The effective W approximation for the WW scattering and new physics

arXiv:11mm.xxxx (results at the cross-section level) arXiv:12mm.xxxx (results at the amplitude level (this talk))

> a work <u>in progress</u> with Pascal Borel, Riccardo Rattazzi, Andrea Wulzer

Roberto Franceschini

University of Maryland

November 2nd 2011

Roberto Franceschini

Outline

Motivation

- Factorization in QFT
- The importance of the scattering of W bosons

Results: WW ightarrow WW scattering from the process qq ightarrow qqWW

- High energy behavior of the WW scattering amplitudes
- corrections to the EWA at the amplitude-level
- EWA and the exact amplitude

Conclusions

Outlook on WW scattering

Factorization

Field theory question

How this generalizes to the massive case?

Analogous, but quite different

Qualitively different

• the W is never on-shell $p_W^2 = (p_u - p_d)^2 < 0 < m_W^2$

• a third polarization mode, $\epsilon_L \sim \frac{E}{m}$

• the new mass scale m_W

Quantitative matter

The energy of LHC is finite
 σ(pp → WWjj) only few fb

... you are asking for a beam of W bosons(!)

- our source of W is $f \to f' W^*$
- $ff \rightarrow f'f'W^*W^* \rightarrow X_{WW}f'f'$

Effective W Approximation: (Fermi '24, Weizsäcker,
Villiams '34, Cahn, Chanowitz, Dawson, Gaillard, Kane, Repko, Rolnick '84-'85)
• each W* has virtuality V

$$= \sqrt{m_W^2 - (p_f - p_{f'})^2} \sim \sqrt{p_T^2 + m_W^2}$$

• W* W* $\rightarrow X_{WW}$ of virtuality $Q_{WW} \sim E$
hard $\sim \frac{1}{Q_{WW}} \ll \Delta t_W \sim \frac{1}{\Delta E} \sim \frac{E}{V^2}$
• V $\ll Q_{WW}$
or ff \rightarrow ffWWW

• $p_{T,f'} \ll p_{T,W^{out}}$ and $m_W \ll p_{T,W^{out}}$

that's pure kinematics!

- factorization of a hard (fast) process and a soft (slow) process
- expansion in $V/Q_{WW} \simeq p_{T,jet}/p_{T,W}$

Roberto Franceschini

Why I care so much about processes initiated by W bosons?

Status of the EWSB

Goldstone scattering

We know that there are Goldstone bosons and their interactions, can we make a prediction?

Goldstone scattering

We know that there are Goldstone bosons and their interactions, can we make a prediction?

Yes

Goldstone scattering: is weak or strong?

$$\mathcal{L}=rac{v^2}{4} ext{Tr}(D_\mu\Sigma D^\mu\Sigma)$$

$${\cal A}(\pi\pi o\pi\pi)\sim {{f s}\over {m v^2}}$$

- a weakly coupled moderator of the growth of the amplitude at high energy must appear
- the Goldstone bosons are strongly coupled
- establishing if the Goldstones experience a strong or a weak force is a goal for the LHC
- best done in terms of WW → WW scattering rather than a complicated qq → qqWW process (you don't want to go back to the proton!)
- ideally the experiment could measure the WW → WW process and put all our knowledge of the EWSB sector in the for of a detailed measurement of the cross-section

Roberto Franceschini

Probing the scattering of W_l at the LHC

- the emission of W bosons is suppressed by α_w
- brute force: increase the energy and the flux of initial state fermions

Probing the scattering of W_L at the LHC

this is not a collision with real *W* bosons in the initial state,

•
$$p_W^2 = (p_u - p_d)^2 < 0$$

We need a relation between scattering $ff \rightarrow ffWW$ that is observable at the LHC and the "desired" on-shell scattering $WW \rightarrow WW$

Effective W Approximation

Probing the scattering of W_L at the LHC

this is not a collision with real *W* bosons in the initial state,

•
$$p_W^2 = (p_u - p_d)^2 < 0$$

We need a relation between scattering $ff \rightarrow ffWW$ that is observable at the LHC and the "desired" on-shell scattering $WW \rightarrow WW$

Effective W Approximation

Not a way to simplify the computation of the exact amplitude, but

a mean to access the physics of on-shell *W* bosons scattering.

Why do I want to know about the details of this factorization?

Factorization in massive gauge theories

The same story of the massless case?

Simplicity of understanding the EWSB sector: $|A_{WW \rightarrow WW}(s, t)|^2$ is all that you want

• Ideally our knowledge of the EWSB can be encoded in the behavior of a 2 \rightarrow 2 scattering process $WW \rightarrow WW$

Effectiveness and robustness of LHC data analysis

 Where the factorization works best is where the EWSB is more at display, there you can see WW → WW and nothing else.

EWA and Corrections EWA vs. Exact Conclusions

Status of the EWA

surprisingly no complete and clear statement

- $\mathit{ff} \rightarrow \mathit{ffWW}$ only for heavy Higgs boson or Higgless (Kunstz, Soper '88)
- $ff \to ff h$

Checks of the EWA

surprisingly no complete and clear statement

- $\mathit{ff} \rightarrow \mathit{ffWW}$ only for heavy Higgs boson or Higgless (Kunstz, Soper '88)
- $ff \to ff h$

Higgs:

• total rate: $\mathit{ff}
ightarrow \mathit{ff} h$ in agreement up to $\mathcal{O}(10\%)$ (Cahn '85, Altarelli et al. '87)

WW:

- $d\sigma/dm_{WW}$ easily off by a factor $\mathcal{O}(1)$ (Gunion et al. '86, Accomando et al. '06)
- $d\sigma/dp_{T,jet}dp_{T,jet}$ easily off by a factor $\mathcal{O}(1)$ (Accomando et al. '06)

Checks of the EWA

surprisingly no complete and clear statement

- $\mathit{ff} \rightarrow \mathit{ffWW}$ only for heavy Higgs boson or Higgless (Kunstz, Soper '88)
- $ff \to ff h$

Higgs:

• total rate: $\textit{ff} \rightarrow \textit{ff} h$ in agreement up to $\mathcal{O}(10\%)$ (Cahn '85, Altarelli et al. '87)

WW:

- $d\sigma/dm_{WW}$ easily off by a factor $\mathcal{O}(1)$ (Gunion et al. '86, Accomando et al. '06)
- $d\sigma/dp_{T,jet}dp_{T,jet}$ easily off by a factor O(1) (Accomando et al. '06)

validity of the EWA has been questioned

- the goal is <u>not</u> to compute the rate
- most of the attention was on the total cross-section
- cuts were not selecting the region $V \ll Q_{WW}$

Roberto Franceschini

November 2nd 2011@Cornell University

11/30

The EWA from the expansion of the exact amplitude

Gauge invariance entangles diagrams

in a covariant gauge

- $\mathcal{A}(WW \to WW)_{off-shell} \sim \left(\frac{E}{m}\right)^2$ because $\epsilon_L \sim \frac{E}{m}$ (Kleiss, Stirling '86)
- $\mathcal{A}(WW \to WW)_{on-shell} \sim \left(\frac{E}{m}\right)^0$ cancellations due to the Higgs boson

Gauge invariance entangles diagrams

in a covariant gauge

- $\mathcal{A}(WW \to WW)_{off-shell} \sim \left(\frac{E}{m}\right)^2$ because $\epsilon_L \sim \frac{E}{m}$ (Kleiss,Stirling '86) $\mathcal{A}(WW \to WW)_{on-shell} \sim \left(\frac{E}{m}\right)^0$ cancellations due to the Higgs boson

scattering and non-scattering must cancel to tame the "bad" energy behavior

A transparent choice

covariant gauges

- unphysical propagating fields
- large cancellations among sets of diagrams

physical gauges, e.g. the axial gauge $n_{\mu}A^{\mu} = 0$

- only physical DoF
- the "scattering" diagram has a meaning by itself

$f X \rightarrow f Y WW$: Enhanced diagrams (from dimensional analysis)

- reattaching *W* lines a non-scattering diagram becomes a scattering with the same couplings
- different numbers of fermionic and W propagators, and of g_{WWW} and g_{qqW}

$f X \rightarrow f Y WW$: Enhanced diagrams (from dimensional analysis)

- reattaching *W* lines a non-scattering diagram becomes a scattering with the same couplings
- different numbers of fermionic and W propagators, and of g_{WWW} and g_{agW}

in a "physical" gauge

the W propagator is "well-behaved"

•
$$\epsilon_{\mu}$$
 not $\sim E/m$

away from singular regions

•
$$\mathcal{A}_{\text{non-scattering}} \sim g^{\nu} \left(\frac{1}{E} \right)$$

•
$$\mathcal{A}_{\text{scattering}} \sim g^{v} \frac{1}{p_{T,f}} \left(\frac{1}{E}\right)^{k-1} + \dots$$

- gauge invariant kinematical enhancement
- irrespectively of the nature of h and of m_h
 November 2nd 2011@Cornell University

$f X \rightarrow f Y WW$: Enhanced diagrams (from dimensional analysis)

away from singular regions

•
$$\mathcal{A}_{ ext{non-scattering}} \sim g^{arphi} \left(rac{1}{E}
ight)^k$$

•
$$\mathcal{A}_{\text{scattering}} \sim g^{\nu} \frac{1}{p_{T,f}} \left(\frac{1}{E}\right)^{k-1} + \dots$$

- gauge invariant kinematical enhancement
- irrespectively of the nature of h and of m_h

in the EWA region: $p_T \ll Q_{ww} \sim E$

•
$$\mathcal{A}_{\text{full}} = \mathcal{A}_{\text{scattering}}(1 + \mathcal{O}(\frac{p_T}{Q_{ww}}))$$

subleading terms are expected

•
$$\mathcal{A}_{\text{scattering}} \supset \frac{\mathcal{A}_{\text{contact-scattering}}}{E}$$

The Axial Gauge

$$\begin{split} n_{\mu}A^{\mu} &= 0, \text{ e.g. } n_{\mu} = (0, 0, 0, 1) \\ P_{IJ}(q) &= \frac{i}{q^2 - m^2} N_{IJ}(q) \\ N_{\mu\nu} &= -\eta_{\mu\nu} + \frac{q_{\mu}n_{\nu} + q_{\nu}n_{\mu}}{q_L} + \frac{q_{\mu}q_{\nu}}{q_L^2} \\ &= \epsilon_{\mu}^{*\pm} \epsilon_{\nu}^{\pm} + \frac{1 + \frac{q_L^2}{m^2}}{1 + \frac{q_L^2}{q^2}} \epsilon_{\nu}^{0} \epsilon_{\nu}^{0} \\ N_{\mu g} &= -i \frac{m}{q_L} (n_{\mu} + \frac{q_{\mu}}{q_L}) = \epsilon_{\mu}^{0} \epsilon_{g} \\ N_{gg} &= 1 + \frac{m^2}{q_L^2} = \epsilon_g^* \epsilon_g \end{split}$$

•
$$\epsilon_{\mu}^{\pm} = \mathcal{B}\left(\frac{q_T}{q_L}\right) \frac{1}{\sqrt{2}} (0, 1, \pm i, 0)$$

• $\epsilon_{\mu}^0 = \frac{m}{q_L \sqrt{1 + m^2/q_L^2}} \left(n_{\mu} + \frac{q_{\mu}}{q_L}\right) \sim \frac{m}{q_L} \tilde{\epsilon}_{\mu}^0$
• $\epsilon_g = i \sqrt{1 + \frac{m^2}{q_L^2}}$

Anatomy of a scattering amplitude

Anatomy of a scattering amplitude

Anatomy of a scattering amplitude

$\mathcal{A}_{\text{contact-scattering}}$ as expected is representative of the size of the non-scattering diagrams it is a correction to A_{TXV} not to \mathcal{A}_{gxy}

Surgery on a scattering amplitude

to make contact with on-shell

Surgery on a scattering amplitude

to make contact with on-shell

Surgery on a scattering amplitude

$\mathcal{A}_{\text{scattering}} = \frac{\imath}{V^2} \left(J^{\mu} \epsilon^*_{T,\mu} \epsilon_{T,\nu} \mathcal{A}^{\nu}_{Txy} \right)$ + $J^{\mu}\epsilon^*_{0,\mu}\epsilon_{0,\nu}\mathcal{A}^{\nu}_{0xy}\left(1+\frac{V^2}{m^2}\right)$ + $J^{\mu}\epsilon^*_{0,\mu}\epsilon_g \mathcal{A}_{gxy}$

to make contact with on-shell

$$\frac{1}{V^2} J \cdot \epsilon_h^* [p_u - p_d] \text{ up to } \mathcal{O}(\kappa^2)$$

$$\bullet \quad \frac{p_T e^{\pm i\phi}}{V^2} g_{\pm}(x) , \ h = \pm$$

$$\bullet \quad \frac{m}{V^2} g_0(x) , \ h = 0$$

us Gauge choice

Surgery on a scattering amplitude

$$\begin{aligned} \mathcal{A}_{\text{scattering}} &= \frac{p_{T}}{V^{2}} e^{\pm i \phi} g_{\pm}(x) \epsilon_{\pm} \cdot \mathcal{A}_{\pm xy}^{\text{on}} \\ &+ \frac{m}{V^{2}} g_{0}(x) \Big(\epsilon_{g} \cdot \mathcal{A}_{gxy}^{\text{on}} + \frac{m}{q_{L}} \tilde{\epsilon}_{0} \cdot \mathcal{A}_{0xy}^{\text{on}} \Big) \\ &+ \frac{1}{q_{L}} g_{0}(x) \tilde{\epsilon}_{0} \cdot \mathcal{A}_{0xy}^{\text{on}} + \mathcal{O}(\kappa^{2}) \end{aligned}$$

to make contact with on-shell

$$\frac{1}{V^2} J \cdot \epsilon_h^* [p_u - p_d] \text{ up to } \mathcal{O}(\kappa^2)$$

$$\bullet \quad \frac{p_T e^{\pm i\phi}}{V^2} g_{\pm}(x) , \ h = \pm$$

$$\bullet \quad \frac{m}{V^2} g_0(x) , \ h = 0$$

Roberto Franceschini

Current Status Gauge choice

Surgery on a scattering amplitude

non-scattering corrections

•
$$\Delta_T \equiv \frac{V}{q_L} \sim \kappa$$
 w.r.t $\mathcal{A}_{\text{scattering-diag}}$

Roberto Franceschini

November 2nd 2011@Cornell University

to make contact with on-shell

kinematical corrections

$$q_{\mu} = \left(\sqrt{q^2 + |\bar{q}|^2}, \bar{q}\right)$$

$$q_{\mu} = \left(\sqrt{m^2 + |\bar{q}|^2}, \bar{q}\right)$$

$$\frac{\delta q_0}{q_0} \simeq \frac{V^2}{|\bar{q}|^2} \equiv \kappa^2$$

$$\frac{\delta \epsilon_{\mu}}{\epsilon_{\mu}}, \frac{\delta J \cdot \epsilon}{J \cdot \epsilon} \text{ and } \frac{\delta A}{A} \sim \kappa^2$$

$$\bar{p}_u - \bar{p}_d = (p_T e^{i\phi}, xp)$$

$$\frac{1}{V^2} J \cdot \epsilon_h^* [\rho_u - \rho_d] \text{ up to } \mathcal{O}(\kappa^2)$$

$$\bullet \frac{p_T e^{\pm i\phi}}{V^2} g_{\pm}(x) , \ h = \pm$$

$$\bullet \frac{m}{V^2} g_0(x) , \ h = 0$$

17/30

The approximated amplitude

$$\mathcal{A}_{EWA} = f_{\pm}(p_T, m, x) \mathcal{A}_{ ext{scattering-diag}}^{\pm} + f_0(p_T, m, x) \mathcal{A}_{ ext{scattering-mix}}$$

•
$$\mathcal{A}_{exact} = rac{1}{V^2} \mathcal{A}_{EWA} + \mathcal{O}(\Delta_T) + \mathcal{O}(\kappa^2) + \mathcal{A}_{non-scattering}$$

• $\mathcal{A}_{\text{non-scattering}}$ is comparable to the $\mathcal{O}(\Delta_{\mathcal{T}})$ correction to $\mathcal{A}_{\text{scattering-diag}}$

$\frac{\mathcal{A}_{\text{scattering-mix}}}{\mathcal{A}_{\text{scattering-diag}}} \equiv \rho$

• ρ depends on the model and on the external states

• in typical cases $\rho \simeq \kappa^{\pm 1}$

e.g. in the Higgs model:
$$\Phi=\left(egin{array}{c}\pi^{\pm}\ {m v}+rac{\hbar+\imath\pi}{\sqrt{2}}\end{array}
ight)$$

•
$$v \to -v, h \to -h, \pi \to -\pi, \pi^{\pm} \to -\pi^{\pm}$$
 is a symmetry

•
$$\mathcal{A}(\pi_1^a...\pi_{2k}^b...) \sim v^{2n} \Rightarrow \mathcal{A}(LL \to LL) \sim v^{2k}$$

•
$$\mathcal{A}(\pi_1^a...\pi_{2k+1}^b...) \sim v^{2n+1} \Rightarrow \mathcal{A}(LT \to LL) \sim v^{2k+1}$$

The approximated amplitude

$$\mathcal{A}_{EWA} = f_{\pm}(p_T, m, x) \mathcal{A}_{ ext{scattering-diag}}^{\pm} + f_0(p_T, m, x) \mathcal{A}_{ ext{scattering-mix}}$$

•
$$\mathcal{A}_{exact} = \frac{1}{V^2} \mathcal{A}_{EWA} + \mathcal{O}(\Delta_T) + \mathcal{O}(\kappa^2) + \mathcal{A}_{non-scattering}$$

•
$$\mathcal{A}_{\text{non-scattering}}$$
 is comparable to the $\mathcal{O}(\Delta_T)$ correction to $\mathcal{A}_{\text{scattering-diag}}$

$\rho\simeq\kappa~$ the exchange of transverse bosons dominates the scattering

•
$$\mathcal{A}_{full} = \mathcal{A}_{EWA} + \mathcal{O}(\kappa)$$

$ho\simeqrac{1}{\kappa}$ the exchange of Goldstone bosons dominates the scattering

•
$$\mathcal{A}_{full} = \mathcal{A}_{EWA} + \mathcal{O}(\kappa^2)$$

- In the suitable limit of a soft jet emission compared to the hard scattering the factorization holds at the **amplitude level** (irrespective of the mass of the Higgs)
- $d\sigma/d\phi$ now predictable with EWA
- Several sources of corrections have been identified (κ, Δ, ...)

Quantitatively we check the validity of the approximation:

- evaluating the (integratal of) the full amplitude and the EWA amplitude in fixed points of the phase space to study the behavior of the corrections
- using the approximated $A_{full} \simeq \frac{1}{V^2} A_{EWA}$ to generate LHE events with a parton level MC (http://code.google.com/p/ewangelion) and comparing kinematical distributions to those from the exact amplitude (MadGraph)

Numerical Results

Conclusions

$\overline{uW_{h_1}^+} ightarrow dW_{h_2}^+W_{h_3}^-$: EWA Amplitude vs. Exact Amplitude (FeynArts+FormCalc)

$\overline{uW_{h_1}^+} ightarrow dW_{h_2}^+W_{h_3}^-$: EWA Amplitude vs. Exact Amplitude (FeynArts+FormCalc)

EWA and Corrections EWA vs. Exact Conclusions

$uW_{h_1}^+ ightarrow dW_{h_2}^+W_{h_3}^-$: EWA Amplitude vs. Exact Amplitude (FeynArts+FormCalc)

$$h_1 = 0, h_2 = 0, h_3 = 0$$
:
3 longitudinal external states

•
$$f_{\pm} = rac{p_T e^{\pm i\phi}}{V^2} g_{\pm}(x)$$

•
$$f_0 = \frac{m}{V^2}g_0(x)$$

•
$$A^{(0)}_{000} = \mathcal{O}(1) + \dots$$

•
$$A^{(\pm)}_{000} = \frac{v}{E} \mathcal{O}(1) + ...$$

Agreement in the <u>amplitude</u> at $\mathcal{O}(p_T^2/E^2)$

 $h_1 = +, h_2 = +, h_3 = +$: 3 transverse external states

•
$$f_{\pm} = rac{p_T e^{\pm i\phi}}{V^2} g_{\pm}(x)$$

•
$$f_0 = \frac{m}{V^2}g_0(x)$$

•
$$A^{(+)}_{000} = \mathcal{O}(1) + ...$$

•
$$A^{(0)}_{000} = \frac{v}{E} \mathcal{O}(1) + ...$$

Agreement in the <u>amplitude</u> at $\mathcal{O}(p_T/E)$

Roberto Franceschini

EWA and Corrections EWA vs. Exact Conclusions

$uW_{h_1}^+ ightarrow dW_{h_2}^+W_{h_3}^-$: EWA Amplitude vs. Exact Amplitude (FeynArts+FormCalc)

$$h_1 = 0, h_2 = 0, h_3 = 0$$
:
3 longitudinal external states

•
$$f_{\pm} = rac{p_T e^{\pm i\phi}}{V^2} g_{\pm}(x)$$

•
$$f_0 = \frac{m}{V^2}g_0(x)$$

•
$$A^{(0)}_{000} = \mathcal{O}(1) + \dots$$

•
$$A^{(\pm)}_{000} = \frac{v}{E} \mathcal{O}(1) + ...$$

Agreement in the <u>amplitude</u> at $\mathcal{O}(p_T^2/E^2)$

 $h_1 = +, h_2 = +, h_3 = +$: 3 transverse external states

•
$$f_{\pm} = rac{p_T e^{\pm i\phi}}{V^2} g_{\pm}(x)$$

•
$$f_0 = \frac{m}{V^2}g_0(x)$$

•
$$A^{(+)}_{000} = \mathcal{O}(1) + ...$$

•
$$A^{(0)}_{000} = \frac{v}{E} \mathcal{O}(1) + ...$$

Agreement in the <u>amplitude</u> at $\mathcal{O}(p_T/E)$

Roberto Franceschini

$\overline{uW_{h_1}^+} ightarrow dW_{h_2}^+W_{h_3}^-$: EWA Amplitude vs. Exact Amplitude (FeynArts+FormCalc)

Expanding the amplitudes in $\epsilon = v/E$ interesting patterns emerge

	W^+					dom.	
A_0	A_1	A_{-1}	W^-	W^+	W^-	virtual	scaling
1	e	e	0	0	0	L	-2
ϵ	ϵ^2	1	0	1	0	T	-1
e	1	ϵ^2	0	-1	0	T	-1
e	ϵ^2	ϵ^2	0	0	1	L	-2
ϵ^2	ϵ^3	ϵ	0	1	1	T	-1
1	e	ε	0	-1	1	L	-2
e	ϵ^2	ϵ^2	0	0	$^{-1}$	L	-2
1	ε	ε	0	1	$^{-1}$	L	-2
ϵ^2	e	ϵ^3	0	-1	-1	T	-1
ε	1	ϵ^2	1	0	0	T	-1
ϵ^2	e	ε	1	1	0	T	-1
ϵ^2	e	ϵ^3	1	-1	0	T	-1
1	ϵ	ϵ	1	0	1	L	-2
e	ϵ^2	1	1	1	1	T	-1
ϵ	1	ϵ^2	1	-1	1	T	-1
ϵ^2	e	ϵ^3	1	0	-1	Т	-1
e	1	ϵ^2	1	1	$^{-1}$	T	-1
ϵ^3	ϵ^2	ϵ^4	1	-1	$^{-1}$	T	-1
ε	ϵ^2	1	-1	0	0	T	-1
ϵ^2	ϵ^3	ε	-1	1	0	T	-1
ϵ^2	e	ε	-1	-1	0	T	-1
ϵ^2	ϵ^3	ε	-1	0	1	T	-1
ϵ^3	ϵ^4	ϵ^2	-1	1	1	T	-1
ε	ϵ^2	1	-1	-1	1	T	-1
1	e	ε	-1	0	$^{-1}$	Ĺ	-2
ε	ϵ^2	1	-1	1	-1	T	-1
ε	1	ϵ^2	-1	-1	-1	T	-1

Roberto Franceschini

vs. Exact Conclusions

$p_T \ll m$ behavior

$$V = \sqrt{m_W^2 - (p_u - p_d)^2}$$

$$\mathcal{A}_{exact} = \frac{p_T}{V^2} e^{\pm i\phi} g_{\pm}(x) \epsilon_{\pm} \cdot \mathcal{A}_{\pm xy}^{\text{on}}$$

$$+ \frac{m}{V^2} g_0(x) \left(\epsilon_g \cdot \mathcal{A}_{gxy}^{\text{on}} + \frac{m}{q_L} \tilde{\epsilon}_0 \cdot \mathcal{A}_{0xy}^{\text{on}} \right)$$

$$+ \frac{1}{q_L} g_0(x) \tilde{\epsilon}_0 \cdot \mathcal{A}_{0xy}^{\text{on}} + \mathcal{O}(\kappa^2)$$

$p_T \ll m$ behavior

$$V = \sqrt{m_W^2 - (p_u - p_d)^2}$$

$$\mathcal{A}_{exact} = \frac{p_T}{V^2} e^{\pm i\phi} g_{\pm}(x) \epsilon_{\pm} \cdot \mathcal{A}_{\pm xy}^{\text{on}}$$

$$+ \frac{m}{V^2} g_0(x) \left(\epsilon_g \cdot \mathcal{A}_{gxy}^{\text{on}} + \frac{m}{q_L} \tilde{\epsilon}_0 \cdot \mathcal{A}_{0xy}^{\text{on}} \right)$$

$$+ \frac{1}{q_L} g_0(x) \tilde{\epsilon}_0 \cdot \mathcal{A}_{0xy}^{\text{on}} + \mathcal{O}(\kappa^2)$$

Conclusions

$p_T \ll m$ behavior

$$V = \sqrt{m_W^2 - (\rho_u - \rho_d)^2}$$

$$\mathcal{A}_{exact} = \frac{\rho_T}{V^2} e^{\pm i\phi} g_{\pm}(x) \epsilon_{\pm} \cdot \mathcal{A}_{\pm xy}^{\text{on}}$$

$$+ \frac{m}{V^2} g_0(x) \left(\epsilon_g \cdot \mathcal{A}_{0xy}^{\text{on}} + \frac{m}{q_L} \tilde{\epsilon}_0 \cdot \mathcal{A}_{0xy}^{\text{on}} \right)$$

$$+ \frac{1}{q_L} g_0(x) \tilde{\epsilon}_0 \cdot \mathcal{A}_{0xy}^{\text{on}} + \mathcal{O}(\kappa^2)$$

corrections at $p_{T,d} \ll m$

• if T dominates:
$$\mathcal{O}(\frac{V^2}{p_T q_L}) \sim \mathcal{O}(\frac{m^2}{p_T q_L})$$

$p_T \ll m$ behavior

$$\frac{d\sigma}{d\phi} \text{ from } A_{\text{exact}}^{(h_1h_2h_3)} = f_0 A_{(h_1h_2h_3)}^{(0)} + f_+ A_{(h_1h_2h_3)}^{(+)} + f_- A_{(h_1h_2h_3)}^{(-)} + \text{corrections}$$
(PRELIMINARY)

•
$$f_0 = \frac{m}{V^2} g_0(x)$$

• $f_{\pm} = \frac{p_T e^{\pm i\phi}}{V^2} g_{\pm}(x)$

	$\mathcal{A}_{h\lambda(W^-)\to\lambda(W^+)\lambda(W^-)}$		$\lambda(W_{in}^{-})$	$\lambda(W^+)$	$\lambda(W^{-})$	$d\sigma/d\phi$
h = 0	h = -1	h = 1				
1	6	é	0	0	0	$1 + \epsilon [\sin \phi + \Delta \cdot f(\phi)]$
é	ϵ^2	ϵ^2	0	0	1	$1 + \epsilon [\sin \phi + \Delta \cdot f(\phi)]$
ϵ	ϵ^2	ϵ^2	0	0	$^{-1}$	$1 + \epsilon [\sin \phi + \Delta \cdot f(\phi)]$
é	1	ϵ^2	0	1	0	$1 + \epsilon \sin \phi + \Delta \cdot f(\phi)$
ϵ^2	é	ϵ^3	0	1	1	$1 + \epsilon \sin \phi + \Delta \cdot f(\phi)$
1	é	ε	0	1	-1	$1 + \epsilon [\sin \phi + \Delta \cdot f(\phi)]$
e	ϵ^2	1	0	-1	0	$1 + \epsilon \sin \phi + \Delta \cdot f(\phi)$
1	6	e	0	-1	1	$1 + \epsilon [\sin \phi + \Delta \cdot f(\phi)]$
ϵ^2	ϵ^3	ε	0	-1	-1	$1 + \sin \phi + \Delta \cdot f(\phi)$
e	ϵ^2	1	1	0	0	$1 + \epsilon \sin \phi + \Delta \cdot f(\phi)$
1	é	e	1	0	1	$1 + \epsilon [\sin \phi + \Delta \cdot f(\phi)]$
ϵ^2	ϵ^3	e	1	0	-1	$1 + \epsilon \sin \phi + \Delta \cdot f(\phi)$
ϵ^2	ε	ϵ	1	1	0	$1 + \sin 2\phi + \Delta f(\phi) + \epsilon \sin \phi$
é	1	ϵ^2	1	1	1	$1 + \epsilon \sin \phi + \Delta \cdot f(\phi)$
ϵ	ϵ^2	1	1	1	-1	$1 + \epsilon \sin \phi + \Delta \cdot f(\phi)$
ϵ^2	ϵ^3	e	1	-1	0	$1 + \epsilon \sin \phi + \Delta \cdot f(\phi)$
é	ϵ^2	1	1	$^{-1}$	1	$1 + \epsilon \sin \phi + \Delta \cdot f(\phi)$
ϵ^3	ϵ^4	ϵ^2	1	$^{-1}$	$^{-1}$	$1 + \epsilon \sin \phi + \Delta \cdot f(\phi)$
e	1	ϵ^2	-1	0	0	$1 + \epsilon \sin \phi + \Delta \cdot f(\phi)$
ϵ^2	ϵ	ϵ^3	-1	0	1	$1 + \epsilon \sin \phi + \Delta \cdot f(\phi)$
1	é	ε	-1	0	-1	$1 + \epsilon [\sin \phi + \Delta \cdot f(\phi)]$
ϵ^2	é	ϵ^3	-1	1	0	$1 + \epsilon \sin \phi + \Delta \cdot f(\phi)$
ϵ^3	ϵ^2	ϵ^4	-1	1	1	$1 + \epsilon \sin \phi + \Delta \cdot f(\phi)$
e	1	ϵ^2	-1	1	-1	$1 + \epsilon \sin \phi + \Delta \cdot f(\phi)$
ϵ^2	é	e	-1	-1	0	$1 + \sin 2\phi + \Delta f(\phi) + \epsilon \sin \phi$
e	1	ϵ^2	-1	-1	1	$1 + \epsilon \sin \phi + \Delta \cdot f(\phi)$
e	ϵ^2	1	-1	-1	-1	$1 + \epsilon \sin \phi + \Delta \cdot f(\phi)$

Roberto Franceschini

November 2nd 2011@Cornell University

23/ 30

$uW^+ ightarrow dW^+W^-$: $\int d\phi |\mathcal{A}_{EWA}|^2$ vs. $\int d\phi |\mathcal{A}_{exact}|^2$

$uW^+ ightarrow dW^+W^-$: $\int d\phi |\mathcal{A}_{EWA}|^2$ vs. $\int d\phi |\mathcal{A}_{exact}|^2$

$$\begin{aligned} p_{T,W,virtual} &= 0 \\ \mathcal{A}_{exact} &= \frac{p_T}{V^2} e^{\pm i\phi} g_{\pm}(x) \epsilon_{\pm} \cdot \mathcal{A}_{\pm xy}^{on} \\ &+ \frac{m}{V^2} g_0(x) \left(\epsilon_g \cdot \mathcal{A}_{gxy}^{on} + \frac{m}{q_L} \tilde{\epsilon}_0 \cdot \mathcal{A}_{0xy}^{on} \right) \\ &+ \frac{1}{q_L} g_0(x) \tilde{\epsilon}_0 \cdot \mathcal{A}_{0xy}^{on} + \mathcal{O}(\kappa) \end{aligned}$$

$$\begin{aligned} \mathbf{e} \quad \mathcal{A} \sim p_T e^{\pm i\phi} \mathcal{A}_{\pm} + \mathcal{A}_0 \\ \mathbf{e} \quad \int d\phi \ e^{\pm i\phi} \mathcal{A}_{\pm} \mathcal{A}_0^* + h.c. = 0 \\ \mathbf{e} \quad |\mathcal{A}|^2 &= |\mathcal{A}_{\pm}|^2 + |\mathcal{A}_0|^2 = \\ |\mathcal{A}_{EWA}|^2 + \mathcal{O}(\kappa^2) \end{aligned}$$

The process studied so far, $uW^+ \rightarrow dW^+W^-$, is only a toy, but displays all the interesting physics (even more indeed), of the "interesting" process $qq \rightarrow qqWW$.

EWA vs. MadGraph: $d\sigma/dp_{T,W^+}$ for $uW^- \rightarrow dW^+W^-$ at $\sqrt{\hat{s}}=2$ TeV (PRELIMINARY)

in the SU(2) Higgs model (m_h =160 GeV) in the region 30 GeV $< p_{T,d} <$ 60 GeV, 0.3 < x < 0.4, $m_{WW} >$ 400 GeV

Figure 4: $d\sigma/dp_T^{W^{\pm}}$ for the channel 110

Boberto Franceschini

Figure 7: $d\sigma/dp_T^{W^{\pm}}$ for the channel 011 November 2nd 2011@Cornell University

- on-shell WW scattering is a universal probe of the EWSB sector
- (re)-established the EWA as an expansion in p_{T,jet}/p_{T,Wout} to access the physics of on-shell W scattering (EWSB)
- assessed the origin and predicted the size of the corrections \mathcal{A} correct up to $\mathcal{O}(\kappa^2)$ when W_L dominate
 - A correct up to $\mathcal{O}(\kappa)$ when W_T dominate
 - $\int d\phi |\mathcal{A}|^2$ up to $\mathcal{O}(\kappa^2)$ in all cases
- prediction of $\frac{d\sigma}{d\phi}$
- numerical checks on the details of the analytic amplitude
- EWA generator for partonic collisions checked against MadGraph

Open issues (?)

• predict the v/E structure of amplitudes in broken SU(N)

$$egin{aligned} \mathcal{L} &= rac{m{v}^2}{4} \mathrm{Tr}(m{D}_\mu \Sigma m{D}^\mu \Sigma) \ \mathcal{A}(\pi \pi o \pi \pi) \sim rac{m{s}}{m{v}^2} \end{aligned}$$

$$\mathcal{L} = rac{v^2}{4} \mathrm{Tr}(D_\mu \Sigma D^\mu \Sigma) \left(1 + a rac{h}{v}
ight) \ \mathcal{A}(\pi \pi o \pi \pi) \sim rac{s}{v^2} \left(1 - a^2
ight)$$

$$egin{aligned} \mathcal{L} &= rac{v^2}{4} \mathrm{Tr}(D_\mu \Sigma D^\mu \Sigma) \left(1 + a rac{h}{v}
ight) \ \mathcal{A}(\pi \pi o \pi \pi) &\sim rac{s}{v^2} \left(1 - a^2
ight) \ \mathcal{A}(\pi \pi o hh) &\sim rac{s}{v^2} \left(a^2
ight) \end{aligned}$$

$$\mathcal{L} = rac{v^2}{4} \mathrm{Tr}(D_\mu \Sigma D^\mu \Sigma) \left(1 + a rac{h}{v} + b rac{h^2}{v^2}
ight) \ \mathcal{A}(\pi \pi o \pi \pi) \sim rac{s}{v^2} \left(1 - a^2
ight) \ \mathcal{A}(\pi \pi o hh) \sim rac{s}{v^2} \left(a^2 - b
ight)$$

$$egin{aligned} \mathcal{L} &= rac{v^2}{4} \mathrm{Tr}(D_\mu \Sigma D^\mu \Sigma) \left(1 + a rac{h}{v} + b rac{h^2}{v^2}
ight) \ & \mathcal{A}(\pi \pi o \pi \pi) \sim rac{s}{v^2} \left(1 - a^2
ight) \ & \mathcal{A}(\pi \pi o hh) \sim rac{s}{v^2} \left(a^2 - b
ight) \end{aligned}$$

an interpolator

- a = b = 0 corresponds to the strongly coupled Goldstones
- *a* = *b* = 1 corresponds to weakly coupled Goldstones, i.e. the SM

$$\mathcal{L} = |D_{\mu}\Phi|^2$$
 with $\Phi = rac{1}{\sqrt{2}} \left(egin{array}{c} \pi_1 + \imath\pi_2 \ v + h + \imath\pi_3 \end{array}
ight)$

$$egin{aligned} \mathcal{L} &= rac{v^2}{4} \mathrm{Tr}(D_\mu \Sigma D^\mu \Sigma) \left(1 + a rac{h}{v} + b rac{h^2}{v^2}
ight) + m_f ar{\psi}_L \psi_R \left(1 + c rac{h}{v}
ight) \ & \mathcal{A}(\pi \pi o \pi \pi) \sim rac{s}{v^2} \left(1 - a^2
ight) \ & \mathcal{A}(\pi \pi o hh) \sim rac{s}{v^2} \left(a^2 - b
ight) \ & \mathcal{A}(\pi \pi o \psi \psi) \sim rac{\sqrt{s} m_f}{v^2} \left(1 - ac
ight) \end{aligned}$$

an interpolator

- a = b = 0 corresponds to the strongly coupled Goldstones
- c = a = b = 1 corresponds to weakly coupled Goldstones, i.e. the SM

$$\mathcal{L} = |D_{\mu}\Phi|^2 \text{ with } \Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \pi_1 + i\pi_2 \\ \nu + h + i\pi_3 \end{pmatrix}$$

on-shell WW scattering: a SM process that knows BSM

$W_L W_L ightarrow W_L W_L$

- *W_L* described by the Goldstone's bosons
 Σ = e^{iπ^aσ^a/v}
- a scalar *h* coupled to the Goldstones

$$\begin{aligned} \mathcal{L} &= \frac{1}{2} (\partial h)^2 - V(h) \\ &+ \frac{v^2}{4} \operatorname{Tr} \left(D_{\mu} \Sigma D^{\mu} \Sigma \right) \left(1 + a \frac{h}{v} + b \frac{h^2}{v^2} + \ldots \right) \\ &+ m \bar{\psi}_R \Sigma \psi_L \left(1 + c \frac{h}{v} \right) + h.c. \end{aligned}$$

\mathcal{A} grows with the energy

$$\mathcal{A}\left(\pi\pi\to\pi\pi\right)=(1-a^2)\frac{s}{v^2}+\dots$$

Roberto Franceschini

November 2nd 2011@Cornell University

Strong or Weak coupling

- a,b,c are in principle free parameters
- a: $W_L W_L \rightarrow W_L W_L$
- b: $W_L W_L \rightarrow hh$
- c: $W_L W_L \to f\bar{f}$
- Strong if a=0 or b=0 or c=0
- SM is a=b=c=1
- The Higgs is part of new physics

whatever breaks the EW symmetry

 measuring a,b,c tells about EWSB (and tells what is h)