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Advances in X-ray Imagi

ng

medical

Sir Wilhelm Rdntgen
15t Physics Nobel (1901)

« Phase-contrast imaging: weak-absorbing features,
less dose, far more clarity than traditional radiograph

< X-ray microscopy: could have high impact on cell biology,
similar to x-ray crystallography <* molecular biology

< Coherent diffraction imaging: new frontier on noncrystalline
structures, structural molecular biology w/o need for crystal

* Old & new: emerging x-ray technologies in source & optics,
advances in all 3 areas: fundamental, functional, anatomical
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X-ray Microscopy & Imaging Basics
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General User Beam Time Usage at 2-1D

X-ray Imaqging Applications

Oversubscribed by ~3x at 2-ID - Studies of real-world functional

10000 , :
@ 2-ID requested materials
W 2-ID scheduled - Inhomogeneous or
2000 heterogeneous

- No identical copies of specimen
=> need sampling statistics

Allocated GU Beam Time (hrs)

2004-3 2005-1 2005-2

FY 2005 Run Cycles 80% of total

available
beam time
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u-XRF Studies of Trace Metals in Biological Cells

Zone plate Sample, Transmission
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* large penetration depth (> 100 um)
* chemical state mapping & u-XANES
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25 nm
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typical size of a protein: a few nanometer
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TiO,-DNA Nanocomposites as Intracellular Probes

_ _ _ Paunesku, Vogt, et al., Nature Materials 2, 343-346 (2003)
* Cell is transfected with TiO,-DNA

nanocomposites (4.3 nm @) B Map Ti distribution using X-ray fluorescence, to
quantify success rate of TiO,-DNA transfection, and

* DNA is used to target nanocomposite to visualize target

specific chromosomal region B A: nanocomposites targeted to nucleolus

_ B B: nanocomposites targeted to mitochondria
* TiO, allows photocleavage of targeted

DNA strand upon illumination => potential Units: pglcm?
to be used to for gene therapy A: P:13-0 Ti: 0.25 — 0.00 Zn: 0.039 — 0.001

cytoplasm
/

nucleus

target DNA Nan/ocomposite

‘/1/’\/\/\]-\:\

@ illumination

Zn: 0.007 — 0.000

Ti: 0.22 — 0.00




Defect Engineering for Less-Costly Solar Cells
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New & Proposed Nanoprobes at APS

Sample
. . i P M- rea detector:
Nanoprobe: joint effort CNM and APS SN g toes °dj . ki
microdiffraction

S A ) )

L Energy dispersive detector:
Rotation for X-ray fluorescence
microdiffraction

Crystal monochromator

Double mirror system \\\

Hard X-ray zone

\\ y | . - plate (focusing)
< 3 eam definin
/<_;f( Frouliing ik I8 Jorg Maser (APS)

30 nm: Fresnel zone plate

Collaboration with Xradia

Two collinear
undulators

Bio-nanoprobe: new ID, 30 nm _
Woloschak (Northwestern)  Horizontal view BioNanoprobe ———
Vogt (APS) ] Beam Defining Aperture
High throughput: ~ BM, medium resolution o lflfﬁf,}f
Vogt (APS) biological tissue arrays | ) ff'_
XRF from whole cells Tﬁ- —

Slits
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Advanced Focusing Optics: Pathway for 5 nm
Focusing of Hard X-rays

= Multilayer Laue Lens 6000 [ _

o0l 19.5 keV

19.5 nm

Intensity (cts/sec)
w
o
3

iET s TSR e L H.C. Kang, J. Maser, G.B. Stephenson,

C. Liu, R. Conley, A.T. Macrander, S. Vogt
Phys. Rev. Lett. 96, 127401 (2006)
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Towards nm Focusing of Hard X-rays ‘

Kang et al, PRL 96, 127401 (2006)
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ERL: Imaging Functional Units in Materials - ‘
Science & B|0|Ogy at nm-scale Metal impurities in

solar cells

* ERL would allow the most efficient usage of nm-focusing x-ray
optics such as MLL, and advance state-of-the-art scanning x-ray
microscopy to < 5 nm spatial resolution, with working distance

* Nanometer beam and improved detectors will provide
unprecedented elemental sensitivity to sub-zepto (<10-21) grams
for trace metals (e.g. Zn, Fe, Mn) in biological cells, with
potential to locate single metal atoms at <5-nm resolution

* Enable molecular imaging of metal-containing proteins,
functional contrast agents, and
novel therapeutic drugs at
organelle level, and develop
new approaches to diagnose
and treat diseases

B Study of 3D grain
8 structure, orientation & 0 25 gg 00
8 & stress/strain in um)
B metal alloys

Elemental distribution in
cisplatin-treated cancer cell

* For materials science, it will offer
a non-destructive penetrating probe
for impurity/defects, grain
boundaries, and nano-domain
engineering of functional electronic
and engineered materials such as
solar cells and metal alloys
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Phase Contrast vs. Absorption Contrast Imaging
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Mori et al. (2002): broken rib
with surrounding soft tissue
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Imaging Biomechanics and Animal Physiology

Animal functions
Biomechanics

Internal movements

New findings not known before

Tracheal Respiration in Insects
Visualized with Synchrotron
X-ray Imaging

Mark W. Westneat,*! Oliver Betz,? Richard W. Blob,?
Kamel Fezzaa,* W. James Cooper,’* Wah-Keat Lee*
Field museum of Chicago & APS, Argonne National Lab.

wood
beetle

bug_s1

Comparative Biology:
understanding of evolutionary
transitions underlying diversity of life

Science (2003) 299, 598-599.
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Imaging Biomechanics and Animal Physiology

1370 Butterfly drinking. row N .

Butterfly drinking an
lodine-laced honey
solution.

Field of view is
about 2mm x 3mm

Socha, Lee, et al. (2006)

. [ 1
l unpublished R, |
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Phase-Contrast Imaging with ERL

e Small round source size of ERL would

greatly enhance observable phase contrasts
for weak density differences

—
—

34 um C-fiber

«—
B

o e S |

Contrast

i

* Borland, Lee & Fezzaa

T

| ——

AN

Gy = 250um |

o, = 90um

€ Stress cracks in Aluminum
t=3mm, 30 keV,D =1m
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Ultrafast Imaging of Fuel Spray in Gasoline Engines ‘

075 0.80 085 090 095 100 105
X-ray transmission

Science, 295, 1261 (2002).

v Supersonic liquid jet can generate
shock waves

v X-radiographs yield characteristics
of the shock waves

v The shock waves can be
guantitatively simulated

Transmission
start £ )
£
E
® 0.90
& [&]
quasi c
steady - 0.80
©
'o_
[+
ending - 0.70
— — ' 0 510 15 20 25

X-ray flash imaging at 300ns !!
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Particle Imaging Velocimetry (PIV)

Visible light image

Micron-sized polystyrene
spheres moving around big
400um spheres (obstacles)
in glycerin

Fezzaa, Im & Cheong
(2006)
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In-situ X-ray Imaging of Electrodeposition

Tsai et al, “Building on bubbles in metal electrodeposition”, Nature 417, 139 (2002)
In the electrodeposition of metals, a widely used industrial technique, bubbles of gas
generated near the cathode can adversely affect the quality of the metal coating. Phase-

contrast imaging is used to witness directly and in real time the accumulation of zinc on
hydrogen bubbles.
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Ultrafast Imaging with ERL

e ERL would allow ultrafast imaging at unprecedented
temporal resolution with few-ps single pulse capability and
sub-gm microscopic details, limited only by fundamental
sound velocity ~ 1 km/sec or 1 nm/ps

e ERL would allow direct real-time imaging of low-contrast
materials processing and depositions, such as formations of
carbon particulates in engines, polymer aggregates and
polymer thin-film coatings
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Phase-contrast Imaging in X-ray Topography

Intensity

F+:|F+|exp(i¢+) Chu & Zhong (APS)

* Fresnel wave propagation - enhanced phase-contrasts
* Physical domain size can be deduced by analysis

F=|F lexp(i¢.)
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1000
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Phase-Contrast X-ray Diffraction Microscopy

*P. Fenter, C. Park, Z. Zhang, and S. Wang, in review (2006)

e Intensity contrast at CTR:
AN
surface / CCD camera ' — Fat

topography / _/ /'\ x . Double step
>107¢ -
>
3]
(0]
e
Q
14

OSA 0 05 1 15 2

Momentum Transfer, L (rlu)

Phase contrast mechanism: . .
X-ray Reflection Interface Microscopy

; Characteristics:

— Strong contrast at defects (~100%), but
weak reflected beam intensity (R < 10)

I 0 | — Sub-nm vertical sensitivity, but modest

lateral resolution (~100 nm, set by FZP),
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Observation of Surface Step Distributions with XRIM ‘

P. Fenter, C. Park, Z. Zhang, and S. Wang, in review (2006)
Step distributions on KAISi;O4 (001)

03¢t
0.25¢
% 0.2}
5
o 0.15
0.1
0.05¢ ’,/"
0
0 0.8
£
3.
12-1D-D, December, 2005 L = Elementary 11—~
um step structure: 7 0.64 nm
Imaging Conditions: | EEgTe
0=1.4° ,
E =10 keV ©o1) @ :
L =0.25 rlu (Q = 0.24 A1) . ow T2
Sample held in air o
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New Opportunities with XRIM

P. Fenter (ANL)

A new capability combining:
- exquisite structural sensitivity derived from interfacial X-ray scattering
- high spatial resolution derived from X-ray microscopy

A non-invasive structural tool (no probe tip):
- reactions in aggressive chemical conditions (extreme pH, corrosive gases)
- elevated temperature
- buried interfaces

In-situ, real-time observations of interfacial reactions:

- geochemical reactions at solid-liquid interfaces
dissolution
heterogeneous growth
nucleation site distribution (terrace vs. step)
phase determination (e.g., calcite vs. aragonite for CaCQO,)
nano-particle hetero-epitaxy

- materials growth (MOCVD, MBE, oxides)
- corrosion and oxidation

- ferroelectric domain switching

- magnetic domain structures
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Different Regimes of X-ray Imaging

near-field Ffar-flhel?
oa Fresnel raunhoter
— o = = P
X-ray beam _l_ _____————"'"'___
> == >
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L — B
T T T
z~a’A
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absorption phase in-line coherent
radiograph contrast holography diffraction

7

Kagoshima et al. Jacobsen (2003). Miao et al.
JIAP (1999). Nature (1999).
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Coherent Diffraction Imaging ‘

lens- pinhole monochromator APS

=P M == I
I 8.2 keV e
sar|np|e: Pb Horizontal slits
(~200um)

microparticle

Measured Calculated

Measured Calculated

de Jonge, Xiao & Shen (2006)
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Distorted Object Approach for Wave Propagation & Phasing ‘

object hear-field far-field Phase-chirped distorted object:
A ' X, 1) %
Tx,y) =utxyge A
(x, y) (
> 25 —
)
Fresnel - K (xrty)
zones _ — T\
| F(X,Y)= R ”u(x, y)e dxdy
Z > « Momentum transfer: (Q,, Qy) = (kX/z, kY/z2)
z >> &%/ d « Number of Fresnel zones: N, = a%(J1z)

= Unified wave propagation

method by Fourier transform l '

= Unified iterative phasing
algorithm development

Xiao & Shen, PRB 72,
033103 (2005)
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ERL: ldeal Source for Coherent Diffraction Imaging !

T 10-1
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3'd SR o
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CDI Applications: e
* 2D membrane protein crystals !

. * few-unit-cell crystals
o * laser-oriented macromolecules | T
coherent * bio-organic-inorganic hybrids
* structure & strain in nanoparticles

* biological cells 1"
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? 1 4p-8
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Miao — actin filaments, 2-1D-B AU ng[lICDIeCs: =t
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ﬁ Shen, Hao & Gruner,
- Q. Shen Physics Today (March 2006)



Summary

s X-ray Microscopy & Imaging is an exciting research field with many on-
going and potential applications, in both scanning probe and full field
imaging modes.

R/

s ERL X-ray Source will open up novel x-ray imaging opportunities,
especially in scanning x-ray micrsocopy, time-resolved phase imaging and
coherent diffraction imaging areas, because of its round diffraction-limited
source, its high degree of coherence, and its short-pulse capabilities.

/

% Novel materials research almost impossible to do today may be possible
with the ERL source, such as nano-domain engineering in solar-cell
materials, imaging electrochemical deposition at high temporal and spatial
resolution, imaging particulates and polymer aggregates formations, and
real-time imaging of surface and interfaces during chemical reactions, etc.
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Thank You !
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