Three perspectives on eternal inflation

Bartłomiej Stanisław Czech

University of British Columbia

Based on:
(1) BC, M. Kleban, K. Larjo, T. Levi, K. Sigurdson JCAP 1102, 023 (2010) [arXiv:1006.0382 - astro-ph.CO]
(2) V. Balasubramanian, BC, K. Larjo, T. Levi

Phys. Rev. D 84, 025019 (2011) [arXiv:1012.2065 - hep-th]
(3) BC

Phys. Rev. D 84, 064021 (2011) [arXiv:1102.1007]

Three perspectives on eternal inflation

- String theory predicts a potential landscape with many vacua
- CDL instantons mediate nucleations of bubbles filled with lower energy vacua
- Resulting bubbles contain open FRW universes

This leads to the following picture of eternal inflation:

Plan: zoom in on this picture in 3 ways $\leftrightarrow 3$ perspectives:
(1) On the interior of a bubble after collision \rightarrow observational prediction
(2) On the instanton mediating the nucleation \rightarrow to explore more general bubbles
(3) On future infinity \rightarrow for theoretical insight

Preliminaries to (1) - a single bubble

- This is a complete FRW universe.
- If we inhabit this bubble, we need slow-roll inflation inside it.
- It is most natural to identify the inflaton with the tunneling field.
- The reheating surface is a level set of the field.

(1) A bubble collision

(each point is an H_{2})

- Assume that the domain wall accelerates away from us
- Use Israel junction conditions to solve for the spacetime (Freivogel, Horowitz, Shenker, and Chang, Kleban, Levi 2007)
- Solve the scalar equation to find the reheating surface (Chang, Kleban, Levi 2008)
- Locate Earth, so Earthians see small effects of a collision
- To the future of the reheating surface, inflation has diluted curvature, so substitute $H_{2} \rightarrow \mathbb{R}^{2}$ and $H_{3} \rightarrow \mathbb{R}^{3}$

This leads to the following picture of the reheating surface:
(1) From the reheating surface to a cold / hot spot

(1) From the reheating surface to a cold / hot spot

- But it is more convenient to pretend that the reheating surface is a straight line and package the effect of the collision into a temperature profile:

(1) From the reheating surface to a cold / hot spot

- But it is more convenient to pretend that the reheating surface is a straight line and package the effect of the collision into a temperature profile.
- N.B. λ determines the magnitude of the effect.

(1) From the reheating surface to a cold / hot spot

- But it is more convenient to pretend that the reheating surface is a straight line and package the effect of the collision into a temperature profile.
- N.B. λ determines the magnitude of the effect.
- Propagate the profile to the decoupling surface:

(1) From the reheating surface to a cold / hot spot

- But it is more convenient to pretend that the reheating surface is a straight line and package the effect of the collision into a temperature profile.
- N.B. λ determines the magnitude of the effect.
- Propagate the profile to the decoupling surface.

(1) From the reheating surface to a cold / hot spot

- But it is more convenient to pretend that the reheating surface is a straight line and package the effect of the collision into a temperature profile.
- N.B. λ determines the magnitude of the effect.
- Propagate the profile to the decoupling surface.
- Locate our Sky:

(1) From the reheating surface to a cold / hot spot

- But it is more convenient to pretend that the reheating surface is a straight line and package the effect of the collision into a temperature profile.
- N.B. λ determines the magnitude of the effect.
- Propagate the profile to the decoupling surface.
- Locate our Sky: each point on this segment is an azimuthal circle.
\therefore A collision results in a cold / hot spot on our Sky.
(There is already a candidate in the CMB.)

(1) Toward CMB Polarization

- Polarization comes from Thomson scattering off electrons that see a quadrupole temperature anisotropy.
- It only depends on θ, so it is fully E-mode (Stokes parameter Q):

$$
Q(\theta)=\frac{\sqrt{6}}{10} \sum_{m=-2}^{2} \pm 2 Y_{2 m} \int_{D_{D C}}^{0} d D g(D) T_{2 m}\left(D \hat{n}_{\theta}\right)
$$

- Integrate over θ-rays
- Measure is the "visibility function" - peaked at decoupling and reionization

(1) CMB Polarization

\therefore There are two azimuthal peaks:

- narrow, cold / hot spot-sized, from decoupling
- broad from reionization (this one spills over the whole Sky for small spots)

This will be measured by Planck in the near future.

(2) Are spherical bubbles the whole story?

Sagredo: Yes! Coleman, Glaser, and Martin told us so.
SAlviati: But their proof only applies when the field space is one-dimensional. This is very different from the string landscape.

- More general instantons could significantly alter our picture of eternal inflation.
- From (1), their effects might even be observable.

(2) Setup

$$
\left\{\epsilon_{A B}, \epsilon_{A C}, \epsilon_{B C}, \sigma_{A B}, \sigma_{A C}, \sigma_{B C}\right\}
$$

$\{\epsilon, \sigma\}$

- As a first step, just do field theory.
- Work in the thin wall approximation.
- The thin wall parameters are subject to relations:

$$
\begin{aligned}
& \epsilon_{A C}=\epsilon_{A B}+\epsilon_{B C} \\
& \sigma_{A C}=\min _{A \rightarrow C} \int_{A}^{C} d l \sqrt{V(l)} \Rightarrow \text { triangle inequality: }
\end{aligned}
$$

- regions of 2 / 3 vacua separated by walls

- take a single region
- form a maximally (spherically / cylindrically) symmetric object
- find optimal surfaces with an S^{2} boundary (junction)

3-vacuum problem

... with a single BC-interface

(2) Calculation

2-vacuum problem

parameters: R
action: $\quad-\epsilon R^{4} \operatorname{vol}\left(B^{4}\right)+\sigma R^{3}$ area $\left(S^{3}\right)$
extremize:

one - R
modes:

3-vacuum problem
$R_{A B}, R_{A C}, R_{B C}, r$ (junction radius)
$-\epsilon_{A B} \operatorname{vol}(A B)+\sigma_{A B} \operatorname{area}(A B)$
$-\epsilon_{A C} \operatorname{vol}(A C)+\sigma_{A C} \operatorname{area}(A C)$
$-\epsilon_{B C} \operatorname{vol}(B C)+\sigma_{B C}$ area $(B C)$
$R_{X}^{*}=\frac{3 \sigma_{X}}{\epsilon_{X}}$
(same as in the 2-vacuum case)
$r=0$ (spherical bubble)
and
$r=r^{*}$ (new)

Hessian is diagonal:
$\frac{\partial^{2} S}{\partial R_{X} \partial R_{Y}}=0$
$\frac{\partial^{2} S}{\partial r \partial R_{X}} \propto R_{X}-\frac{3 \sigma_{X}}{\epsilon_{X}}=0$ (by E.O.M.)
count negative modes:

(2) Negative modes

$$
\begin{aligned}
& \frac{\partial^{2} S}{\partial R_{X}^{2}}
\end{aligned} \quad\left\{\begin{array}{l}
<0 \text { if } X \text { is bigger than a hemisphere } \\
>0 \text { if } X \text { is smaller than a hemisphere } \\
\frac{\partial^{2} S}{\partial r^{2}}
\end{array}\right.
$$

- Because $S(r)$ has two extrema at 0 and r^{*} :
$\left.\frac{\partial^{2} S}{\partial r^{2}}\right|_{r=r^{*}}>0(<0) \quad \Leftrightarrow \quad r=0$ is a local max (min) of $S(r)$
- But $\left.\frac{\partial^{2} S}{\partial r^{2}}\right|_{r=0}=0 \quad \Rightarrow \quad$ this requires explanation

$$
\Rightarrow \quad \text { we must go to cubic order: }
$$

- $\left.\frac{1}{8 \pi} \frac{\partial^{3} S}{\partial r^{3}}\right|_{r=0}= \pm \sigma_{A B} \pm \sigma_{A C} \pm\left.\sigma_{B C} \gtrless 0 \quad \Leftrightarrow \quad \frac{\partial^{2} S}{\partial r^{2}}\right|_{r=r^{*}} \lessgtr 0$
$+(-)$ sign for regions smaller (bigger) than a hemisphere
- We want exactly 1 negative mode:
case (1): $\quad S_{r r}<0 \Rightarrow$ all three $S_{R R}>0 \Rightarrow$ three smaller-than-hemisphere regions
case (2): one $S_{R R}<0 \Rightarrow$ exactly two $S_{R R}>0 \Rightarrow$ two smaller-, one bigger-than-hemisphere region

\therefore
All non-trivial saddle points have 2 or more negative modes.

(2) Loose end

$$
\left.\frac{\partial^{2} S}{\partial r^{2}}\right|_{r=0}=0
$$

SAGREDO: $r=0$ is the good, old spherical instanton.
Does this mean that it has a non-translational zero mode?
Does it enhance the nucleation rate?
SALVIATI: No, because we neglected a quadratic piece of the action. It arises from the cost of creating a junction:

$$
S=S_{\text {before }}+\kappa r^{2}
$$

- In the thin-wall approximation, codimension-2 junctions generalize objects of codimension-1 (walls) and codimension-0 (vacua).
- Microscopically, junction tensions depend on hills in the landscape.
- They are necessary to resolve the apparent zero modes.

(3) Topology at future infinity

Motivation:

- well-defined (independent of slicing)
- independent of the measure problem
- theoretical significance (e.g. for FRW / CFT)
- mathematically fun

(3) Discretization

- Re-draw diagram in comoving coordinates:
- Bubbles attain a fixed comoving size:
$c=1=H a \Delta x=\dot{a} \Delta x$
(Hubble radius in comoving coordinates)
$\Delta x=(\dot{a})^{-1} \propto e^{-t}$ in de Sitter
- Re-draw diagram with discrete cells:
- Set $\Delta x=(\dot{a})^{-1} \propto e^{-t}$
- After time Δt, the spatial cell size decreases by a factor $\frac{\dot{a}(t)^{-1}}{\dot{a}(t+\Delta t)^{-1}}$
- Set Δt so this ratio is a natural number.
- Here $N=3$.
- This defines the Mandelbrot model (in 3 dimensions)
- 2 colors \leftrightarrow vacua; 2 parameters: $N^{3}=\#$ of daughter cells $\sim e^{3 H \Delta t}$ $p=$ prob. of coloring / nucleation $\sim \Gamma(\Delta x)^{3} \Delta t$

(3) Discretization

- Re-draw diagram in comoving coordinates:
- Bubbles attain a fixed comoving size:
$c=1=H a \Delta x=\dot{a} \Delta x$
(Hubble radius in comoving coordinates)
$\Delta x=(\dot{a})^{-1} \propto e^{-t}$ in de Sitter
- Re-draw diagram with discrete cells:
- Set $\Delta x=(\dot{a})^{-1} \propto e^{-t}$
- After time Δt, the spatial cell size decreases by a factor $\frac{\dot{a}(t)^{-1}}{\dot{a}(t+\Delta t)^{-1}}$
- Set Δt so this ratio is a natural number.
- Here $N=3$.
- This defines the Mandelbrot model (in 3 dimensions)
- 2 colors \leftrightarrow vacua; 2 parameters: $N^{3}=\#$ of daughter cells $\sim e^{3 H \Delta t}$ $p=$ prob. of coloring / nucleation $\sim \Gamma(\Delta x)^{3} \Delta t$

(3) Discretization

- Re-draw diagram in comoving coordinates:
- Bubbles attain a fixed comoving size:
$c=1=H a \Delta x=\dot{a} \Delta x$
(Hubble radius in comoving coordinates)
$\Delta x=(\dot{a})^{-1} \propto e^{-t}$ in de Sitter
- Re-draw diagram with discrete cells:
- Set $\Delta x=(\dot{a})^{-1} \propto e^{-t}$
- After time Δt, the spatial cell size decreases by a factor $\frac{\dot{a}(t)^{-1}}{\dot{a}(t+\Delta t)^{-1}}$
- Set Δt so this ratio is a natural number.
- Here $N=3$.
- This defines the Mandelbrot model (in 3 dimensions)
- 2 colors \leftrightarrow vacua; 2 parameters: $N^{3}=\#$ of daughter cells $\sim e^{3 H \Delta t}$ $p=$ prob. of coloring / nucleation $\sim \Gamma(\Delta x)^{3} \Delta t$
\therefore What is the topology after infinitely many steps?

(3) Previous results - 2-vacuum phase structure

I. Black Island Phase

- Contains white crossing surfaces (infinite white screens).
- Open FRW universes.
- BW boundary has many disconnected components, occasionally finite genus.
II. Tubular Phase
- Contains crossing curves (infinite tubes) of both colors.
- BW boundary is connected and has infinite genus.
- Observers in black regions see boundary genus grow without bound.

III. White Island Phase
- Contains black crossing surfaces (infinite black screens).
- BW boundary is again disconnected, now due to
- cracking: a process of tearing apart white regions, which produces singularities in black regions.

IV. Aborted Phase

(3) Generalize to three vacua

- Consider the 3 -vacuum system.
- There are 5 parameters: $p_{\mathrm{wg}}, p_{\mathrm{wb}}, p_{\mathrm{gb}}, N_{w}, N_{g}$ - But a shift in N_{w}, N_{g} can always be undone by a compensating shift in the probabilities
\therefore The phase space diagram will look like this:

- Proceed by bootstrapping results from the 2 -vacuum system.
- Example: white islands:

$$
\begin{array}{ll}
\text { 2-vacuum: } & p_{c} \leq p_{\mathrm{wb}} \leq p_{\emptyset} \\
3 \text {-vacuum: } & p_{c} \leq p_{\mathrm{wb}}+p_{\mathrm{wg}} \leq p_{\emptyset}
\end{array}
$$

(3) The 3 -vacuum phase diagram

(3) Lessons

- In the 2-vacuum case, we had crossing surfaces or two colors of crossing curves.
- In the 3-vacuum case, much of the phase diagram is occupied by phases:

1) white crossing curves gray islands black islands
2) white islands gray crossing curves
3) white islands
gray islands
black islands
black crossing curves
\therefore In the many-vacuum case, all colors will be generically present in island form.
\therefore The "grainy phase" is generic.

\therefore This leads to the following picture of eternal inflation:

Summary

(1) We predicted CMB polarization patterns, which could corroborate the string landscape.
(2) We excluded previously unconsidered, putative instantons, which would combine regions of two true(-r) vacua.
(2) We appreciated the role of "junctions" for regulating zero modes in thin-wall calculations of nucleation rates.
(3) We saw that interesting topology may arise in eternal inflation, but mostly in the later generations and on the intra-bubble scale.

THANK YOU!

