Subcellular Imaging of Trace Metal Distribution and Chemistry by X-Ray Microfluorescence

B. Lai, S. Vogt, J. Maser, Z. Cai, D. Legnini

Outline:

1. X-ray fluorescence microprobe – instrumentation – unique capabilities

- **2. Biological applications**
 - exogenous elements
 - endogenous elements
- **3. Future prospects**
 - resolution, detection limit, challenge

Schematic of Scanning X-Ray Fluorescence Microprobe

Hard X-ray Microprobe Facility, APS sector 2

Main branch 2-ID-D: E = 5 - 30 keV, $\delta = 150 \text{ nm} \leftrightarrow 2 \cdot 10^9 \text{ phot/s}$, ~ 1,500 hrs Side branch 2-ID-E: E = 7 - 17 keV, $\delta = 250 \text{ nm} \leftrightarrow 5 \cdot 10^8 \text{ phot/s}$, ~ 2,500 hrs Integrated epi-fluorescence microscope

2-ID-D/E Hard X-ray Microprobe Facility

Performance of Fresnel Zone Plates

Parameters: $\Delta r = 100 \text{ nm}$ f = 12.9 cm @ 8keV N = 400 zones 160 μ m diameter 1.6 μ m thick Au

Spatial Resolution = 150 nm FWHM

Efficiency = 20%

Flux density

- = 2 x 10¹¹ photons/sec/ μ m²/0.01%BW
- = 2,000 photons/sec/Å²

Flux density gain $= 3 \times 10^4$

Challenge in Fabricating High Resolution Optics

- $\delta = 1.22 \Delta r_n$ Spatial resolution related to outermost zone width:
- Good diffraction efficiency requires large thickness: $t = 1.5 \mu m Au$, @ 8 keV
- Nanostructuring challenge: Large aspect ratio $t/\Delta r_n \sim 2000, \Delta r_n = 0.8 \text{ nm}$

\Rightarrow <u>Need to invest in developing high resolution optics</u>

Why use x-rays to excite fluorescence for studying trace metals?

- Higher fluorescence cross sections
- Better signal/background ratio
 - \Rightarrow sub-ppm (part-per-million) sensitivity

 \Rightarrow quantitative

- Less radiation damage
- Large penetration depth (> 100 μ m)
 - \Rightarrow simple sample preparation
 - \Rightarrow can study whole cells, no thinning
 - \Rightarrow can study hydrated "natural" samples
- Selectively excite one particular element
- Map chemical states by XANES

^{*} C.J. Sparks, Jr., in Synchrotron Radiation Research (Plenum Press) 1980.

Fluorescence spectra from tissue section (5-µm thick)

Detection Limit for Transition Elements for 1 sec. acquisition time, $0.2 \ge 0.2 \ \mu m^2$ spot, E=10 keV

X-ray fluorescence microscopy to study trace metals:

- Pro:
- ≈ 10 part-per-billion (ppb) are detectable for Z < 40,
 - \approx 1 part-per-million (ppm) for heavy elements
- No fluorescence dyes, markers, nor labeling
- Minimal sample preparation, allow hydrated/*in situ* studies.
- Direct parallel acquisition of > 10 elemental images
- 200 nm spatial resolution obtained routinely
- Chemical states, e.g. Cr (VI) vs Cr (III), Pt (IV) vs Pt (II), can be revealed
- Con:
- Long integration time (1-2 hours for a set of images)
 - Non-specific to binding partners (which protein?)

Trace elements/metals in biology & life sciences:

- essential cofactors in proteins
- linked to diseases
- in therapeutic drugs
- as intracellular labels

Why study trace metals in cells ?

- 1. Estimated 1/3 of all known proteins contain metal cofactors. These proteins often have regulatory or enzymatic functions:
 - Ca in calcium-binding proteins: second messenger pathways, e.g. Troponin C in muscle
 - Fe in Hemoglobin; and necessary in Chlorophyll synthesis
 - Cu binding chaperones (protein folding)
 - Zn in Zinc finger proteins: transcription factors in the cell nucleus
 - At the same time: most essential trace metals toxic at higher concentrations (e.g., Cu, Se)

Why study metals in diseases ?

- 2. Several diseases either linked to or suspected to be linked to metals directly or indirectly, e.g.
 - Alzheimers Disease [Al, Fe, Cu]
 - Lewy Body Diseases (including Parkinson disease)
 [Al, Fe, Cu, Hg, Cd]
 - Amyotrophic lateral sclerosis (ALS

or Lou Gehrig's disease) [Cu, Zn]

Science 9 May 2003 with Focus: "Metals: Impacts on Health and Environment"

Why study metals in medicine ? **3. Pt-based chemotheraputic drugs in the clinic**

Cisplatin: \$280 million

Carboplatin: \$993 million

Oxaliplatin: \$111 million

1999 First quarter results annualised

Cis-Pt coordinates to DNA, inhibits replication and transcription of DNA, and leads to apoptosis But: very few cisplatin molecules reach DNA targets

Why study trace metals in life sciences ? 4. Qdot/Nanocomposite as intracellular label/tool

TiO₂ dopamine-DNA sequence specific base-pairing conduit for electropositive holes leading to nucleic acid cleavage

photo/radio (E > 3.2 eV) inducible charge separation

attach TiO₂ nanoparticle (4.5 nm diameter) to DNA

 combine DNA biochemistry with semiconductor properties of TiO₂

• → carrier-particle that can bind to a specific chromosomal region w/ ability to cleave it upon illumination

Biological Applications of µ-XRF

High resolution and high elemental sensitivity of the x-ray microprobe provide a new tool for biological studies:

Exogenous:

- Microbial analyses/Environmental studies
- Metal toxicity/Carcinogenesis
- Chemotherapeutic drugs
- Nanobiotechnology

Endogenous:

- Metalloproteins, metallothionein
- Infectious parasites/Anti-parasitic drugs
- Cell differentiation
- Neurodegenerative diseases

Intracellular Distribution of Copper

- Copper is an essential trace element for all life forms
- Catalyze the production of highly reactive oxygen species

 \Rightarrow oxidative damage to lipids, proteins, DNA, etc

- Defects in regulatory processes may led to:
 - ✓ Menkes syndrome
 - ✓ Wilson's disease
 - ✓ Amyotropic lateral sclerosis (ALS)
 - ✓ Alzheimer's disease
- Cellular uptake, trafficking, storage need to be understand
- A novel Cu(I) fluorescent sensor (CTAP-1) was recently developed.

 \Rightarrow Does it reflect the true cellular distribution?

XRF: 1) Validate Cu sensor CTAP-1

2) Quantify cellular Cu

Mouse fibroblast cell + 150 µM CuCl₂

L. Yang, et al., Proc. Natl. Acad. Sci. 102, 11179 (2005)

μ-XANES indicated Cu(I), confirming the reducing cellular environment

L. Yang, et al., Proc. Natl. Acad. Sci. 102, 11179 (2005)

Cisplatin derivative to overcome tumor resistance

Pt(IV) complexes: Metabolic pathway

Pt(IV) complexes are more inert:

- less likelihood of deactivation
- potentially fewer side effects
- possibility of selective activation

Multidrug Resistance Mechanism of Malignant Melanomas

Pt + Cu + P

K.G. Chen et al., Proc. Natl. Acad. Sci. 103, 9903-7 (2006)

- Melanomas possess intrinsic resistance to radiation- and chemotherapy
- Melanoma cells MNT-1 were treated with cisplatin CDDP, a cytotoxic drug
 - μ-XRF reveals that cisplatin was sequestered in melanosomes, a pigmented subcellular organelle
- This suggests novel approaches to modulate chemosensitivity of melanoma cells

Single hydrated bacteria treated with Cr(VI)

K. Kemner et. al., Science 306, 686 (2004)

Quantitative elemental analysis

	[P]	[S]	[Cl]	[K]	[Ca]	[Cr]	[Mn]	[Fe]	[Co]	[Ni]	[Cu]	[Zn]
Planktonic (5)	16,048	6,625	8,421	3,604	3,815	9	22	156	190	120	201	1,175
	(2,446)	(1,117)	(2,628)	(1,173)	(392)	(2)	(4)	(23)	(37)	(33)	(46)	(176)
Plankt on ic,												
Cr(VI) added	6,156	3,719	3,908	2,201	673	949	22	58	13	26	105	94
at 1000 ppm	(1,034)	(1,516)	(1, 814)	(1668)	(230)	(323)	(4)	(29)	(12)	(18)	(76)	(30)
(6)												
Planktonic,	8671	3201	00/	10	10	34	3	105	7	2	ND*	11
Cr(VI) added	(4007)	(1002)	(421)	(0)	(36)	(15)	(1)	(68)	ó	(1)		(5)
at 25 ppm (12)	(4097)	(1092)	(421)	(9)	(30)	(15)	(1)	(00)	(2)	(1)		(5)
Surface-	661,032	ND	ND	ND	570,855	32	40	360	14	26	0	25
adhered(8)	(139,416)	110	HD.	1412	(92,831)	(10)	(7)	(216)	(7)	(10)	(14)	(13)
Surface-												
adhered,	410.034			,	477 087	24	23	326	12	18	2	15
Cr(VI) added	(362 728)	ND	ND	ND	(147,983)	(15)	(8)	(177)	(7)	(0)	(5)	- m
at 1000 ppm	(302,720)				10001	(15)	(0)	(177)	(7)	(9)	(5)	(7)
(10)												
LB growth	17.8168	3.028		228.91	7.5915	0.0194	0.0181	0.4034	0.0138	0.0036	0.0253	5,4162
mediim	(0.1619)	0.006	NA	(3.37)	(0.0986)	(0.0002)	(0.0002)	(0.0049)	(0.0001)	(0.0001)	(0.0004)	(0.0064)
solution (3)	(0.1015)	(0.000)		(5.57)	(0.0900)	(0.0002)	(0.002)	(0.0012)	(0.001)	(0.0001)	(0.0004)	(0.000+)

*[Cu] could not be determined accurately due to elevated [Cu] in the grid for this particular sample.

=> Assume CaPO₄ moiety, extracellular deposit ~ 0.4 µm thick

<u>Hydrated</u> *Pseudomonas fluorescens* treated with Cr(VI)

K. Kemner, ANL-ER

5 µm

Future Prospects

Increased spatial Resolution

Typical sizes of cell organelles:

- nucleus: 2-5 μm
- mitochondrion: 0.5x2 µm (cellular respiration), w/ substructure !
- ribosome: 25 nm (protein synthesis from mRNA)
- chromatin fiber: 20 nm diam.
 (DNA double helix on histones)
- microtubuli: 20 nm diam. (cytoskeleton)
- membrane thickness: 8 nm
- 1 nm can resolve individual macromolecules

Detection Sensitivity

Current detection limit for Zn: 3x10⁻¹⁸gm or 28,000 atoms (1 sec)
ERL:

Coherent flux = 5×10^{14} ph/s/0.1%

Focused flux = 1×10^{13} ph/s/0.01%

Focused flux density = $1 \times 10^{19} \text{ ph/s/}\mu\text{m}^2/0.01\%$

(10⁸ times higher than 2-ID-D)

Can detect one Zn atom in 100-nm thick sample within 1 msec, but dose ~ 10^{13} Gy! High variability in most organisms, therefore need good statistics

- Current image acquisition time per cell ~ hours
- Signal increase ~ 10,000x: ERL ~ 1,000x

detector ~ 10x

→ 100x faster (same SNR)

current resolution → 1,000 cells/day, using fly scan

Sample Preservation !

- study cells / tissues as close to their native, hydrated state as possible:
 - avoid artifacts introduced by chemical fixation / drying
- reduce radiation damage, in particular to oxidation state

elemental mapping of rapid frozen samples at cryogenic temperatures (LN2)

D. Melanogaster cell, chemically fixed, extracted, at room temp.

cryoTXM

Drosophila melanogaster cell, in vitrified ice, imaged @ 0.5 keV with the Goettingen TXM @ BESSY I. S. Vogt, et al
Cy: cytoplasm V: vesicle

M: nuclear membrane **N**: nucleus

Single element detector captures only <u>5%</u> of 4π !!

GammaSphere consists of 110 solid state detectors

Possible solution: Silicon Drift Detectors

- 1. compact (stacking in a smaller volume)
- 2. higher count rate (> 10^5 cps)
- 3. low maintenance (no LN2)

Instrumentation requirements

- Increase spatial resolution
 - Better zone plates
 - Stability of beam & microprobe
 - Environment control
- Specimen preparation
 - Cryogenic sample handling
 - Ultrastructure preservation
 - Reduce drying/radiation artifacts
 - Ability to incubate and handle live cells
- Detector
 - Large angular acceptance

Conclusions

- 1. X-ray fluorescence microscopy offers:
 - Quantification to < ppm level
 - Spatial resolution ~ 150 nm
 - Large penetration depth => simple sample preparation
 - Reveal chemical state, Cr(VI) vs Cr(III), Pt(IV) vs Pt(II)

2. Track in-situ cellular distribution of metal complexes:

- trace metal nutrients
- nanoparticles
- environmental contaminants, carcinogens, therapeutic agents
- metalloproteins

3. ERL:

- Resolution for individual macromolecules
- Sensitivity to detect single metal atom
- 1000 cells/day at reduced resolution

4. Challenges:

- High resolution focusing optics
- Stable beam & microprobe
- Detector acceptance $\sim 2\pi$
- Sample preservation & damage control

Acknowledgement

Microprobe

Z. Cai, J. Maser, S. Vogt, D. Legnini, W. Yun, P. Ilinski, A. Stampfl

Zone Plate Optics

W. Yun (Xradia)

Biological Applications

K. Kemner, S. Kelly (bacteria)M. Hall, T. Hambley, D. Philips, T. Talarico (cisplatin and Pt(IV))K.G. Chen, R. Leapman, M.M. Gottesman (melanomas)C. Fahrni, R. McRae (Cu pool)