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Three perspectives on eternal inflation

e String theory predicts a potential landscape with
many vacua

e CDL instantons mediate nucleations of bubbles
filled with lower energy vacua

e Resulting bubbles contain open FRW universes

This leads to the following picture of eternal inflation:
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Plan: zoom in on this picture in 3 ways <+ 3 perspectives:

(D On the interior of a bubble after collision — observational prediction
2 On the instanton mediating the nucleation — to explore more general bubbles

@ On future infinity — for theoretical insight



Preliminaries to ) — a single bubble
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e This is a complete FRW universe.

e [f we inhabit this bubble, we need slow-roll inflation inside it.

e [t is most natural to identify the inflaton with the tunneling field.
e The reheating surface is a level set of the field.
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@D A bubble collision

SO(3,1) *. 2, SO2,1)
o

Earth (?)
O

(each point is an Hs)

another
bubble

our bubble

e Assume that the domain wall accelerates away from us
e Use Israel junction conditions to solve for the spacetime

(Freivogel, Horowitz, Shenker, and Chang, Kleban, Levi 2007)
e Solve the scalar equation to find the reheating surface (Chang, Kleban, Levi 2008)
e [Locate Earth, so Earthians see small effects of a collision
e To the future of the reheating surface, inflation has diluted curvature, so substitute

Hs — R? and Hg—)Rg

This leads to the following picture of the reheating surface:



(D From the reheating surface to a cold / hot spot
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e But it is more convenient to pretend that the reheating surface is a straight line and
package the effect of the collision into a temperature profile:
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e But it is more convenient to pretend that the reheating surface is a straight line and
package the effect of the collision into a temperature profile.

e N.B. A determines the magnitude of the effect.
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e But it is more convenient to pretend that the reheating surface is a straight line and
package the effect of the collision into a temperature profile.

e N.B. A determines the magnitude of the effect.
e Propagate the profile to the decoupling surface:
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e N.B. A determines the magnitude of the effect.
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e But it is more convenient to pretend that the reheating surface is a straight line and
package the effect of the collision into a temperature profile.

e N.B. A determines the magnitude of the effect.
e Propagate the profile to the decoupling surface.
e Locate our Sky:



(D From the reheating surface to a cold / hot spot
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e But it is more convenient to pretend that the reheating surface is a straight line and
package the effect of the collision into a temperature profile.

e N.B. A determines the magnitude of the effect.
e Propagate the profile to the decoupling surface.

e Locate our Sky: each point on this segment is an azimuthal circle.

.. A collision results in a cold / hot spot on our Sky.
(There is already a candidate in the CMB.)



@D Toward CMB Polarization
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e Polarization comes from Thomson scattering off electrons
that see a quadrupole temperature anisotropy.

e [t only depends on 0, so it is fully E-mode (Stokes parameter Q):

Q) =305 +2Yom [y, ADg(D) To(Dity)

- Integrate over -rays

- Measure is the “visibility function” — peaked at decoupling and reionization



@ CMB Polarization
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.. There are two azimuthal peaks:
e narrow, cold / hot spot-sized, from decoupling

e broad from reionization (this one spills over the whole Sky for small spots)

This will be measured by Planck in the near future.



2 Are spherical bubbles the whole story?

SAGREDO: Yes! Coleman, Glaser, and Martin told us so.
SALVIATI: But their proof only applies when the field space is one-dimensional.
This is very different from the string landscape.

e More general instantons could significantly alter our picture of eternal inflation.

e From (D), their effects might even be observable.



{EAB, €AC, €EBCy OAB, O AC, UBC} {67 U}

e As a first step, just do field theory.
e Work in the thin wall approximation.

e The thin wall parameters are subject to relations:

€AC = €AB T €BC
OACc = Ming_c ffdl\/‘/(l) = triangle inequality:

o
oAB BC

TAC



@ Ansatz

2-vacuum problem 3-vacuum problem
A A
e regions of @ \6 @ \6
2 / 3 vacua /
separated o
by walls

e take a single region ... with a single BC-interface

e form a maximally
(spherically /
cylindrically)
symmetric object

e find optimal surfaces
with an S? boundary
(junction)




2 Calculation

2-vacuum problem

parameters: R

action: —eR*vol(B*) + o R? area(S?)
extremize:

negative one - R

modes:

3-vacuum problem

Rap, Rac, Rpc,r (junction radius)

—eap VOl(AB) + o ap area( AB)
—eo VOl(AC) + g 4¢ area( AC)
—epc vol(BC') + opcarea(BC)

* _30X

X T EX
(same as in the 2-vacuum case)

r = 0 (spherical bubble)
and
r=1r*(new)

Hessian is diagonal:
9% _ 0
JRyORy

82
gome < Bx — & 0 (by E.O.M.)

count negative modes:



2) Negative modes

oS { < 0 if X is bigger than a hemisphere

OR3 > (0 if X is smaller than a hemisphere
0*S
52 obtain by analyzing S(r):

-

e Because S(r) has two extrema at 0 and r*:

S|S0 (<0) < r=0isalocal max (min) of S(r)

(:)7,2 r=r

2 . . .
e But ng r—() = =-  this requires explanation

= we must go to cubic order:

198
8 Ors

+ (-) sign for regions smaller (bigger) than a hemisphere

9%S
=0 =Foaptoactopc20 & 5[0

e We want exactly 1 negative mode:

case (1): S, < 0 = all three S > 0 =
three smaller-than-hemisphere regions

case (2):  one Spp < 0 = exactly two Sggp > 0 =
two smaller-, one bigger-than-hemisphere region

o
TAB BC

TAC

All non-trivial saddle points have 2 or more negative modes.



@) Loose end

2

% r—0 = 0

SAGREDO: r = ( is the good, old spherical instanton.
Does this mean that it has a non-translational zero mode?
Does it enhance the nucleation rate?

SALVIATI: No, because we neglected a quadratic piece of the action.
[t arises from the cost of creating a junction:

S = Sbefore + '%702

e In the thin-wall approximation, codimension-2 junctions generalize objects
of codimension-1 (walls) and codimension-0 (vacua).

e Microscopically, junction tensions depend on hills in the landscape.

e They are necessary to resolve the apparent zero modes.



@ Topology at future infinity

Motivation:
e well-defined (independent of slicing)
e independent of the measure problem

e theoretical significance (e.g. for FRW / CFT)

e mathematically fun



@ Discretization

e Re-draw diagram in comoving coordinates:
e Bubbles attain a fixed comoving size:
c=1= HaAx = aAx
(Hubble radius in comoving coordinates)
Az = (a)! < et in de Sitter

e Re-draw diagram with discrete cells:

o Set Ax = (a) toce™

o After time At, the spatial clell size
a(i(fit)l

e Set At so this ratio is a natural number.
e Here N = 3.

decreases by a factor

e 'This defines the Mandelbrot model
(in 3 dimensions)

e 2 colors <+ vacua; 2 parameters:
N3 = # of daughter cells ~ e321

p = prob. of coloring / nucleation ~ I'(Axz)?At
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@ Discretization

e Re-draw diagram in comoving coordinates:
e Bubbles attain a fixed comoving size:
c=1= HaAx = aAx
(Hubble radius in comoving coordinates)
Az = (a)! < et in de Sitter

e Re-draw diagram with discrete cells:
o Set Ax = (a) toce™

o After time At, the spatial cell size
a(t)”!

a(t+At)—1
e Set At so this ratio is a natural number.

e Here N = 3.

decreases by a factor

e 'This defines the Mandelbrot model
(in 3 dimensions)

e 2 colors <+ vacua; 2 parameters:
N3 = # of daughter cells ~ e321

p = prob. of coloring / nucleation ~ I'(Axz)?At

.. What is the topology after infinitely many steps?



@ Previous results — 2-vacuum phase structure

e Open FRW universes.
e BW boundary has many disconnected components,
occasionally finite genus.

[. Black Island Phase ‘
e Contains white crossing surfaces (infinite white screens). ‘
°

[I. Tubular Phase
e Contains crossing curves (infinite tubes) of both colors.
e BW boundary is connected and has infinite genus.
e Observers in black regions see boundary genus
ogrow without bound.

[II. White Island Phase

e Contains black crossing surfaces (infinite black screens).

e BW boundary is again disconnected, now due to

e cracking: a process of tearing apart white regions,
which produces singularities in black regions.

IV. Aborted Phase
(Chayes et al. 1992; Sekino, Shenker, Susskind 2010)



@ Generalize to three vacua

e Consider the 3-vacuum system.

e There are 5 parameters: pye, Pwb, Dabs Nw, Ny

e But a shift in Ny, N, can always be undone
by a compensating shift in the probabilities

.. The phase space diagram will look like this:

Pgb L

1 DPwb

e Proceed by bootstrapping results from the 2-vacuum system.
2-vacuum:  pe < Py, <Py

E le: white isl ;
o kixample: white islands -vacuum:  pe < Pyp + Pwg < Py



@ The 3-vacuum phase diagram
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3 Lessons

e In the 2-vacuum case, we had crossing surfaces or two colors of crossing curves.

e In the 3-vacuum case, much of the phase diagram is occupied by phases:

1) white crossing curves gray islands black islands
2) white islands gray Crossing curves black islands
3) white islands gray islands black crossing curves

.. In the many-vacuum case, all colors will be generically present in island form.

.. The “grainy phase” is generic.

.. This leads to the following picture of eternal inflation:




Summary

We predicted CMB polarization patterns, which could corroborate the string land-
g
scape.

@ We excluded previously unconsidered, putative instantons, which would combine
regions of two true(-r) vacua.

2) We appreciated the role of “junctions” for regulating zero modes in thin-wall calcu-
lations of nucleation rates.

) We saw that interesting topology may arise in eternal inflation, but mostly in the
later generations and on the intra-bubble scale.

THANK YOU!



