Dynamics at the Nanoscale

Eric D. Isaacs

* Introduction: length and time scales.

e Nearly impossible XPCS studies of slow domain wall dynamics.
* AlImost impossible experiments for an ERL?

 Ultra-fast structural dynamics in nanoparticles/macromolecules.
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Structure and dynamics at the nanoscale with X-

rays.
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Major Challenges in Condensed
Matter Science

B Competing ground states on the nanoscale.

— The relationship between mesoscale phases (spin, PHYS | [:S H][l HY
charge, lattice) and physical properties is a grand
challenge in condensed matter physics.

— The role of quantum and thermal spin/charge
dynamics.

B How can we study mesoscale phases in bulk?
— X-ray microprobe (slow).
— Xx-ray photon correlation spectroscopy (faster).

“ 10 mi ror& oo cxr
& STM: checkerboard
pattern in high-T;
superconductor.
(Davis, et al).

spin domains in Py (Sort, et, al) X-ray: spin domains in
bulk Cr (Isaacs, et al
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I AFM: exchange bias vortices in




Why Study Chromium?

. . chromium and its common alloys
Photoemission shows Fermi surface . : .
) are ‘'simple’ bcc metals, exhibiting

complex behaviors including;

* Only elemental material w/SDW.

k|l [01-1]

» Spin-density wave ground state at
o 311 K due to Fermi-surface nesting.
) « Spin-flip transition at 123 K.

« Quantum critical behavior:

drive T\ to zero by

(effectively increasing the size of the
hole pocket) or by

\\ . . - ‘/
\‘:\\L.//ﬂ-
E. Rottenberg et al.,
' New Journal of Physics 7 (2005) 114
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Spin Density Wave (SDW) accompanied by
Charge (Lattice Strain) Waves (CDW)
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Typical Map of Domains in Chromium

Form images of domains using both SDW and CDW
Bragg satellite peaks.

X-ray microprobe image
of SDW domains in Cr.

Evans et al, Science, 295, 1042
(2002).
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Domain Wall Fluctuations at the
Nanoscale
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1/f Noise in Thin Cr Films

Is this domain switching?
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Michel et al., PRB 44, 7413 (1991)
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Nanoscale probes of dynamics

Probes of Domains

» Three x-ray imaging modes: scanning probe, full-field, ‘lens-less’
« Scanning probe: high spatial resolution, but slow (100nm or better)
* Full-field won’t work with diffraction, e.g, for magnetic contrast.

* Need probe with both time and spatial resolution - coherent scattering
* (< 1 sec, <1 nm spatial resolution, over macroscopic region of space)

" ’ -7 10 microns.
"

ppin domains in :
chromium (~ 3 hrs) speckle dynamics
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| Microprobe image of Coherent x-ray



What can we do with x-ray coherence?

B [nvert the speckle pattern to get high-
resolution image of electron density.

— 40 nm is best hard x-ray resolution today.
— 1 nm physically possible!

B Study time variations of speckle pattern to
get information about dynamics of system.
— phase transitions
— complex fluids and glasses

— defects/disorder dynamics
l — Interfaces and surfaces

ERL Workshop Il
Cornell University, June 16-17, 2006




Coherent X-ray Speckle

X-ray Photo Correlation Spectroscopy (XPCS)

Experimental Setup:

Pinhole
aperture
Double crystal F
monochromator CCD 1] /i
Undulator S camera
= Chromium
/"E"E’E' (111) sample
; Synchrotron
‘ storagering .’
e« CCD: 22 um pixels
l  speckle size: AMd_, 2 m ~ 40 um
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X-ray Coherence

Young'’s double slit experiment.

Intensity varies as HH.
I =21, [1+ B cos(2ndsin(@)/ 2 )]

Temporal and spatial coherence at the APS.

(b) Transverse coherence length, L,
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transverse: A, =—— D' /ﬂ/
2D [

l 10 x 40 um? pinhole @ APS: ~ 3x10° ph/s, p ~ 15 %
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Coherent X-ray Diffraction ‘Speckle’ Pattern
From Bulk Chromium

Static Bragg speckle

_(line scan from 2D image) Static x-ray speckle
69 pattern
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Typical Map of Q-domains in Chromium

10 microns

(0,0,2-29)

Domain wall
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Autocorrelation function, g,(1):

(KOOt +7))

2,(0,1) =1+ A[S(Q,1)/S(Q,0)]* = - 2
(10.7))
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Dynamics with autocorrelation function g,(t):

multiple timescales
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Dynamics with autocorrelation function g,(t)
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CDW is Dynamic at T=4 K!

x10°
24 [T
(0,0,2-28)

Line=70, Frame:1-1001
Frame:1002-2001
Frame:2002-3001
Frame:3002-4001
Frame:4002-5001

2.0

x10°

(002)
speckle
is static |

1.6

1.2+

n YN
y

0 20 40 60 80 100 120 140 160 180 200
Pixels

Intensity [ph/pixel]

o = N W » &) [©]

0.8

0.4

l -15 -125-10 -0.75 -05 -025 O 025 05 075 1.0 1.25

AQ (x 103 A1)
ERL Workshop Il
Cornell University, June 16-17, 2006



CDW speckle, the movie (17K)
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Temperature dependence of fluctuations
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Domain Wall Motion:
Thermal activation model (high T)

Thermal
activation
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Domain Wall Motion:

Quantum Tunneling model (low T)
Quantum tunneling
10°4 “Frozen out” at low T
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Imaging Domain Wall
Fluctuations at the Nanoscale

Is domain wall motion coherent?

Domain Wall
\




Imaging Domain Wall
Fluctuations at the Nanoscale

Is domain wall motion coherent?
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Combine coherent imaging and
dynamics at an ERL

e 3D movie of domain walls: nm

resolution at us. _
1) x 102 - 103 coherent flux (ERL). o

2) smart detectors. o

ERL 2
QLCER T 10 maA

S03rm 1dCms —

. _,|1:l :J=F:.HF & Sorings 2hm

« Coherent x-ray diffraction
imaging: ~102 seconds per frame
to get ~ 1 count per pixel.

Svarage Sonorenl Flux Jprtsid 15w

' 1
1t
Fiolur Enzroy (ei')

l 170 nm Ag cubes: |.K. Robinson, et. al.
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Center for Nanoscale Material’s
Hard X-ray Nanoprobe at the APS

G.B. Stephenson, J. Maser
Sample
l ' Area detector:

Scanning Probe Mode

transmission
Area detector:

microdiffraction

it T an e ok Energy dispersive detector:

Rotation for X-ray fluorescence
microdiffraction

Hard X-ray zone

\/k. plate (focusing) 30 nm fOCUS
ApeTife (ios usi ng zone-

plates.

Zoom-in on domain wall using
diffractive optics at 379-gen source

A
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ERL Experiments: Melting of Charge &

Spin Ordered States

B For example: dynamics of ‘striped’ phase
melting in complex oxide compounds.

® Dynamics of striped domains may play a
critical role in high-T. superconductivity.

B Weak scattering at CDW superlattice
peaks.

B Can we measure the SDW w/ERL?

Hﬁsumrrucrum paak

1 Hole ordering peak in

Sr,,Cu,,0,,. (resonant)
Abbamonte, et al, Nature (2004)

‘:"1;" ] | L 1 1
Ge6 GE7  G28 529 580
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Charge melting in
La, ,Sry Mn,0y,

L. Vasiliu-Doloc, et al.,
PRL (1999).



Quantum Speckle Collaborators

Dr. Oleg Shpyrko

Jonathan Logan Clarisse Kim _ : .
Argonne National Labs g arisse i Prof. Gabriel Aeppli

Univ. of Chicago Univ. of Chicago Univ. College, London

Prof. Tom Dr. Yejun Feng Rafael Jaramillo
Rosenbaum Univ. of Chicago Univ. of Chicago
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Many of nature’s energy conversion processes
occur on the nanoscale at fast time-scales

Nature’'s hydrogen source synthetic hydrogen source

using solar energy

TiO, ‘e~-donor’ + Fe,S, active site mimic

biomimetic hydrogen production on the
surface of a metal-oxide nanoparticle.
H ) D. Tiede, X. Zuo, A. Goshe

protein as catalyst:
Fe-hydrogenase
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Time-scale for processes in solar energy conversion

Elg ent APS time

:nolecular
1 dynamics

excited-state electron density redistribution

Photon Absorption:

hotosynthesis

Water-splitting in
photosynthesis

| G
[

10-15 10-14 10-13 10-12 10-11 10-10 10-° 10-8 107

Time (sec

ERL Workshop Il
Cornell University, June 16-17, 2006




Structural Landscapes Underlying Function:
Towards sub-picosecond time-resolved scattering.

.
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Intrinsic time resolution:
APS: ~100 ps fwhm (2005)

APS: ~ 1 ps (2012) Excited State

| ERL: ~ 50 fs ST
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Can we measure structural dynamics of
individual nanoparticles?

D. Tiede, et al, structure Solution Scattering -
L. Chen, et al, spectroscopy 1st single bunch SAXS !!!
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= Understanding the relationship between mesoscale
phases (spin, charge, lattice) and physical properties is a
grand challenge in condensed matter physics.

= X-ray photon correlation spectroscopy gives us a good
way to measure their dynamics at relevant time- and
length- scales.

= ERL could enable 3D dynamic imaging of charge
and spin dynamics (if we had the detectors).

= Many condensed matter systems of interest.
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Quantum Critical Behavior in Cr,_V
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Generic phase diagram
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