

m

The

TOP

Top Quark Studies with CMS

Frank-Peter Schilling (KIT) on behalf of the CMS collaboration

August 23-27, 2010

University of Toronto, Toronto, Canada

2

Precise SM measurements

Top Physics at the LHC

- Heaviest known elementary particle (large Yukawa coupling)
- Constraints on Higgs mass
- Unique window on bare quarks
 due to short lifetime

A window to new physics

- New physics might couple preferentially to top
- New particles may decay to top
- Non-standard couplings
- In many new physics scenarios (e.g. SUSY) top is dominant BG
 E.-P. Schilling - Top

4

Date

• ttbar+jets, W/Z+jets: Madgraph, matching ME with parton showers

- V+bb/c(c)+jets matrix elements included
- Cross sections normalized to inclusive (N)NLO cross sections

Data and MC samples

- sigma(ttbar,NLO)=157pb (MCFM), mtop=172.5 GeV
- sigma(W->Inu,NNLO)=31314pb (FEWZ)
- QCD: PYTHIA (filtered at gen level)

23/00/201

- TOP-10-004 and shown at
- August, certified on 13th August

• Data taken up to 11th

Monte Carlo samples

- <u>Update</u> of results of PAS ICHEP (up to 250nb-1)
- CMS: Integrated Luminosity 2010 . e Delivered 1518 nb⁻¹ ^{_1}1400 Recorded 1335 nb⁻¹ 1200 1000 800 This talk! 600 400 200 **ICHEP** 27/04 04:54 24/05 23:39 21/06 18:23 19/07 13:07 30/03 10:10 16/08 07:51

Dataset

○ L = 840nb-1

- mu+X (Pt>9 GeV),e+X (Pt>15 GeV)
- Two isolated, opposite charge leptons (ee,mumu,emu) $\sum p_T^{\text{track}} + \sum p_T^{\text{ECAL}} + \sum p_T^{\text{HCAL}}$

Rel.isol. =
$$\frac{R < 0.3}{R < 0.3} \xrightarrow{R < 0.3} \xrightarrow{R < 0.3} p_T$$
 (lepton)
• Kel. Isolation < 0.15

- Z-boson veto (ee,mumu)
 |M(II)-M(Z)|>15 GeV
- Missing Et (MET)

• Jets

- Anti-Kt (R=0.5)
- Using calorimeter & tracking
- Pt>30 GeV, |eta|<2.4
- Expect >=2 jets for ttbar

A word on b-tagging

Karlsruhe Institute of Technology

b-tagging: cruical ingredient for top physics Use simple and robust tagging algorithms for early data

- "Track counting" tagger
 - Uses IP significance of n-th track as discriminator

CMS PAS BTV-10-001

- Secondary vertex tagger
 - Uses discriminator based on
 3D flight distance

Scale factors Data/MC for efficiency / mistag rate close to one!

Dilepton Event Yields

Karlsruhe Institute of Technology

• Relaxed selection:

No Z-veto, no MET, N(jets) requirements

Process	ee	μμ	еµ
Dilepton <i>tt</i>	$0.84 \pm 0.13 \pm 0.16$	$0.94 \pm 0.14 \pm 0.17$	$1.75 \pm 0.26 \pm 0.33$
VV	0.23 ± 0.12	0.25 ± 0.13	0.35 ± 0.18
Single top - tW	0.06 ± 0.03	0.07 ± 0.03	0.13 ± 0.07
Drell-Yan $ au au$	0.6 ± 0.3	0.7 ± 0.4	1.3 ± 0.7
Drell-Yan <i>ee, µµ</i>	298 ± 74	343 ± 86	0.1 ± 0.1
Non-dilepton $t\overline{t}$	0.02 ± 0.01	0.004 ± 0.002	0.03 ± 0.02
W+jets	0.3 ± 0.1	0.01 ± 0.01	0.3 ± 0.2
QCD multijets	$0 \ ^{+10}_{-0}$	$0.00 \ ^{+10}_{-0}$	$0 + 10 \\ -0$
Total simulated	300 ± 74	345 ± 86	4.0 ± 0.8
Data	305	294	6

Systematics:

•Signal and DY: 15% acc*eff (conservative), 15% theory, 11% lumi •Other backgrounds: 50% (conservative)

Good agreement observed!

Data vs MC (relaxed selection)

No Z-veto, no MET, N(jets) requirements

Isruhe Institute of Technology

Agreement between simulation and data-driven estimate

F.-P. Schilling - Top Quark Studies with CMS

Data-driven QCD, W+jets backgrounds

- "Fake" lepton backgrounds:
 - W+jets : one fake lepton
 - QCD: two fake leptons
- Determine a 'tight-to-lose ratio' (TL) in jet-triggered sample
- Apply to events where one (both) leptons pass loose, but fail tight lepton selection
- Weighed sum yields background estimate
- 50% systematics per "fake" lepton

$$N_{nn}^{QCD} = \sum_{i,j} \frac{TL_i TL_j}{(1 - TL_i)(1 - TL_j)} N_{\overline{nn}}^{ij}$$

$$N_{nn}^{WJets} = \sum_{i,j} \frac{TL_i}{(1 - TL_i)} N_{\overline{n}n}^{ij}$$

Event yields: tighter selection

Z-veto, N(jets)>=1

Sample	ее	μμ	еµ
Dilepton <i>tt</i>	$0.63 \pm 0.09 {\pm} 0.12$	$0.70 \pm 0.11 {\pm} 0.13$	$1.70 \pm \! 0.26 {\pm} 0.32$
VV	0.05 ± 0.03	0.05 ± 0.03	0.12 ± 0.06
Single top - <i>tW</i>	0.04 ± 0.02	0.05 ± 0.03	0.12 ± 0.06
Drell-Yan $\tau\tau$	0.08 ± 0.04	0.13 ± 0.07	0.19 ± 0.09
Drell-Yan ee, µµ	4.2 ± 1.1	5.0 ± 1.2	0.04 ± 0.02
Non-dilepton <i>tt</i>	0.02 ± 0.01	0.003 ± 0.002	0.03 ± 0.02
W+jets	0.06 ± 0.03	$0.000 \begin{array}{c} +0.002 \\ -0.000 \end{array}$	0.07 ± 0.04
QCD multijets	$0 \ ^{+10}_{-0}$	$0 + 10^{-0}$	$0 \ ^{+10}_{-0}$
Total simulated	5.1 ± 1.1	5.9 ± 1.2	2.3 ± 0.4
QCD data-driven	$0.0 \ {}^{+0.1}_{-0.0} \ {}^{+0.1}_{-0.0}$	$0.0 \begin{array}{c} +0.2 \\ -0.0 \end{array} \begin{array}{c} +0.2 \\ -0.0 \end{array}$	$0.0 \ ^{+0.1}_{-0.0} \ ^{+0.1}_{-0.0}$
W+jets data-driven	$0.2 \begin{array}{c} +0.2 \\ -0.0 \end{array} \begin{array}{c} +0.1 \\ -0.0 \end{array}$	$0.0 \begin{array}{c} +0.4 \\ -0.0 \end{array} \begin{array}{c} +0.2 \\ -0.0 \end{array}$	$0.0 \begin{array}{c} +0.4 \\ -0.0 \end{array} \begin{array}{c} +0.2 \\ -0.0 \end{array}$
Drell-Yan data-driven	$3.6\pm0.6\pm1.8$	$4.3\pm0.7\pm2.1$	N/A
Data	6	6	2

Systematics:

•Signal and DY: 15% acc*eff (conservative), 15% theory, 11% lumi

•Other backgrounds: 50% (conservative)

•Data-driven backgrounds: DY,Wjets: 50%; QCD: 100%

Good agreement observed!

• N(jets), with Z-Veto, MET requirement applied

• MET, with Z-veto, N(jets)>=2 requirements applied

rlsruhe Institute of Technology

L=0.84pb⁻¹

All cuts applied: Z-Veto, MET, N(jets)>=2

Lepton+jets: Event selection

- Considered modes:
 - o e+jets
 - \circ mu+jets
- Single lepton triggers
- Exactly one isolated lepton
 - Muons: Pt>20 GeV,|eta|<2.1
 - Rel. Isolation < 0.05
 - Electrons: Pt>30 GeV, |eta|<2.4
 - Rel. Isolation, conversion veto
- Missing Et (MET)
 - \circ Not used in event selection,

25/06/2011 to reconstruct transverse

- Jets
 - o Anti-Kt (R=0.5)
 - Pt>30 GeV, |eta|<2.4
 - Expect >=4 jets for ttbar
 - No b-tagging in baseline
 selection

F.-P. Schilling - Top Quark Studies with CMS

Electron+Jets

No b-tagging, no MET cut applied

Jet multiplicity	ttbar	single top	W+jets	Z+jets	QCD	Sum MC	Data
N _{jets} ≥ 0	12 ± 2	$\textbf{3.4}\pm\textbf{0.4}$	2619 ± 317	180 ± 21	658 ± 73	3472 ± 326	3434
N _{jets} ≥ 1	12 ± 2	3.1 ± 0.4	419 ± 77	92 ± 11	436 ± 62	962 ± 99	1022
N _{jets} ≥ 2	11 ± 2	1.9 ± 0.3	74 ± 18	19 ± 5	85 ± 22	191 ± 29	183
N _{jets} ≥ 3	8.9 ± 1.8	0.70 ± 0.14	13 ± 4	3.3 ± 1.0	14 ± 5	40 ± 7	43
N _{jets} ≥4	4.8 ± 1.2	0.21 ± 0.06	2.6 ± 1.1	0.60 ± 0.23	2.3 ± 1.1	11 ± 2	13

Data-driven QCD estimate: template fit

- First tests of DD methods in low N(jets) bins
- e+jets: Fit sum of templates in low MET or HT(lep) region
 - QCD template from multijet sample (near-miss electrons or large EM jets)
- Predict N(QCD) in signal

			2 E ≓
N(jets)>=0		QCD	
MET>25 GeV	12.2+/-0.2	19+/-7	0.15
HT(lep)>60	26.0+/-0.3	39+/-11	0.1
N(jets)>=1		QCD	20 40 60
MET>25 GeV	5.3+/-0.1	8+/-5	e+iets: consisten
HT(lep)>60	12.4+/-0.2	10+/-4	mu+jets: see late
GeV			
0	FP. Sc	hilling - Top Qu	ark Studies with CMS

e+jets: consistent with MC mu+jets: see later

Data-driven QCD II: Isolation extrapolation

- Fit function to isolation distribution in non-isolated (QCD dominated) region
- Extrapolate to isolated (Wlike) region

Isolation extrapolation method (<i>e</i> +jets)				
Fit Range	$N_{\text{QCD}}^{est.}(\geq 0\text{-jet})$	$N_{\text{QCD}}^{est.}(\geq 1\text{-jet})$	s/0	
0.1–1.6	67 ± 9	40 ± 6	vent	
0.2–1.6	73 ± 13	46 ± 9	Ш	
0.3–1.6	71 ± 17	45 ± 12		
Average N ^{est.}	70 ± 35	44 ± 22		
Prediction \tilde{N}_{QCD}^{MC}	63 ± 7	42 ± 6		

Agreement between data-driven QCD estimate and simulation More importantly: result consistent with template method (NB no MET,HT cuts applied here!)

20/00/201

F.-P. Schilling - Top Quark Studies with CMS

Muon+jets

No b-tagging, no MET cut applied

Jet multiplicity	ttbar	single top	W+jets	Z+jets	QCD	Sum MC	Data
N _{jets} ≥ 0	13 ± 3	4.2 ± 0.4	3708 ± 448	192 ± 29	223 ± 25	4140 ± 450	4142
N _{jets} ≥1	13 ± 3	3.9 ± 0.4	552 ± 106	42 ± 12	79 ± 17	690 ± 108	789
N _{jets} ≥2	13 ± 2	2.3 ± 0.3	92 ± 24	7.1 ± 4.4	10 ± 3	124 ± 25	153
N _{jets} ≥3	10 ± 2	0.82 ± 0.15	16 ± 5	1.3 ± 0.9	1.3 ± 0.5	29 ± 5	40
N _{jets} ≥4	5.6 ± 1.4	0.24 ± 0.06	3.1 ± 1.2	0.25 ± 0.18	0.15 ± 0.07	9.3 ±1.9	11

MC Uncertainties (table):

- •Jet energy scale (known to 10%)
- •Luminosity (known to 11%)
- •Cross section unc. (scale,PDF)

L=0.84pb⁻¹

Good agreement observed in all Jet bins!

mu+jets, N(jets)>=0

Excess observed in data at low Pt(mu), MET, MT and HT Consistent with QCD MC being factor ~2 too low

Error band: 100% on QCD (from data-driven methods)

20/00/201

CMS Preliminary

0.25 $-\mu$ +jets, N_{inte} ≥ 0

0.84 pb⁻¹ at √s = 7 TeV

Data (# Vtx = 1)

Data (# Vtx > 1)

Compare data with one vertex vs data with >=1 vertex

Data (# Vtx = 1

— Data (# Vtx > 1)

Do have non-negligible pileup in recent data <N>~0.9 Simulation is without pileup

Event fractio

0.2

Event fraction

0.5⊢

0.4

CMS Preliminary

 μ +jets, N_{iets} \geq 0

0.84 pb⁻¹ at √s = 7 TeV

rlsruhe Institute of Technology

26

F.-P. Schilling - Top Quark Studies with CMS

27

b-decays in jets For N(jets)>=3, observe 7 events, consistent with ttbar signal plus ~2.5 background events

"Muon-in-jet"

Enriching the b-content

L=0.84pb⁻¹

Seeing ttbar events at a rate roughly consistent with NLO cross section, considering experimental (JES,b-tagging) and theoretical (scale, PDF, HF modelling, ...) uncertainties

20/00/201

Conclusions

- Analyzed first L=0.84pb-1 of 7TeV data
 - Updated with respect to ICHEP results (L~250nb-1)
- Event yields in background dominated regions ~consistent with expectations, within uncertainties
 - Tests of data-driven background estimation
- Enrich signal by going to high N(jets) and employing b-tagging
- Observed number of candidates approx. consistent with ttbar expectation, on top of small backgrounds
- Strong evidence for excellent
 perf(Established Top signal at LHC, first cross sections will come soon!
 20/16/210008, b-tagging)!
 20/16/210008, b-tagging)!
 20/16/210008, b-tagging)!
 20/16/210008, b-tagging)!

Backup

F.-P. Schilling - Top Quark Studies with CMS

Jet multiplicity (relaxed selection)

20/00/201

F.-P. Schilling - Top Quark Studies with CMS

Missing Transverse Energy (relaxed

ZJ/U0/ZU I

b-tag multiplicity (relaxed sel.)

With Z-veto, MET, N(jets)>=2 cuts applied

20/00/201

F.-P. Schilling - Top Quark Studies with CMS

mu+Jets, >=2 jets

e/mu+jets+b-tag

e+jets

mu+jets

