Uplifting AdS/CFT to Cosmology

Bart Horn, Stanford/SLAC LEPP Theory Seminar 10/5/11, Cornell University

hep-th/1108.5732, hep-th/1005.5403, w/Xi Dong, Shunji Matsuura, Eva Silverstein, Gonzalo Torroba, also work in progress See also: hep-th/0407125, hep-th/0504056 (Alishahiha, Karch, Silverstein, and Tong); hep-th/0908.0756 (Polchinski and Silverstein)

Outline

- Motivation: holographic formulation of cosmological spacetimes (dS, FRW...)
- Magnetic flavors and uplifitng
- Constructing the dS/dS correspondence
- Decay to FRW and flavor brane holography
- Prospects: field theory side

Holographic dual of cosmological spacetime

- General considerations make dS holography hard: boundary is spacelike and disconnected, no SUSY or S-matrix, loss of causal contact, metastability and eternal inflation, gravity does not decouple, only finitely many d.o.f. are accessible.
- Thought laboratory for conceptual questions in gravity
 - Micro origin of S_{GH}
 - Growth of N_{dof} as H decreases
 - Metastability and decay of de Sitter
 - Landscape of vacua and measure problem
- Today: brane construction of dS/dS and for FRW phase after CdL decay; parametric micro accounting of N_{dof}

Uplifting AdS/CFT

• Use zeromode effective potential on Freund-Rubin solutions w/ known dual

Uplifting AdS/CFT

• Use zeromode effective potential on Freund-Rubin solutions w/ known dual

Uplifting AdS/CFT

• "abc" structure; uplift curvature to $\Delta n = n_{\text{branes}} - n_{\text{R}} > 0$

- (p,q) 7-branes, stringy cosmic 5-branes (Greene et al. '90, Hellerman + McGreevy '02), KK5s can compete w/curvature.
 - F-theory techniques and GLSM control backreaction
 - $\Delta n = 0$ gives CY, e.g. 24 7-branes uplift sphere to K3
 - Time-dependent solutions with $\Delta n > 0$ (cf. Kleban + Redi '07)
 - Magnetic/dyonic flavors
- O-planes, topology provides negative term for metastable solution.
 - SO, Sp gauge groups
- FRW region: only a-term matters

Worked example: $dS_3 \propto S^3/Z_k \propto T^4$

- D1-D5 system; SC5s, NS5s lift curvature to Δn = ε → in higher dimensions these are magnetic/dyonic flavors, in 1+1d the target space is fibered.
- Orbifold boosts strength of O-planes
- Multiple moduli (R, L, g_s , R_f) requires nested abc structure
- Weak coupling, weak curvature/large radius, and a hierarchy achieved
- Macro parameters in terms of micro inputs:

$$S_{dS} \approx M_3 R_{dS} \approx \frac{1}{\varepsilon^{3/2}} k N_1 N_5$$

1-5 strings dominate entropy; cf. quiver gauge theory w/ winding enhancement

Brane construction

- Can use zeromode effective potential or look at Einstein equations directly for colorbranes probing transverse space ds^2 = $dw^2 + R^2(w)ds^2 \bot$
- AdS: noncompact cone over S^5 , $S^3 \times T^4$, etc.

$$\frac{R(w)^2}{R(w)^2} = \frac{1}{R(w)^2} \text{ cf. Friedmann eqn.}$$

$$\longrightarrow R(w) \sim w$$

Brane construction

- Can use zeromode effective potential or look at Einstein equations directly for colorbranes probing transverse space ds^2 = $dw^2 + R^2(w)ds^2 \bot$
- dS: compact space; need colorbranes and antibranes!
- Unstable to Schwinger (or CdL) decay on long timescales

de Sitter/de Sitter

• Foliate dS_d by dS_{d-1} $ds^2 = dw^2 + \sin^2\left(\frac{w}{R}\right) ds_{ds_{d-1}}^2$ • cf. dS_{d-1} slicing of AdS $ds^2 = dw^2 + \sinh^2\left(\frac{w}{R}\right) ds_{ds_{d-1}}^2$ • Can slice region shown by global slices, or static patch by

static patches.

• Gravity on $dS_d \leftrightarrow$ (single lattice point of) 2 QFTs cut off and coupled to each other and to gravity; thermal with T ~ $1/R_{dS}$

de Sitter/de Sitter

- A "semiholographic" correspondence, but can in principle be iterated...
- Gravity side checks: probe branes, gravitons, heat capacity...
- QM system is similar to AdS/CFT at lengths below the AdS scale.

Connections to other proposals?

- Uplifting landed us on dS/dS. Other approaches include analytic continuation, (Strominger '01, McFadden & Skenderis '09, Anninos, Hartman and Strominger '11) embedding a dS bubble within AdS, (Freivogel, Shenker et al. '05) or focusing solely on the FRW region within a bubble. (Freivogel, Sekino, Susskind and Yeh '06)
 - Make sure not to analytically continue to imaginary flux...
- May be different aspects of a single description?
- Most descriptions are of limited precision (Harlow and Susskind '10); dS/dS can decay though, so it may have an extension to something more precise.

An optimistic view of de Sitter

FRW/CFT relates FRW region inside bubble to boundary

LEPP Wednesday seminar, 10/5/11

Part II: Decay to FRW and flavor brane holography

dS/dS describes a metastable region and can be continued....

Only the magnetic flavor "a" term is relevant now.

LEPP Wednesday seminar, 10/5/11

FRW region of uplifted AdS/CFT

• Uplifting to $\Delta n > 0$ and CdL decay gives a specific metric with open slices and an uplifted sphere

$$ds^{2} = -dt_{s}^{2} + \frac{t_{s}^{2}}{c^{2}}dH_{d-1}^{2} + \frac{t_{s}^{2}}{\hat{c}^{2}}dH_{n}^{2} + (dx_{f} + A)^{2}$$

Vacuum solution if $c^2 = (d-n-2)/(d-2)$, $\hat{c}^2 = (d-n-2)/(n-1)$; RR and metric flux dilute away.

• d-dim'l Einstein frame metric

$$ds^{2} = -dt_{E}^{2} + c^{2}t_{E}^{2}dH_{d-1}^{2}$$

• $\Delta n = n - n_R > 0 \leftrightarrow c > 1$; singularity at t = 0 avoided in CdL case.

Warped metric for FRW

• This metric has a warped product description for c > 1!

$$ds^{2} = c^{2} (t_{UV}^{2/c} - w^{2})^{c-1} dw^{2} + \left(1 - \frac{w^{2}}{t_{UV}^{2/c}}\right)^{c-1} (-dt_{UV}^{2} + c^{2} t_{UV}^{2} dH_{d-2}^{2})$$

Redshifting of proper energies by warp factor $f = \left(1 - \frac{w^2}{t_{UV}^{2/c}}\right)^{(c-1)/2}$

Strongly warped region should have an EFT description!

Time dependence is subdominant:

$$\frac{\partial_{t_{UV}} f}{\partial_w f} \propto t_{UV}^{-(1-1/c)} \to 0$$

Alternate slicings are possible but not as clear to interpret.

Gravity side checks: motion sickness

• Solve e.o.m for massive point particles (KK modes, closed strings, 7-7 stretched strings): these stay at constant warp factor, even when the mass is time-dependent.

– cf. Kerr-CFT

- Solve DBI action for colorbranes → these move up the throat to regions of less warping. "Motion sickness"
 - Consistent with diluting flux and flavor sector holography
 - "Technicolor Yawn" anticipates connection to warped throats...

Gravity side: parametrics

• Gravity decouples at late times as additional d.o.f. renormalize the Planck mass, and scalings of cutoff and N_{dof} can be found using the (d-1)-dim'l quantum energy density.

$$\begin{split} N_{dof}\Lambda^{d-3} &\equiv M_{d-1}^{d-3} \sim M_d^{d-2} \int \sqrt{-g} \, g^{ww} dw \sim M_d^{d-2} t_{UV} \\ H^2 &\approx \frac{1}{t_{UV}^2} \sim N_{dof} \Lambda^{d-1} G_{N,d-1} \\ &\rightarrow \Lambda \sim \frac{1}{t_{UV}}, \ N_{dof} \sim t_{UV}^{d-2} \end{split}$$

- # d.o.f. per lattice point agrees with Bousso's covariant entropy bound, which predicts $S \propto t_{UV}^{d-2}$ for the entropy within the apparent horizon, for c > 1.
- Also agrees with the Brown-York quasilocal stress-energy tensor.

Green's functions

- Massive particles: reduces to solving geodesic equations. Using the metric $ds_d^2 = -dt^2 + (ct)^2(d\chi^2 + \cosh^2 \chi dH_{d-2}^2)$ makes the calculation easier.
 - KK mode correlators have power law dependence on geodesic distance; cf. massive particles in AdS/CFT

$$G_{equal-t_{UV}}(\Delta x) \propto \frac{1}{(\Delta x)^{2n_{KK}}}; \ \Delta x = \Delta X_{geodesic}/(ct_{UV})$$

- Massless particles: requires full mode expansion in CdL geometry
 - Universal term from localized UV zero-mode; subdominant term only for c>1: (Note that $t_{UV} = t(\cosh \chi)^c$)

$$G_{equal-t}(\Delta X_{geodesic}) \sim \log \frac{\Delta X}{t} + \frac{t^{(d-2)(\sqrt{1-1/c^2} - 1 + 1/c)}}{(\Delta X)^{(d-2)/c}} \log \frac{\Delta X}{t}$$

Micro-accounting in FRW

- Stretched strings/junctions between flavor branes parametrized by {n_{str}, n_f, k_f, group theory}. E.g. in 5d:
 - core size of n strings ~ $n_{str}^{1/5} < t_s \rightarrow n_{str} \le t_{UV}^{15/7}$
 - O(t_s) windings around fiber see it is contractible \rightarrow $n_f \le t_{UV}^{3/7}$
 - $k_f > t_s$ is a weakly bound state of stretched strings and gravitons, and it decays $\rightarrow k_f \le t_{UV}^{3/7}$
- Assume there are no additional factors from the group theory (reasonable with certain assumptions on what constitutes an 'elementary' state)

Micro-accounting in FRW

- Together, the number of states is $(n_{str} n_f k_f)_{max} \sim t_{UV}^3$, in agreement with the macro count of N_{dof} and the covariant entropy bound!
- Not sure whether this had to work, but it works in more general dimensions...

 $n_{str} \le t_s^{d+2m-4}, n_f \le t_s, k_f \le t_s \to (n_{str} n_f k_f)_{max} \sim t_{UV}^{d-2}$

Summary

- Using magnetic flavor branes to uplift AdS/CFT dual pairs, we can find brane constructions realizing holography on dS and its decay to open FRW.
- For de Sitter, we have a microscopic construction of the dS/dS correspondence, and a fully stabilized example in 3D where the entropy can be parametrically expressed in terms of the microscopic parameters.
- When dS/dS decays to FRW, we have a warped region sourced by flavor branes; we have a number of gravity side checks and a suggestive match between a micro count of stretched string states and the covariant entropy bound.

Prospects

- Want to understand field theory better
 - Connection between β function and moduli stabilization?
 - How do magnetic flavors source time dependence in field theory?
 - What is the UV completion on the (d-1) –dimensional side of dS/dS?
- dS_4 worked example possible connections to ABJM
- Connections to other versions of dS holography? Does micro construction tell us anything about the measure problem?

Thank you!

Laboratory of Elementary Particle Physics, Cornell University Stanford Institute for Theoretical Physics SLAC National Accelerator Laboratory Kavli Institute for Theoretical Physics/UC Santa Barbara National Science Foundation US Department of Energy Office of Science Mr. and Mrs. William K. Bowes, Jr. You, the audience!

LABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

LEPP Wednesday seminar, 10/5/11

Backup slides: details of dS_3 worked example

dS₃ worked example

• Builds upon $AdS^3 \times S^3/Z_k \times T^4$

	0	1	2	3	4	5	6	$\overline{7}$	8	9
D1	х	х								
D5	х	х					х	х	х	х
O5	х	х		х	х				х	х
O5'	х	х	х			х	х	х		
$\rho 5$	х	х	х	х					х	х
$\rho 5'$	х	х			х	х	х	х		
NS5	х	х		х	х		х		х	
NS5'	х	х	х			х		х		х
$D7, \overline{D7}$	х	х	х	х	х	х		х	х	
$D7', \overline{D7'}$	х	х	х	х	х	х	х			х

All branes mutually SUSY except D7branes, anti-D7 branes

Improved constructions use D5, anti-D5s

dS_3	wor	ked	example	
--------	-----	-----	---------	--

Moduli size of S³: R size modulus of T²: b_T+L^2 Size of Hopf fiber: $\beta = kR_f/R$ String coupling: $\eta = g_s/(L^2R^2)$

2 3 4 5 6 7 8 9 $0 \ 1$ D1x x D5х х х х х х O5х х х х х х O5'х х х х х х $\rho 5$ х х х х х х $\rho 5'$ х х х х х х NS5х х х х х х NS5'х х х х Х х $D7, \overline{D7}$ x x x x x x x хх $D7', \overline{D7'} \times x \times x \times x$ х х

$$U \approx 16M_{3}^{3}k^{3} \left\{ \underbrace{\left(\frac{4\pi^{2} - \frac{2\pi^{2}}{3\beta^{2}} \left[\frac{24 - n_{\rho} - \hat{n}_{\rho} \left(\left(\log[\frac{L^{2}}{L_{*}^{2}}]\right)^{2} + \frac{(b_{T} - b_{*})^{2}}{L^{4}}\right)\right] + \frac{\pi k n_{NS5}}{L^{2}\beta^{3}} \frac{\tilde{\eta}^{4}}{k}}{\left[- \left(\frac{2\pi R^{2} - \frac{n_{D7}R^{4}\beta}{2k}}{2k}\right)\frac{\tilde{\eta}^{5}}{\beta^{3}} + 4\pi^{2} \left(\frac{N_{D5}^{2}L^{4} + \frac{(N_{D1} + b_{T}^{2}N_{D5})^{2}}{L^{4}} + 2b_{T}^{2}N_{D5}^{2}}\right)\frac{k\tilde{\eta}^{6}}{\beta^{4}}}{L^{4}} \right\}$$

Tuning input parameters to fix the first term at a small numerical value ε gives a hierarchy – though this is not infinitely tunable.

dS₃ worked example

Parametric solution with large curvature radius and weak string coupling!

	0	1	2	3	4	5	6	7	8	9
D1	х	х								
D5	х	х					х	х	х	х
O5	х	х		х	х				х	х
O5'	х	х	х			х	х	х		
$\rho 5$	х	х	х	х					х	х
$\rho 5'$	х	х			х	х	х	х		
NS5	х	х		х	х		х		х	
NS5'	х	х	х			х		х		х
$D7, \overline{D7}$	х	х	x	х	х	х		х	х	
$D7', \overline{D7'}$	х	х	х	х	х	х	x			х

dS₃ worked example

Input data 4 n_{ρ} \hat{n}_{ρ} 2 $\exp(i\pi/3)$ ρ_* 2 n_{NS5} 4 n_{D7} 44k N_{D1} 156 N_{D5} 5

R	9.2
kR_f	7.5
L	2.5
b_T	0.48
g_s	0.02
ϵ	0.002
$4ac/b^2$	1.003

Stabilized moduli

	0	1	2	3	4	5	6	7	8	9
D1	х	х								
D5	х	х					х	х	х	х
O5	х	х		х	х				х	х
O5'	х	х	х			х	х	х		
$\rho 5$	х	х	х	х					х	х
$\rho 5'$	х	х			х	х	х	х		
NS5	х	х		х	х		х		х	
NS5'	х	х	х			х		х		х
$D7, \overline{D7}$	х	х	x	х	х	х		х	х	
$D7', \overline{D7'}$	х	х	х	х	х	х	х			х

All moduli can be stabilized with weak string coupling, large curvature, radius and a hierarchy. $O(\alpha')$ corrections will alter the depth of the dS min but not its location.

$$U \approx 16M_{3}^{3}k^{3} \left\{ \left(4\pi^{2} - \frac{2\pi^{2}}{3\beta^{2}} \left[24 - n_{\rho} - \hat{n}_{\rho} \left(\left(\log[\frac{L^{2}}{L_{*}^{2}}]\right)^{2} + \frac{(b_{T} - b_{*})^{2}}{L^{4}} \right) \right] + \frac{\pi k n_{NS5}}{L^{2}\beta^{3}} \right) \frac{\tilde{\eta}^{4}}{k} - \left(2\pi R^{2} - \frac{n_{D7}R^{4}\beta}{2k} \right) \frac{\tilde{\eta}^{5}}{\beta^{3}} + 4\pi^{2} \left(N_{D5}^{2}L^{4} + \frac{(N_{D1} + b_{T}^{2}N_{D5})^{2}}{L^{4}} + 2b_{T}^{2}N_{D5}^{2} \right) \frac{k\tilde{\eta}^{6}}{\beta^{4}} \right\}$$
LEPP We chesday seminar, 10/5/11

Laundry list: avoiding spills

- Additional moduli from anisotropies, axions, slippage, D7 brane-antibrane potential.
- $O(\alpha')$ corrections will alter final numerics; numbers are illustrative rather than accurate.
- D5s instead of D7s improve numerics somewhat

Laundry list: how to remove smearing

- 10D eom vs. 3D zeromodes: include warp/conformal factors $ds^2 = e^{2A(y)}ds_{dS_3}^2 + e^{-2A(y)}ds_{int}^2$ (Giddings and Maharana '05, Douglas '09, Douglas and Kallosh '10)
- Einstein equation: $\nabla^2 A (\nabla A)^2 = -R^{(10-d)} + g_s^2 |F|^2 + g_s^2 T^{loc} + g_s^2 U$
- A << 1 for D-branes and O-planes; homogeneous approximation OK
- A ~ 1 for $\rho 5s$; NS5s but we have the GLSM here.