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• Introduction: length and time scales.
• Nearly impossible XPCS studies of slow domain wall dynamics.
• Almost impossible experiments for an ERL?
• Ultra-fast structural dynamics in nanoparticles/macromolecules.
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Major Challenges in Condensed
Matter Science

 Competing ground states on the nanoscale.
– The relationship between mesoscale phases (spin,

charge, lattice) and physical properties is a grand
challenge in condensed matter physics.

– The role of quantum and thermal spin/charge
dynamics.

 How can we study mesoscale phases in bulk?
– x-ray microprobe (slow).
– x-ray photon correlation spectroscopy (faster).

X-ray: spin domains in
bulk Cr (Isaacs, et al) 

STM: checkerboard
pattern in high-TC
superconductor.
(Davis, et al).

AFM: exchange bias vortices in
spin domains in Py (Sort, et, al)
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Why Study Chromium?
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chromium and its common alloys
are ‘simple’ bcc metals, exhibiting
complex behaviors including;

• Only elemental material w/SDW.

• Spin-density wave ground state at
311 K due to Fermi-surface nesting.
•  Spin-flip transition at 123 K.

• Quantum critical behavior:
drive TN to zero by doping with V
(effectively increasing the size of the
hole pocket) or by applying pressure.

Photoemission shows Fermi surface
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E. Rottenberg et al., 
New Journal of Physics 7 (2005) 114 
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Spin Density Wave (SDW) accompanied by
Charge (Lattice Strain) Waves (CDW)

Reciprocal space
configuration of magnetic
and charge reflection of
SDW/CDW chromium

Spin Density
Wave
    satellites

 Charge/Strain Density 
 Wave satellites (10-4 of Bragg)
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 Typical Map of Domains in Chromium

Form images of domains using both SDW and CDW 
Bragg satellite peaks.

10 µmX-ray microprobe image
of SDW domains in Cr.

Evans et al, Science, 295, 1042
(2002).
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Domain Wall Fluctuations at the
Nanoscale

Domain Wall
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1/f Noise in Thin Cr Films

Michel et al., PRB 44, 7413 (1991)

Is this domain switching?
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Nanoscale probes of dynamics

Probes of Domains

• Three x-ray imaging modes: scanning probe, full-field, ‘lens-less’ 
• Scanning probe: high spatial resolution, but slow  (100nm or better)
• Full-field won’t work with diffraction, e.g, for magnetic contrast.

• Need probe with both time and spatial resolution - coherent scattering
• (< 1 sec, < 1 nm spatial resolution, over macroscopic region of space)

Microprobe image of
ppin domains in
chromium (~ 3 hrs) 

Coherent x-ray 
speckle dynamics
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What can we do with x-ray coherence?

 Invert the speckle pattern to get high-
resolution image of electron density.
–  40 nm is best hard x-ray resolution today.
–  1 nm physically possible!

 Study time variations of speckle pattern to
get information about dynamics of system.
– phase transitions
– complex fluids and glasses
– defects/disorder dynamics
– Interfaces and surfaces
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Coherent X-ray Speckle
X-ray Photo Correlation Spectroscopy (XPCS)

Experimental Setup:

• CCD: 22 µm pixels
• speckle size: λ/dcoh * 2 m ~ 40 µm



ERL Workshop III
Cornell University, June 16-17, 2006

X-ray Coherence

Young’s double slit experiment.

Intensity varies as

Temporal and spatial coherence at the APS.
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Static x-ray speckle
pattern

Coherent X-ray Diffraction ‘Speckle’ Pattern
From Bulk Chromium

Static Bragg speckle
(line scan from 2D image)
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 Typical Map of Q-domains in Chromium
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Autocorrelation function, g2(t):
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Oleg Shpyrko, APS March
Meeting 3/16/06
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 Dynamics with autocorrelation function g2(t)
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(x 10-3 Å-1)

CDW is Dynamic at T=4 K !

(002) 
speckle
is static

(0,0,2-2δ)
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CDW speckle, the movie (17K)
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Thermal fluctuations
(frozen out at low T)

Quantum
tunneling

Temperature dependence of fluctuations
Barrier  ΔE~ 250K
Relaxation frequency τR

-1 ~ 0.1 Hz

Classical Boltzmann factor

Quantum Tunneling model:

! 

"#1(T) = "QM
#1 + "R

#1
e
#$E / kBT( )
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Domain Wall Motion:
Thermal activation model (high T)

Thermal activation path
(requires kT>~ΔE)

Quantum Tunneling
(zero point motion)

Thermal 
activation
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Domain Wall Motion:
Quantum Tunneling model (low T)

“Frozen out” at low T
(kT<<ΔE)

Quantum Tunneling
(zero point motion)

Quantum tunneling
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Imaging Domain Wall
Fluctuations at the Nanoscale

Is domain wall motion coherent?
Domain Wall
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Imaging Domain Wall
Fluctuations at the Nanoscale

Is domain wall motion coherent?

Smaller pinhole reveals switching between two states.

Transport in film.
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Combine coherent imaging and
dynamics at an ERL
• 3D movie of domain walls: nm

resolution at µs.
1) x 102 - 103 coherent flux (ERL).
2) smart detectors.

• Coherent x-ray diffraction
imaging: ~102 seconds per frame
to get ~ 1 count per pixel.

170 nm Ag cubes: I.K. Robinson, et. al.
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Center for Nanoscale Material’s 
Hard X-ray Nanoprobe at the APS

10 µm

Zoom-in on domain wall using
diffractive optics at 3rd-gen sources.

30 nm focus
using zone-
plates.

G.B. Stephenson, J. Maser



ERL Workshop III
Cornell University, June 16-17, 2006

ERL Experiments: Melting of Charge &
Spin Ordered States

 For example: dynamics of ‘striped’ phase
melting in complex oxide compounds.

 Dynamics of striped domains may play a
critical role in high-TC superconductivity.

 Weak scattering at CDW superlattice
peaks.

 Can we measure the SDW w/ERL?

Hole ordering peak in
Sr14Cu24O41. (resonant)
Abbamonte, et al, Nature (2004)

Charge melting in
La1.2Sr1.8Mn2O7,
L. Vasiliu-Doloc, et al.,
PRL (1999).
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Many of nature’s energy conversion processes
occur on the nanoscale at fast time-scales

protein as catalyst:
Fe-hydrogenase

biomimetic hydrogen production on the
 surface of a metal-oxide nanoparticle.  

TiO2 ‘e--donor’ + Fe2S2 active site mimic

Nature’s hydrogen source synthetic hydrogen source
using solar energy

D. Tiede, X. Zuo, A. Goshe

Desulfovibrio desulfuricans
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Time-scale for processes in solar energy conversion
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Vibrational relaxation

Solvent relaxation

Energy transfer in photosynthesis

Electron transfer in photosynthesis

Molecular rotation

Supramolecular
torsional dynamics

Water-splitting in
photosynthesis

Photo-
ionization/dissociation

Time (sec)

Electronic dephasing

Current APS time
resolution

APS Upgrade

Proposed
ERL
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PulsePulse Excited StateExcited State

Time

Laser/X-ray pump/probe
Intrinsic time resolution:
APS: ~100 ps fwhm (2005)
APS: ~ 1 ps (2012)
ERL: ~ 50 fs

Structural Landscapes Underlying Function:
Towards sub-picosecond time-resolved scattering.

StorageStorage
RingRing

+ -

Photosynthetic
proteins
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Can we measure structural dynamics of
individual nanoparticles?

Model M-L CT complex

D. Tiede, et al, structure
L. Chen, et al, spectroscopy

Cu(I) (dmp)

Cu(II) (dmp)
stable analogue of
excited state

Continuous

100 ps pulsed

Cu(I) (dmp)

2 second
acquisitions 12-ID

16 hour
single pulse
acquisition @
11-ID

Solution Scattering - 
1st single bunch SAXS !!!

copper dimethyl-phenanthroline (dmp)
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Chen, et al,J. Am. Chem. Soc. (2002)
 124,10861;(2003) 125,7022. 



http://nano.anl.gov

 Understanding the relationship between mesoscale
phases (spin, charge, lattice) and physical properties is a
grand challenge in condensed matter physics.
 X-ray photon correlation spectroscopy gives us a good
way to measure their dynamics at relevant time- and
length- scales.

 ERL could enable 3D dynamic imaging of charge
and spin dynamics (if we had the detectors).
 Many condensed matter systems of interest.
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Quantum Critical Behavior in Cr1-xVx

Jump in carrier concentration

TN → 0, xc=3.5%
Generic phase diagram

, doping, …


