DIRECT DARK MATTER SEARCHES AND FINE-TUNING IN SUPERSYMMETRY

scatter from the Atomic Nucleus

> Bibhushan Shakya Cornell University

> LEPP Particle Theory Seminar November 4, 2011

Based on arXiv:1107.5048 with Maxim Perelstein

Several direct detection experiments searching for dark matter; exciting times!

Recently beginning to probe interesting regions where SUSY predicts signals

Future upgrades will probe even lower cross sections

Uncertainties in Direct Detection Experiments

- Local dark matter density
- Velocity distribution
- Isospin symmetry of WIMP-nucleon couplings
- Nuclear formfactors (esp. that of the strange quark)
- Channeling...

Will not discuss these further,

assume they are known and properly incorporated, bound on direct detection cross section as a function of WIMP mass as starting point

Interpreting results in the context of MSSM

- Large number of free parameters (>100), allowed ranges highly uncertain
- Reduce parameter space via specific assumptions that relate otherwise independent parameters, e.g. high scale unification, specific model of SUSY breaking
- E.g. mSUGRA has only 5 parameters (but serious issues with FCNCs)
- Use results of direct detection to make exclusion plots on combinations of free parameters (while assuming specific values for free parameters not on the plot)

Null results Bounds on parameter combinations

What is the most general take-away message ??

A meaningful measure:

Fine-tuning

Log in / create account

Interaction

Help

mechanism to explain why the parameters happen to have precisely the needed values. Explanations often invoked to resolve fine-tuning problems include natural mechanisms by which the values of the parameters may be constrained to their

A meaningful measure:

Fine-tuning

The Question

In generic supersymmetry models, can one naturally get points that evade current and future direct detection constraints, without needing to fine-tune parameters?

Quantifying (EWSB) Fine-tuning

• In EW sector, MSSM parameters must reproduce the correct m_z

$$m_Z^2 = -m_u^2 \left(1 - \frac{1}{\cos 2\beta}\right) - m_d^2 \left(1 + \frac{1}{\cos 2\beta}\right) - 2|\mu|^2$$

- If terms on r.h.s. are not ~100 GeV, need cancellations to make things work. Fine-tuning !
- Calculate sensitivity to small changes in Lagrangian parameters: $\delta(\xi) = \left| \frac{\partial \log m_Z^2}{\partial \log \xi} \right| \qquad \xi = m_u^2, m_d^2, b, \mu$
- Add these in quadrature \rightarrow a measure of EWSB fine-tuning
- Can write the final expression as a function of m_A , μ , tan β , m_Z
- For tan $\beta >> 1$, $\delta(\mu) \approx \frac{4\mu^2}{m_Z^2}$, $\delta(b) \approx \frac{4m_A^2}{m_Z^2 \tan \beta}$
- Fine-tuned for large μ , to a smaller extent for small tan β , large m_A.

Our Approach

Work within (phenomenological) MSSM

Assume no relations between weak-scale MSSM parameters

No accidental cancellations

(ignore correlations that are true only on a measure zero hypersurface of the parameter space; want to make general statements valid in most of the parameter space)

The lightest neutralino is dark matter, and makes up all of the observed dark matter in the universe

Dark Matter in the MSSM

• Neutralino mass matrix:

$$\mathbf{M}_{\widetilde{N}} = \begin{pmatrix} M_1 & 0 & -c_{\beta} s_W m_Z & s_{\beta} s_W m_Z \\ 0 & M_2 & c_{\beta} c_W m_Z & -s_{\beta} c_W m_Z \\ -c_{\beta} s_W m_Z & c_{\beta} c_W m_Z & 0 & -\mu \\ s_{\beta} s_W m_Z & -s_{\beta} c_W m_Z & -\mu & 0 \end{pmatrix}$$

- The lightest neutralino (dark matter) $\tilde{\chi}_1^0 = Z_{\chi 1}\tilde{B} + Z_{\chi 2}\tilde{W}^3 + Z_{\chi 3}\tilde{H}_d^0 + Z_{\chi 4}\tilde{H}_u^0$
- The relative sizes of $M^{}_1,\,M^{}_2,\,\mu$ determine the content of the LSP neutralino

Spin independent scattering

(strongest bounds)

Spin independent scattering

Spin independent scattering

 $p_i = (M_1, M_2, \mu, \tan\beta, m_A)$

Both cross section and fine tuning determined by the same parameters! (Reminder: fine tuning depends on m_A , μ , tan β)

Aside: Why not do the same with LHC data?

The Procedure

- Scan over parameters $p_i = (M_1, M_2, \mu, \tan\beta, m_A)$
- Fix Higgs mass at m_H=120 GeV

$$\begin{split} |M_1| &\in [10, 10^4] \text{ GeV}; \quad |M_2| \in [80, 10^4] \text{ GeV}; \\ \mu &\in [80, 10^4] \text{ GeV}; \quad m_A \in [100, 10^4] \text{ GeV}; \\ \tan \beta &\in [2, 50] \,. \end{split}$$

• Requirements:

neutralino LSP, charginos heavier than 100 GeV

• Scan with all real, positive parameters (will look at cases with negative or complex parameters later)

LSP Neutralino content $\tilde{\chi}_{1}^{0} = Z_{\chi 1}\tilde{B} + Z_{\chi 2}\tilde{W}^{3} + Z_{\chi 3}\tilde{H}_{d}^{0} + Z_{\chi 4}\tilde{H}_{u}^{0}$

20

LSP Neutralino content

Xenon100 results are forcing us into pure gaugino or pure higgsino regions!

Gaugino Dark Matter and Fine-Tuning

 $M_1 \le \mu \text{ or } M_2 \le \mu$

Can derive an approximate, analytic bound (for all real, positive parameters):

$$\sigma_{\min} = (1.2 \times 10^{-42} \text{ cm}^2) \left(\frac{120 \text{ GeV}}{m_h}\right)^4 \frac{1}{\Delta} \left(\frac{1}{\tan\beta} + \frac{1}{\sqrt{\Delta}} \frac{M_{\text{LSP}}}{m_Z}\right)^2$$

Also see hep-ph/0606134

For a given LSP mass, a lower cross section requires greater fine-tuning!

Makes sense: Smaller cross section \rightarrow purer gaugino LSP \rightarrow larger $\mu \rightarrow$ more severely fine-tuned

Gaugino Dark Matter and Fine-Tuning

23

Gaugino Dark Matter and Fine-Tuning

Fine-tuning: Red, green, cyan: >10,100,1000

- Current Xenon bound → More than 10% fine-tuning above 70 GeV
- Xenon 1T will probe regions with fine-tuning down to percent level!

Higgsino Dark Matter

 $\mu < M_1, M_2$

Can keep μ small and avoid fine-tuning, but increase M₁, M₂ and suppress direct detection cross section

Higgsino Dark Matter

 $\mu < M_1, M_2$

Can keep μ small and avoid fine-tuning, but increase $M_1,\,M_2$ and suppress direct detection cross section

Need additional constraint: Invoke relic density!

Requirement: relic density equal/exceed observed relic density

(we are ignoring contributions from squarks, including them can lead to larger annihilation cross sections and lower relic density)

require relic density to equal/exceed observed relic density \rightarrow require M_{LSP} ~ μ > TeV \rightarrow HUGE fine-tuning

Higgsino Dark Matter

(Choose basis where M_1 , M_2 can be negative/complex)

 Cancellations between contributions possible, aforementioned correlations no longer hold

However, such cases themselves require parameters to be tuned to achieve the right cancellation

Red, orange, green, cyan: $\log_{10}\sigma < -47, -46, -45$, and above

Quantify this accidental cancellation in the same way as fine-tuning in the EWSB sector:

$$\Delta_{\rm acc} \equiv \sqrt{\sum_{i=1}^{5} \left(\frac{\partial \log \sigma}{\partial \log p_i}\right)^2}$$

Red, orange, green: $\triangle acc > 30, 10, <10$

fine tuning

Red, orange, green: $\triangle acc > 30, 10, <10$

With (left) and without (right) points with accidental cancellations in direct detection cross section

Summary of MSSM implications

- Current Xenon100 bounds require pure gaugino or higgsino LSP
- Gaugino LSP: smaller direct detection cross sections correlate with stronger fine-tuning; current Xenon100 bounds already imply 10% or worse tuning for LSP heavier than 70 GeV
- Higgsino LSP: a mild relic density constraint already requires subpercent level fine-tuning
- Xenon1T can probe regions with fine tuning down to percent level
- These statements apply in the most general MSSM, assuming only the absence of accidental cancellations

However, MSSM already suffers from naturalness problems:

• µ problem

The natural value of $\boldsymbol{\mu}$ is order Plank scale, NOT weak scale

• Non observation of Higgs at LEP II

Tree level prediction: $m_H < m_Z$

LEP II bound: m_H > 114 GeV

Need to tune squark masses to get a large enough loop correction to push m_H above the LEP II bound

These problems evaded in extended models of supersymmetry

A representative case: NMSSM

extend MSSM by a single gauge-singlet superfield S

• μ problem

Effective μ term of right order generated when scalar component of S acquires a VEV of order SUSY breaking scale

• Non observation of Higgs at LEP II

Light Higgs with reduced couplings, can lie below the LEP II experimental bound

Additional field content in the NMSSM

- One additional neutralino: the singlino mixes with the four MSSM neutralinos; dark matter can have a singlino component
- One additional CP-even and one CP-odd neutral Higgs boson
 New channels available for scattering
- Direct detection picture can be very different!

Can we get small direct detection cross sections without fine-tuning in the NMSSM?

WORK IN PROGRESS...

BACKUP SLIDES

Direct Detection Cross Section

Spin independent, elastic DM-nucleon scattering at zero momentum exchange

$$\sigma = \frac{4m_r^2 f_p^2}{\pi} \qquad \frac{f_p}{m_p} = \sum_{q=u,d,s} f_{T_q}^{(p)} A_q + \frac{2}{27} f_{TG}^{(p)} \sum_{q=c,b,t} A_q. \qquad f_{TG}^{(p)} = 1 - \sum_{q=u,d,s} f_{Tq}^{(p)} A_q + \frac{2}{27} f_{TG}^{(p)} \sum_{q=c,b,t} A_q.$$

$$f_{Tu}^{(p)} = 0.08, \quad f_{Td}^{(p)} = 0.037, \quad f_{Ts}^{(p)} = 0.34.$$

$$A_{i} = -\frac{g}{4m_{W}B_{i}} \left[\left(\frac{D_{i}^{2}}{m_{h}^{2}} + \frac{C_{i}^{2}}{m_{H}^{2}} \right) \operatorname{Re} \left[\delta_{2i} (gZ_{\chi 2} - g'Z_{\chi 1}) \right] + C_{i}D_{i} \left(\frac{1}{m_{h}^{2}} - \frac{1}{m_{H}^{2}} \right) \operatorname{Re} \left[\delta_{1i} (gZ_{\chi 2} - g'Z_{\chi 1}) \right] \right],$$
(6)

where for up-type quarks

$$B_u = \sin \beta$$
, $C_u = \sin \alpha$, $D_u = \cos \alpha$, $\delta_{1u} = Z_{\chi 3}$, $\delta_{2u} = Z_{\chi 4}$; (7)

while for down-type quarks

$$B_d = \cos \beta$$
, $C_d = \cos \alpha$, $D_d = -\sin \alpha$, $\delta_{1d} = Z_{\chi 4}$, $\delta_{2d} = -Z_{\chi 3}$. (8)

Derivation: Analytic bound for gaugino dark matter

Since g'<g, assume bino dark matter: $M_1 << \mu << M_2$ Decoupling limit $m_A >> m_Z$

From the
resulting 3x3
matrix
$$Z_{\chi 3} \approx s_w \frac{m_Z}{\mu} \left(s_\beta + c_\beta \frac{M_1}{\mu} \right),$$

$$Z_{\chi 4} \approx s_w \frac{m_Z}{\mu} \left(-c_\beta - s_\beta \frac{M_1}{\mu} \right)$$

$$\Longrightarrow A_u \approx A_d \approx \frac{\pi \alpha}{c_w^2} \frac{1}{m_h^2 \mu} \left(\sin 2\beta + \frac{M_{\rm LSP}}{\mu} \right)$$

$$\text{-arge tan } \beta \text{ limit}$$

$$\Delta \approx \frac{4}{m_Z^2} \sqrt{\mu^4 + \frac{m_A^4}{\tan^2 \beta}} \qquad \Delta \approx \frac{4\mu^2}{m_Z^2}$$

$$\Longrightarrow A_u \approx A_d \approx \frac{4\pi \alpha}{c_w^2 m_Z m_h^2} \frac{1}{\sqrt{\Delta}} \left(\frac{1}{\tan \beta} + \frac{1}{\sqrt{\Delta}} \frac{M_{\rm LSP}}{m_Z} \right)$$