# Searching for New Physics in Galactic Cosmic Rays

# Kfir Blum

KB **1010.2836** Katz, KB, Morag, Waxman; **MNRAS 405, 1458 (2010)** +work in progress

> Cornell LEPP seminar 10/26/2011

While we're waiting for new rumors from the LHC...

...there's another front in progress: search for particle dark matter fundamental to our understanding of the Universe we live in

Many experiments out there for it.



#### **Direct detection**

• confusing situation (did we find it already?)

some experiments put exclusion bounds (Xenon10,100, CDMS, ...)

other experiments detect... something (CRESST, DAMA, CoGeNT)



## Indirect detection – topic of this talk

• confusing situation (did we find it already?)

some experiments detect... something (PAMELA, Fermi, ATIC)

- → is it, or is it not, consistent with backgrounds?
- → what can we do to clarify this issue?
- big question: background predictions.

new data coming up: AMS02

# get ready for it!



#### Plan

- Simple analysis of stable secondaries
   CR grammage
- e+ PAMELA and Fermi
   Know injection → learn propagation

Robust test for secondary hypothesis

Radioactive nuclei: lessons for propagation time scales
 Radioactive nuclei probe escape time up to (surprisingly) high energy
 Decouples escape from the problem → test secondary origin

#### Galactic CR: general picture

- CRs fill our Galaxy. Galactic: up to ~ PeV (at least). Energy density ~ eV/cm<sup>3</sup>
- **Primaries**: p, C, Fe, ... consistent w/ stellar material, shock-accelerated
- Secondaries: B, Be, Sc, Ti, V, ... fragmentation of primaries on ISM. Antimatter occurs as secondary  $pp \rightarrow pn\pi^+ \rightarrow ppe^-e^+\nu_e \bar{\nu}_e \nu_\mu \bar{\nu}_\mu$
- Open questions: propagation.



#### A simple analysis of stable secondaries

• At high energy, flux of stable secondary nuclei follows simple empirical relation:

$$J_S = \frac{c}{4\pi} X_{\text{esc}} \tilde{Q}_S \qquad (S = {}^9\text{Be}, \text{ B}, \text{ Sc}, \bar{p}, \dots)$$

•  $\tilde{Q}_{S}$  = Local net production density per traversed unit column density of ISM

•  $X_{esc}$  = CR grammage. Crucial point:  $X_{esc}$  does not carry species label, S



# CR grammage $J_S = \frac{c}{4\pi} X_{esc} \tilde{Q}_S$

- Measured from B/C, sub-Fe/Fe  $X_{\rm esc}(\mathcal{R}) \approx 8.7 \left(\frac{\mathcal{R}}{10 \, {\rm GV}}\right)^{-0.5} \, {\rm g/cm^2}$
- Precise way by which  $X_{\mathrm{esc}}$  comes about is unknown

• Equivalent to: 
$$\frac{n_A}{n_B} = \frac{Q_A}{\tilde{Q}_B}$$
  $\bigstar$ 

A,B secondaries, compared at the same rigidity

**Intuition**: ISM bombarded by CRs. Yields  $N_{A,B}$  secondary particles per unit time.  $N_A/N_B$  depends on CR and ISM *composition*. If composition uniform everywhere  $\rightarrow$  expect  $\checkmark$ 

#### • Sufficient condition:

The composition of CRs and of ISM is approximately uniform, in the regions in which most secondaries observed at earth are produced

## Why does it work so well?

## Why it could work:

NGC 891





### Diffusion models fit grammage.



Maurin, Donato, Taillet, Salati Astrophys.J.555:585-596,2001

#### Diffusion models fit grammage.



$$X_{\rm esc} = X_{\rm disc} Lc/(2D)g(L/R) \propto \varepsilon^{-\delta}$$

$$\implies f(\delta) = (\varepsilon/\text{ GeV})^{\delta-0.6} \approx 75^{\delta-0.6}$$

$$g(L/R) = \frac{2R}{L} \sum_{k=1}^{\infty} J_0\left(\nu_k \frac{r_s}{R}\right) \frac{\tanh\left(\nu_k \frac{L}{R}\right)}{\nu_k^2 J_1(\nu_k)}$$

#### Plan

- Simple analysis of stable secondaries
   CR grammage
- e+ PAMELA and Fermi
   Know injection → learn propagation
   Robust test for secondary hypothesis
- Radioactive nuclei: lessons for propagation time scales
   Radioactive nuclei probe escape time up to (surprisingly) high energy
   Decouples escape from the problem → test secondary origin

What do we expect from current and upcoming positron measurements?
 Secondary e+ produced in pp interactions, just like e.g. antiprotons
 Antiprotons understood → secondary e+ production understood
 e+ lose energy radiatively. Measure e+ → measure losses

nature International weekly jou

#### Access

To read this story in full you will need to login or make a payment ( nature.com > Journal home > Table of Contents

#### Letter

Nature 458, 607-609 (2 April 2009) | doi:10.1038/nature07942; Received 28 February 2009

An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV





#### **Positrons**

$$\frac{J_{e^+}}{J_p} = f_{s,e^+} 10^{-\gamma+1} \xi_{e^+,A>1} C_{e^+,pp}(\varepsilon) \frac{\sigma_{pp,inel,0}}{m_p} X_{\text{esc}}$$



$$pp \to pn\pi^+ \to ppe^-e^+\nu_e\bar{\nu}_e\nu_\mu\bar{\nu}_\mu$$

| h          | Exclusive reaction     | $\overline{M}_{\rm X}$<br>(GeV $c^{-2}$ ) | $\sqrt{s_t}$ (GeV) | E <sub>t</sub><br>(GeV) | T <sub>t</sub><br>(GeV) |
|------------|------------------------|-------------------------------------------|--------------------|-------------------------|-------------------------|
| $\pi^+$    | $pn\pi^+$              | 1.878                                     | 2.018              | 1.233                   | 0.295                   |
| π          | $pp\pi^{+}\pi^{-}$     | 2.016                                     | 2.156              | 1.540                   | 0.602                   |
| $\pi^0$    | $pp\pi^0$              | 1.876                                     | 2.011              | 1.218                   | 0.280                   |
| $\kappa^+$ | $\Lambda^0 p \kappa^+$ | 2.053                                     | 2.547              | 2.520                   | 1.582                   |
| κ ¯        | $pp\kappa^+\kappa^-$   | 2.370                                     | 2.864              | 3.434                   | 2.496                   |
| p          | āgag                   | 2.814                                     | 3.752              | 6.566                   | 5.628                   |
| p          | pp                     | 0.938                                     | 1.876              | 0.938                   | 0                       |

#### **Positrons**

$$\frac{J_{e^+}}{J_p} = f_{s,e^+} 10^{-\gamma+1} \xi_{e^+,A>1} C_{e^+,pp}(\varepsilon) \frac{\sigma_{pp,inel,0}}{m_p} X_{\rm esc}$$

- Cannot apply grammage relation: *energy losses*. Parameterize!
- Cooling suppression depends on time scales for escape and loss. Both time scales unknown
- Moreover, precise relation model dependent.

For example, diffusion models predict:

$$f \sim \sqrt{t_c/t_{\rm esc}}$$

Leaky Box models predict:

$$f \sim t_c / t_{\rm esc}$$

• Steep spectrum  $\rightarrow$  loss suppresses flux

$$f_{s,e^+} < 1$$

#### Study positrons and antiprotons together



Positron flux suppressed by losses.

#### Positrons: data



 $f_{s,e^+} < 1$ 

#### Positrons: data



#### Positrons: data



#### Quantify losses (go beyond $f_{s,e^+} < 1$ )

• Suppression factor:

$$f_{s,e^+} = \frac{J_{e^+}}{\frac{c}{4\pi} \,\tilde{Q}_{e^+} \,X_{\rm esc}} \approx 0.6 \times 10^3 \left(\frac{\mathcal{R}}{10\,{\rm GV}}\right)^{0.5} \times \frac{J_{e^+}(\mathcal{R})}{J_p(\mathcal{R})}$$

• Saw  $f_{s,e^+} \sim 0.3 < 1~$  @20 GV

#### Does this result make sense quantitatively?

• Expect  $f_{s,e^+}$  rise if escape time drops faster than cooling time:  $f_{s,e^+} \approx \left(\frac{t_c}{t_{\rm esc}}\right)^{\alpha}$ 

expect  $t_c \propto \mathcal{R}^{-\delta_c}$ . If uniform environment, IC/sync', Thomson regime  $\delta_c \sim 1$ 

ightarrow Does data allow escape time falling faster than  $t_c$  ?

Answer by studying radioactive nuclei

#### Plan

- Simple analysis of stable secondaries
   CR grammage
- e+ PAMELA and Fermi
   Know injection → learn propagation
   Robust test for secondary hypothesis
- Radioactive nuclei: lessons for propagation time scales
   Radioactive nuclei probe escape time up to (surprisingly) high energy
   Decouples escape from the problem → test secondary origin

#### Radioactive nuclei: Charge ratios

## Suppression factor due to decay $\approx$ suppression due to radiative loss,

if compared at rigidity such that cooling time ≈ decay time

A STUDY OF THE SURVIVING FRACTION OF THE COSMIC-RAY RADIOACTIVE DECAY ISOTOPES <sup>10</sup>Be, <sup>26</sup>Al, <sup>36</sup>Cl, and <sup>54</sup>Mn AS A FUNCTION OF ENERGY USING THE CHARGE RATIOS Be/B, Al/Mg, Cl/Ar, AND Mn/Fe MEASURED ON *HEAO-3* 

> W. R. WEBBER<sup>1</sup> AND A. SOUTOUL Received 1997 November 6; accepted 1998 May 11

| reaction                                                 | $t_{1/2}$ [Myr]  | $\sigma \; [{\rm mb}]$ |
|----------------------------------------------------------|------------------|------------------------|
| ${}^{10}_4{ m Be}  ightarrow {}^{10}_5{ m B}$            | 1.51(0.06)       | 210                    |
| $^{26}_{13}\mathrm{Al}\rightarrow^{26}_{12}\mathrm{Mg}$  | 0.91(0.04)       | 411                    |
| $^{36}_{17}\mathrm{Cl}  ightarrow ^{36}_{18}\mathrm{Ar}$ | 0.307(0.002)     | 516                    |
| $^{54}_{25}\mathrm{Mn}\rightarrow^{54}_{26}\mathrm{Fe}$  | $0.494(0.006)^*$ | 685                    |



(WS98)

#### Surviving fraction vs. suppression factor

- Convert charge ratios to observable with direct theoretical interpretation
- 1<sup>st</sup> step: WS98 report surviving fraction
   Well defined quantity, model independently.

$$\tilde{f}_i = \frac{J_i}{J_{i,\infty}}$$

2<sup>nd</sup> step: net source includes losses  $\tilde{Q}_S(\mathcal{R}) = \sum_P \frac{n_P(\mathcal{R})\sigma_{P\to S}}{\bar{m}} - \frac{n_S(\mathcal{R})\sigma_{S\to X}}{\bar{m}}$ 

Surviving fraction over-counts losses  $n_{i,\infty} > n_i$ 

Instead, define suppression factor due to decay Accounts for actual fragmentation loss

$$f_{s,i} = \frac{J_i}{\frac{c}{4\pi} \,\tilde{Q}_i \, X_{\rm esc}}$$

#### Suppression factor

- Different nuclei species on equal footing. Also e+
- Expect  $f_{s,i} \approx \left(\frac{t_i}{t_{\rm esc}}\right)^{lpha}$

Examples:

Leaky Box Model

Diffusion

$$f_{s,i} = \frac{1}{1 + t_{\rm esc}/t_i} \qquad f_{s,i} = \sqrt{t_i/t_{\rm esc}} \tanh\left(\sqrt{t_{\rm esc}/t_i}\right)$$
$$\tilde{f}_i = \frac{1}{1 + \frac{t_{\rm esc}}{t_{\rm c}} \left(1 + \frac{X_{\rm esc} \sigma_{i \to X}}{m_p}\right)^{-1}} \qquad \tilde{f}_i = \dots$$

• Magnetic trapping,  $t_{
m esc} = t_{
m esc}(\mathcal{R})$ 

Surviving fraction vs. energy (WS98)



Suppression factor vs. energy



Suppression factor vs. lifetime





#### Radioactive nuclei: constraints on $t_{\rm esc}$

- Rigidity dependence: hints from current data
- Cannot (yet) exclude  $~~\delta < -1~~$  with  $~~lpha \lesssim 0.5~$
- AMS-02 should do much better!



## Combined information (some answers)

• Is  $f_{s,e^+}$  rising with rigidity (=escape time falling faster then cooling time) allowed by data?

Currently cannot exclude robustly. Upcoming data should settle this!

#### Next:

• Quantitative result for  $f_{s,e^+}$ 

Cooling ~ decay 
$$f_{s,i} \approx \left(\frac{t_i}{t_{esc}}\right)^{\alpha} \quad f_{s,e^+} \approx \left(\frac{t_c}{t_{esc}}\right)^{\alpha}$$

Cooling time 
$$t_{\rm c} \approx 10 \,\mathrm{Myr} \,\left(\frac{\mathcal{R}}{30 \,\mathrm{GV}}\right)^{-1} \left(\frac{\bar{U}_T}{1 \,\mathrm{eV} \,\mathrm{cm}^{-3}}\right)^{-1}$$

$$\frac{f_{s,i}(\mathcal{R}')}{f_{s,e^+}(\mathcal{R}')} \approx \left[ \left( \frac{\tau_i}{1.5 \,\mathrm{Myr}} \right) \left( \frac{\mathcal{R}'}{20 \,\mathrm{GV}} \right)^2 \left( \frac{\bar{U}_T}{1 \,\mathrm{eV} \,\mathrm{cm}^{-3}} \right) \right]^{\alpha}$$

#### Combined information (some answers)

- +  $f_{s,e^+}\sim 0.3 < 1$  @ 20 GV
- → consistent w/ secondary

More: upper bound from CI

$$\bar{U}_T < 5 \left(\frac{\mathcal{R}}{20 \,\mathrm{GV}}\right)^{-2} \,\mathrm{eV \, cm^{-3}}$$

• Test secondary e+:

$$\bar{U}_T < U_{CMB} \approx 0.25 \text{ eV/cm}^3$$



### Tests for secondary positrons

#### 1. Existence of losses: $f_{s,e^+} < 1$

Independent of radioactive nuclei. Satisfied by PAMELA data

#### 2. Cooling time – amount of losses: $\bar{U}_T > U_{CMB}$

Compare w/ radioactive nuclei. At present, satisfied where CI and e+ data coexist

#### 3. Slope:

$$\delta + \delta_c < 0$$

Measure escape time  $t_{
m esc} \propto \mathcal{R}^{\delta}$  and cooling time  $t_c \propto \mathcal{R}^{-\delta_c}$ 

Based on radioactive nuclei. Consistent w/ PAMELA data

#### Fermi e+ 1109.0521



### Fermi e+ 1109.0521 (did we find it already?)



## Summary

• Stable secondaries:

propagation models fit grammage

Interpreting e+ data:

e+ ~ antiprotons

`Anomaly' ? PAMELA data does not show
 <sup>10</sup>Be agrees → e+ secondary
 PAMELA , AMS-02: reach 270-300 GeV

#### Fermi 2011: very exciting!

AMS02 will settle this.

 Compare w/ radioactive nuclei → decouple escape model independent tests for NP





# **Xtras**

#### Guiding concept: The solar neutrino problem

Major success of particle astrophysics: Solar Neutrinos

Case was only closed when astro uncertainties were removed model independently. Done from basic principles:

- Low energy deficit (Homestake) T uncertainty?
- Smaller deficit at higher energy (Kamiokande)
  - → real anomaly
- Lesson:

model independent no-go conditions



#### Another clean test:



$$\frac{J_{e^+}}{J_{\bar{p}}} = \left(\frac{\zeta_{e^+,A>1}}{\xi_{\bar{p},A>1}}\right) \left(\frac{1}{1+\frac{\sigma_{\bar{p}}}{m_p}X_{\rm esc}}\right) f_{s,e^+} \frac{C_{e^+,pp}(\varepsilon)}{C_{\bar{p},pp}(\varepsilon)} \implies \frac{J_{e^+}}{J_{\bar{p}}} \lesssim \frac{C_{e^+,pp}(\varepsilon)}{C_{\bar{p},pp}(\varepsilon)} = \frac{Q_{e^+,pp}(\varepsilon)}{Q_{\bar{p},pp}(\varepsilon)}$$

## Theoretically clean channel:



## Theoretically clean channel:

 $\overline{p}/p$  Concrete example: Z3-protected  $\nu'$  at the TeV Annihilation may compete w/ background if light radion ~ 10-100 GeV (Sommerfeld enhanced)

$$f_V = \frac{\int d^3 r q_{DM}(\vec{r}) \bar{G}(\vec{r}_{\rm sol}, \vec{r})}{\int d^3 r q_{\rm sec}(\vec{r}) \bar{G}(\vec{r}_{\rm sol}, \vec{r})} \sim L/h \sim 10 - 100$$



#### MAGIC e+- 1110.0183, 1110.4008



#### Stable secondaries, with spallation losses



Equivalently:

$$dxQ_A = n_{A,out} + n'_{A,out} - n_{A,in}$$
$$dxQ_{A,eff} = n''_{A,out} - n_{A,in}$$



$$Q_{A,\text{eff}} = Q_A - n_A \frac{\sigma_{A \to X}}{m_p} \rho_{ISM} c$$

Homogenous composition:

Q<sub>eff</sub> works just the same!

#### Radioactive nuclei: Charge ratios vs. isotopic ratios

Charge ratios Be/B, Al/Mg, Cl/Ar, Mn/Fe

Isotopic ratios

 $^{10}{\rm Be}/^{9}{\rm Be},\,^{26}{\rm Al}/^{27}{\rm Al},\,^{36}{\rm Cl/Cl},\,\,^{54}{\rm Mn/Mn}$ 

• High energy isotopic separation difficult. Must resolve mass Isotopic ratios up to ~ 2 GeV/nuc (ISOMAX)

 Charge separation easier. Charge ratios up to ~ 16 GeV/nuc (HEAO3-C2) (AMS-02: Charge ratios to ~ TeV/nuc. Isotopic ratios ~ 10 GeV/nuc)

• Benefit: avoid low energy complications; significant range in rigidity

• Drawback: systematic uncertainties (cross sections, primary contamination)

# Radioactive nuclei

$$\log\left(\frac{f_{s,i}\left(\mathcal{R}'\right)}{f_{s,j}\left(\mathcal{R}'\right)}\right) \approx \alpha \,\log\left(\frac{A_j \, Z_i \, \tau_i}{A_i \, Z_j \, \tau_j}\right)$$

 $\Delta \alpha \propto 1/\log\left(\tau_i/\tau_j\right)$ 



Residual rigidity dependence



#### Radioactive nuclei



# Radioactive nuclei

 $t_{\rm esc} \approx (20 \text{ to } 40) \times (\mathcal{R}/10 \text{ GV})^{0 \text{ to } 0.2} \text{ Myr}, \text{ DLBM},$  $t_{\rm esc} \approx (200 \text{ to } 500) \times (\mathcal{R}/10 \text{ GV})^{-0.7 \text{ to } -0.3} \text{ Myr}, \text{ diffusion}$ 



#### Interpretation

Decay suppression factor probes propagation

$$n \sim \frac{Q V_{\text{source}} t_{\text{eff}}}{V_{\text{eff}}}$$
$$f \sim \frac{n_{\text{decay}}}{n_{\text{no decay}}} \sim \frac{V_{\text{esc}}}{V_{\text{decay}}} \times \frac{t_{\text{decay}}}{t_{\text{esc}}} \sim \left(\frac{t_{\text{decay}}}{t_{\text{esc}}}\right)^{1-\kappa d}$$

- Scaling of volume depends on type of motion, relevant dimensions  $V_{\rm eff} \sim \left(t_{\rm eff}
  ight)^{\kappa\,d}$
- $\rightarrow$  In models with thin disc and thick halo, d~1
- $\rightarrow$  Uniform models, diffusion models, compound diffusion, ...

$$\kappa \sim 0$$
  $\kappa \sim \frac{1}{2}$   $\kappa \sim \frac{1}{4}$   
• Expect  $f_{s,i} \approx \left(\frac{t_i}{t_{\rm esc}}\right)^{\alpha}$ 

• Lastly, if trapping is magnetic, expect  $t_{
m esc} = t_{
m esc}(\mathcal{R})$ 

#### Comparing with radioactive nuclei

 Suppression factor due to decay ≈ suppression due to radiative loss, if compared at rigidity such that cooling time ≈ decay time

Explain:

$$t_c = \left| \mathcal{R}/\dot{\mathcal{R}} \right| \qquad t_c \propto \mathcal{R}^{-\delta_c} \qquad n_{e^+} \sim \mathcal{R}^{-\gamma}$$

Consider decay term of nuclei and loss term of e+ in general transport equation.

decay: 
$$\partial_t n_i = -\frac{n_i}{t_i}$$
 loss:  $\partial_t n_{e^+} = \partial_{\mathcal{R}} \left( \dot{\mathcal{R}} n_{e^+} \right) = -\frac{n_{e^+}}{\tilde{t}_c}$   
 $\tilde{t}_c = \frac{t_c}{\gamma - \delta_c - 1}$ 

But,  $\gamma \sim 3 \rightarrow \tilde{t}_c \approx t_c$ 

## Comparing with radioactive nuclei

Time scales:

cooling vs decay



#### CR grammage

In some more detail

Net production includes fragmentation losses

$$\tilde{Q}_S(\mathcal{R}) = Q_{P \to S}(\mathcal{R}) - Q_{S \to X}(\mathcal{R}) = \sum_P \frac{n_P(\mathcal{R})\sigma_{P \to S}}{\bar{m}} - \frac{n_S(\mathcal{R})\sigma_{S \to X}}{\bar{m}}$$

 $\bar{m}$  = mean ISM particle mass (~ 1.3 m<sub>p</sub>)

High-energy  $\rightarrow$  energy independent cross sections; negligible energy gain/loss Approx': secondary inherits rigidity of primary

• In general 
$$n_S(r', t', \mathcal{R}) = c \int^{t'} dt \int d^3r \,\rho_{ISM}(r, t) \,\tilde{Q}_S(r, t, \mathcal{R}) \,G(r, r'; t, t'; \mathcal{R})$$

• Uniform composition:  $\bar{m}(r',t') = \bar{m}(r,t)$ ,  $\frac{n_i(r,t,\mathcal{R})}{n_j(r,t,\mathcal{R})} = f_{ij}(\mathcal{R})$ 

• Thus 
$$\tilde{Q}_S(r',t',\mathcal{R}) = \tilde{Q}_S(r,t,\mathcal{R}) \frac{n_{P_1}(r',t',\mathcal{R})}{n_{P_1}(r,t,\mathcal{R})}$$

• Obtain:  $n_S(r', t', \mathcal{R}) = \tilde{Q}_S(r', t', \mathcal{R}) X_{\text{esc}}(\mathcal{R})$ 

$$X_{\rm esc}(\mathcal{R}) = c \int^{t'} dt \int d^3r \,\rho_{ISM}(r,t) \,\frac{n_{P_1}(r,t,\mathcal{R})}{n_{P_1}(r',t',\mathcal{R})} \,G(r,r';t,t';\mathcal{R})$$



