_0 > 3\sigma$
 - No hits before the vertex
 - -1 < r < 50 cm
 - $\alpha < 0.01$
 - Remove Bhabhas
 & cosmics with angle cuts
 - Crude veto of dense material regions
- Remaining background:
 - Mostly truly displaced tracks (*K_S*, material interactions)

Efficiency parameterization

- Obtained efficiency for Higgs portal from $B \rightarrow X_s L$ easy
 - Tune m_{X_s} distribution to match $B \to X_s \ell^+ \ell^-$ MC for given m_L
- For any model:
 - Simulate L production in various hadronic B and Υ decays
 - Tabulate efficiency for each channel vs. $m, p_T, c\tau$

Signal extraction

- Fit DV-mass distribution assuming background only obtain background shape
 - Shape = spline, assuming only that the background doesn't peak sharply
 - Spline bin width is $15 \times$ mass-dependent mass resolution
 - This 15 is the dominant source of systematic uncertainty, due to background modeling
- Scan for a signal peak on top of the background, in steps of 2 MeV
 - Must account for wide range of mass resolution vs. DV radius and mass
 - Shape = mass-resolution function from MC, $H\left(\frac{(m-m_0)}{\sigma}\right)$

Measured mass

Mass hypothesis

Per-event mass resolution

• Search for points of high signal significance

Results

- Maximum local signif. = 4.7 σ is at $\mu\mu$ threshold, m = 0.212 GeV, $n_{sig} = 13$
- Bgd. fluctuation prob. in lowmass $\mu\mu$ region = 4 × 10⁻⁴
- But consistent with material interactions:
- Of the 34 events with m < 0.215, most are in or near detector material.
- All low momentum tracks poor particle identification.
- 10 events pass e^+e^- criteria
- 10 events pass $\pi^+\pi^-$ criteria

"Model-indep." upper limits on $\sigma(L)B(L \rightarrow f)\epsilon$

Provide efficiency table as a function of m, p_T , $c\tau$, so results can be applied to any specific model.

Efficiency dominated by 1 < r < 50 cm cut

Higgs-portal "model-dep." upper limits on $B(B \rightarrow X_S L)B(L \rightarrow f)$

Exclude regions of inflatonmodel parameter space (1303.4395)

In this model, LHCb later obtained much tighter limits for $B \rightarrow K^*L(\rightarrow \mu^+\mu^-)$ (1508.04094)

Summary and outlook

- Ongoing improvement in searches for high-mass DVs at LHC
- For Run-2:
 - Improving triggers, tracking and vertexing efficiency
 - Expanding cut envelope into nonzero-background regions
 - Testing additional models
- New DV search at a B factory
- In the future:
 - Possible signature expansion
 - 2018 2025: Belle-II could study this with × 100 luminosity, improved detector