Dynamics at the Nanoscale

Eric D. Isaacs

- Introduction: length and time scales.
- Nearly impossible XPCS studies of slow domain wall dynamics.
- Almost impossible experiments for an ERL?
- Ultra-fast structural dynamics in nanoparticles/macromolecules.

ERL Workshop III, Almost Impossible Materials Science, Cornell University, June 17, 2006

A U.S. Department of Energy laboratory managed by The University of Chicago

Structure and dynamics at the nanoscale with X-rays.

Cornell University, June 16-17, 2006

Major Challenges in Condensed Matter Science

Competing ground states on the nanoscale.

- The relationship between mesoscale phases (spin, charge, lattice) and physical properties is a grand challenge in condensed matter physics.
- The role of *quantum and thermal spin/charge dynamics*.
- How can we study mesoscale phases in bulk?
 - x-ray microprobe (slow).
 - x-ray photon correlation spectroscopy (faster).

AFM: exchange bias vortices in spin domains in Py (Sort, et, al)

X-ray: spin domains in bulk Cr (Isaacs, et al)

ERL Workshop III Cornell University, June 16-17, 2006

Superconductors come to order

STM: checkerboard pattern in high-T_C superconductor. (Davis, et al).

Why Study Chromium?

chromium and its common alloys are 'simple' bcc metals, exhibiting complex behaviors including;

- Only elemental material w/SDW.
- Spin-density wave ground state at 311 K due to Fermi-surface nesting.
- Spin-flip transition at 123 K.

 Quantum critical behavior: drive T_N to zero by doping with V (effectively increasing the size of the hole pocket) or by applying pressure.

Spin Density Wave (SDW) accompanied by Charge (Lattice Strain) Waves (CDW)

Typical Map of Domains in Chromium

Form images of domains using both SDW and CDW Bragg satellite peaks.

X-ray microprobe image of SDW domains in Cr.

Evans et al, Science, **295**, 1042 (2002).

Domain Wall Fluctuations at the Nanoscale

1/f Noise in Thin Cr Films

Is this domain switching?

Michel et al., PRB 44, 7413 (1991)

Nanoscale probes of dynamics

Probes of Domains

- Three x-ray imaging modes: scanning probe, full-field, 'lens-less'
 - Scanning probe: high spatial resolution, but slow (100nm or better)
 - Full-field won't work with diffraction, e.g, for magnetic contrast.
- Need probe with both time and spatial resolution coherent scattering
 - (< 1 sec, < 1 nm spatial resolution, over macroscopic region of space)

Microprobe image of ppin domains in chromium (~ 3 hrs)

Coherent x-ray speckle dynamics

What can we do with x-ray coherence?

- Invert the speckle pattern to get highresolution image of electron density.
 - 40 nm is best hard x-ray resolution today.
 - 1 nm physically possible!
- Study time variations of speckle pattern to get information about dynamics of system.
 - phase transitions
 - complex fluids and glasses
 - defects/disorder dynamics
 - Interfaces and surfaces

Coherent X-ray Speckle

X-ray Photo Correlation Spectroscopy (XPCS)

- CCD: 22 μm pixels
- speckle size: λ/d_{coh} * 2 m ~ 40 μ m

X-ray Coherence

Young's double slit experiment.

Intensity varies as

$$I = 2I_0 \left[1 + \beta \cos\left(2\pi d \sin(\theta) / \lambda\right) \right]$$

Temporal and spatial coherence at the APS.

Iongitudinal:
$$\Lambda_L = \frac{\lambda}{2} \frac{\lambda}{\Delta \lambda}$$

transverse: $\Lambda_T = \frac{\lambda}{2} \frac{R}{D}$
10 x 40 µm² pinhole @ APS: ~ 3x10⁹ ph/s, β ~ 15 %
ERL Workshop II
Correll University, June 16-17, 2006

Coherent X-ray Diffraction 'Speckle' Pattern From Bulk Chromium

Typical Map of Q-domains in Chromium

Autocorrelation function, $g_2(t)$:

Dynamics with autocorrelation function g₂(t): multiple timescales

Dynamics with autocorrelation function $g_2(t)$

CDW is Dynamic at T=4 K !

Cornell University, June 16-17, 2006

CDW speckle, the movie (17K)

Temperature dependence of fluctuations

Domain Wall Motion: Thermal activation model (high T)

Domain Wall Motion: Quantum Tunneling model (low T)

Imaging Domain Wall Fluctuations at the Nanoscale

Is domain wall motion coherent?

Imaging Domain Wall Fluctuations at the Nanoscale

Is domain wall motion coherent?

Transport in film.

Smaller pinhole reveals switching between two states.

Combine coherent imaging and dynamics at an ERL

- 3D movie of domain walls: nm resolution at μs.
 - 1) x $10^2 10^3$ coherent flux (ERL).
 - 2) smart detectors.
- Coherent x-ray diffraction imaging: ~10² seconds per frame to get ~ 1 count per pixel.

170 nm Ag cubes: I.K. Robinson, et. al.

Center for Nanoscale Material's Hard X-ray Nanoprobe at the APS

Zoom-in on domain wall using diffractive optics at 3rd-gen source

ERL Experiments: Melting of Charge & Spin Ordered States

- For example: dynamics of 'striped' phase melting in complex oxide compounds.
- Dynamics of striped domains may play a critical role in high-T_c superconductivity.
- Weak scattering at CDW superlattice peaks.
- Can we measure the SDW w/ERL?

Hole ordering peak in $Sr_{14}Cu_{24}O_{41}$. (resonant) Abbamonte, et al, Nature (2004)

L. Vasiliu-Doloc, et al., PRL (1999).

Quantum Speckle Collaborators

Dr. Oleg Shpyrko Argonne National Labs

Jonathan Logan Univ. of Chicago

Clarisse Kim Univ. of Chicago

Prof. Gabriel Aeppli Univ. College, London

Prof. Tom Rosenbaum Univ. of Chicago

Dr. Yejun Feng Univ. of Chicago

Rafael Jaramillo Univ. of Chicago

Many of nature's energy conversion processes occur on the nanoscale at fast time-scales

protein as catalyst: Fe-hydrogenase synthetic hydrogen source using solar energy

 TiO_2 'e⁻-donor' + Fe_2S_2 active site mimic

biomimetic hydrogen production on the surface of a metal-oxide nanoparticle.

D. Tiede, X. Zuo, A. Goshe

Time-scale for processes in solar energy conversion

Structural Landscapes Underlying Function: Towards sub-picosecond time-resolved scattering.

Can we measure structural dynamics of individual nanoparticles?

 Understanding the relationship between mesoscale phases (spin, charge, lattice) and physical properties is a grand challenge in condensed matter physics.

 X-ray photon correlation spectroscopy gives us a good way to measure their dynamics at relevant time- and length- scales.

- ERL could enable 3D dynamic imaging of charge and spin dynamics (if we had the detectors).
- Many condensed matter systems of interest.

Center for Nanoscale Materials

http://nano.anl.gov

Quantum Critical Behavior in Cr_{1-x}V_x

