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X-ray Flux, Brilliance and Coherence
of the Proposed Cornell Energy-recovery Synchrotron Source

Qun Shen
Cornell High Energy Synchrotron Source (CHESS)

Wilson Laboratory, Cornell University, Ithaca, NY 14853

This document is a summary of the calculated properties of the proposed energy-recovery linac (ERL)
source at Cornell.  It is based on the exchanges during the ERL Science Workshop in December 2000 and
on subsequent discussions with Don Bilderback, Ivan Bazarov, and Ken Finkelstein at CHESS.  All
calculations are performed using analytical formulae from the literature, mostly from Kwang-Je Kim’s
chapter in X-ray Data Booklet and from his article in AIP Conference Proceedings 189, 565-632 (1989).  It
is not intended to derive all the equations in this paper but rather to show how a desired quantity is
calculated and how certain concepts and properties are inter-related.  The main discussion is geared towards
photon coherence and degeneracy, and how these compare with other sources.

Note: This is memo 01-001 on February 2, 2001, revised by the addition of Figure7.

Introduction

All modern synchrotron radiation sources, including the proposed ERL and FEL sources, are based on x-ray
undulators.  An undulator x-ray source can be characterized by the following three categories of parameters:

(1) Single-electron based (or integrated) properties: total flux Fn is the fundamental quantity in this category.  It
describes the total number of photons per second of the nth harmonic in a given energy bandwidth (usually in
unit of 0.1%).  Another quantity is brightness Br, defined as the flux per unit area (intensity) or flux per solid
angle.  It basically describes how flux Fn is distributed in space.  Both Fn and brightness Br are only functions
of machine energy EG, undulator period λu and length L, deflection parameter K which is determined by peak
magnetic field, and electron beam current I.

(2) Emittance based properties: brilliance B is the fundamental quantity in this category.  It is defined as the
photon flux per unit transverse phase-space area, which is called the source emittance.  The best physical
meaning or physically measurable quantity related to the brilliance is the transversely coherent photon flux Fc.
In order to calculate these quantities, one needs to know the electron beam size and divergence in both x and y
directions.  Brightness Br may also include the effect from the electron beam divergences.

(3) Single-pulse based properties: the basic quantity in this category is the peak brilliance B̂ , which is defined as
the photon flux per unit transverse and longitudinal phase-space volume.  It describes the brilliance for a single
pulse, and for this reason brilliance B is often called the average brilliance.  A closely related physical quantity
is the number of photons in the three-dimensional coherent volume, which is called the degeneracy parameter
δD.  These quantities require the additional knowledge of electron bunch length (pulse length) τ and the
average duty frequency f (number of bunches per second) which can be calculated as the number of bunches in
a machine lattice divided by revolution time.

Another way of cataloging various parameters is to realize that the above categories respectively describe the
integral, the transverse, and the longitudinal properties of a pulsed x-ray source.  In fact, one can make use of the
pulsed nature of a source independently from the transverse properties.  Therefore for any time-averaged photon
parameter A, there can be a corresponding per-pulse parameter Ap given by A/f and a peak parameter Â  given by
Ap/τ or A/(τ f).  The table below summarizes the most commonly used quantities:

Average property A Per-pulse property A/f Peak property A/(τ f)

Basic parameter Average brilliance B − Peak brilliance B̂

Angle-integrated flux Average flux Fn Photons per pulse Fp Peak flux nF̂

Transverse coherence Average coherent flux Fc Coherent photons / pulse Peak coherent flux cF̂

Photon degeneracy Average degenerate flux Degenerate parameter δD Peak degenerate flux
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Furthermore, one can obtain the corresponding power or energy parameter by multiplying each flux or photon
quantity in the above table by the photon energy.  For example, multiplying photon energy to the row on
‘transverse coherence’ would yield average coherent power, coherent energy per pulse, and peak coherent power,
respectively.

Flux, Brightness, and Power

For an undulator of Nu =L/λu periods, the angle integrated flux Fn of its nth harmonic is given by [Kim, 1986]:

Fn [ph/s/0.1%] = 1.431x1014NuQnI[A], (1)

where I is electron beam current in Amperes, and Qn is a function of K, the deflection parameter, which is given by
the peak magnetic field B0 and period λuof the undulator:

]T[]cm[934.0 0BK uλ= . (2)

For the fundamental peak n = 1, Qn(K) ranges from 0 at K = 0 to ~0.5 at K = 1 and approaches unity for K > 4.
Deflection parameter K can be tuned by opening up the gap of an undulator thus changing its peak magnetic field
B0.  The tuning range, e.g. 0.2<K<2, provides a corresponding energy range for all undulator harmonics En = nE1

in its x-ray spectrum, with the fundamental E1 given by
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The bandwidth at the nth harmonic is given by
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The central cone of the nth harmonic has an angular rms width of

Lr 2'
λ

σ = , (5)

where L is the length of the undulator [Kim, 1989].  With 'rσ  the on-axis spectral brightness Br in units of

ph/s/0.1%/mr2 is given by
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With the electron beam divergences 'xσ  and 'yσ  taken into account, Br is given by
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Integrating photon flux spectrum over all energies, we obtain the total power P0 emitted by an undulator
source:
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Similarly, integrating on-axis brightness over energy yields the on-axis power density (power per solid angle):
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where G(K) ~ 1 for K > 0.8, and the electron source divergences have been ignored.

Transverse and Longitudinal Emittances

Source emittance usually refers to the transverse emittance of the electron beam in an accelerator or a storage
ring.  The emittance is defined in each transverse direction as the product of the rms source size times the rms
source divergence: 'xxx σσε =  and 'yyy σσε = .  While the emittance remains the same at any point in the

machine, source size and divergence do change at different locations and are determined by β-tron oscillations:

xxx βεσ = ,  xxx βεσ /' =   and  yyy βεσ = ,  yyy βεσ /' = .

By choosing a proper β for a given undulator location, one can trade source size with divergence and vice versa
within the constraint of a fixed machine emittance.

For a hard-x-ray undulator of a substantial length, it is possible that the angular central cone 'rσ  of the

radiation is so narrow that an ‘apparent’ source size rσ  has to be taken into account, due to the uncertainty

principle or the diffraction limit of )4(' πλσσ =rr :
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These so-called radiative terms are often added to the true electron beam emittance 'xxx σσε =  and 'yyy σσε =  to

form total emittance of the photon source:
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One should note that all emittances assume a Gaussian distribution in both source size and source divergence.
It is helpful to review some basics about a Gaussian curve.  In particular, the full width at half maximum (FWHM)
of a Gaussian is 2.35σ, and the area under the Gaussian curve is σπ2 .  From an experiment point of view, it is
often easier to think in terms of FWHM, which implies that the total area is 1*2.35σ = 2.35σ, giving rise to an
error of π2 /2.35 = 1.07.  One way to remove this error is to replace all FWHM with σπ2 instead of 2.35σ
whenever phase space areas are calculated, which is what we will do in the following sections.

Finally, in addition to the commonly mentioned transverse emittances, one can also speak of a longitudinal
emittance of a pulsed electron beam.  The longitudinal emittance is defined by the product of rms electron energy
spread with the rms electron bunch length, which is usually given in units of keV-mm for a multi-GeV machine.
Similarly, a longitudinal phase space area or longitudinal emittance εE of the photon beam is defined by the
product of the rms bandwidth σE/E = (∆E/E)/2.35 with the rms pulse length στ = τ /2.35:

τσσε ⋅= EE . (9)

It should be noted that the undulator bandwidth, Eq.(4), is affected by the energy spread of electrons.  One of the
machine requirements is to have the electron energy spread σγ /γ less than half the bandwidth ∆E/E of the undulator
fundamental [Kim, 1992].  This requirement, together with the longitudinal emittance of the electrons, determines
the lower limit of the rms electron and photon pulse length στ.  For example, a 1000-period undulator would
require σγ /γ ~ 0.05%, which is 2.65 MeV for a 5.3 GeV machine.  Thus for a longitudinal emittance of 32 keV-
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mm (a rough number suggested for the ERL), we obtain a minimum rms pulse length στ ~ 32/2650 = 12 µm or 40
fs, which is τ ∼ 94 fs FWHM.

Brilliance and Peak Brilliance

The average on-axis spectral brilliance B of the nth harmonic of an undulator source is defined as the average
photon flux per unit transverse phase-space volume:

        
yx

nF
B

εεπ 2)2(
= , (10)

which is usually given in units of ph/s/0.1%/mm2/mr2.  The word spectral refers to the fact that this is quantity for
a given energy bandwidth.

Peak brilliance B̂  is defined as the number of photons per pulse, Fp = Fn / f, per unit volume in the six-
dimensional phase space that includes both transverse and longitudinal directions:
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Plugging in Fp = Fn / f and using equations (9) and (10), it can be shown that the peak brilliance B̂  is related to the
average brilliance B as follows:
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Compared to the ‘intuitive’ or the more liberal definition in the table in Introduction, the extra factor of 2.352/2π is
simply due to the conversions of conventional FWHMs ∆E/E and τ to the Gaussian-normalized full widths as
discussed in the last section.  Peak brilliance B̂  is usually expressed in the same units as the average brilliance B.

Transverse and Longitudinal Coherence

The undulator radiation from a finite source emittance does not have complete transverse coherence, but a
portion of it within its central cone does.  This portion is usually called the transverse coherence length or
transverse coherence angle.  There are basically two ways to figure out the coherence length.  One is to use the
uncertainty principle in position and momentum, and the other is to figure out the phase errors based on wave front
propagation.  We will follow the latter and leave the former to a later discussion on the concept of photon
degeneracy.  Obviously these two descriptions are completely equivalent [Arthur, 2000].

For a Gaussian source of full size d = σπ2 , the optical-path difference between the waves emitted from the
two ends is given by

δθδ ⋅= dl , 

when viewed at an angle δθ from its axis.  When this difference reaches half of the x-ray wavelength, the two
waves will be out of phase from each other.  Thus we say that the two waves are transversely coherent within this
angle δθ:

    
d2

λ
δθ = . (13)
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This angular range actually corresponds to the FWHM of the coherence angle since on one hand we need to
consider both +δθ and −δθ but on the other hand we should let the phase error reach only half way to the complete
out-of-phase condition.  Transverse coherence length is simply equal to this coherent angle multiplied by the
distance from the source.

One of the useful properties that is intrinsic for an undulator source is the coherent fraction pc of its total
emitted flux or the total coherent flux Fc.  The coherent flux is calculated as the flux within the coherent solid
angle, δθx times δθy, and is given by the solid angle multiplied by the source brightness Eq.(6):

( )

yxyrxr

n

yrxr

yxn
yxrc

dd

FF
BF

⋅++

⋅
=

++

⋅
=⋅=

2
'

2
'

2
'

2
'

2

2
'

2
'

2
'

2
' 2

2/

2 σσσσπ

λ

σσσσπ

δθδθ
δθδθ .

Converting the Gaussian-normalized FWHMs to the total rms source sizes, and using the brilliance definition
Eq.(10), it is easy to see that the above equation is

    BFc
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In practice, Eq.(14) needs to take the units of B into account, and becomes
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Using Eq.(14) and Eq.(10), coherent fraction pc can be expressed as:
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which is completely determined by the total transverse emittance and the x-ray wavelength.  One should note that
the emittances in Eq.(16) include both the true electron beam emittances and the radiative contributions (5) and
(7), and therefore pc approaches unity only when electron emittances vanish in both x and y directions.  In addition,
the word ‘coherent’ here refers to transverse (spatial) coherence only and does not imply anything about the
longitudinal (temporal) coherence.

The longitudinal coherence length lc of an undulator radiation is determined by its bandwidth ∆λ/λ and is
given by

lc = λ2/∆λ.  (17)

In most cases, the bandwidth is further modified (narrowed) by x-ray optics.  However, if an undulator has
thousands of periods, then its intrinsic bandwidth Eq.(4) may be a determining factor of the longitudinal coherence
length.  It may be noted that radiation of a given wavelength λ emitted from higher harmonics, e.g. a 5th order
harmonic at a lower-energy machine, may have a better longitudinal coherence length than the fundamental
radiation at higher-energy machines, but of course its flux may be much less.

According to Born and Wolf (1980), one may also speak of ‘coherence time’ ∆tc, which is the time that a
photon takes to travel through its longitudinal coherence length lc and is given by lc divided by speed of light c:

λ
λ
∆⋅

=∆
c
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2

. (18)

A source can be considered fully coherent in the longitudinal direction if its pulse duration τ is comparable to or
less than the coherent time ∆tc.  For a typical x-ray wavelength 1 Å and bandwidth of 10−4, we have lc = 1 µm and
∆tc = 3.3 fs.  Thus a pulse FWHM of τ ≤ 3 fs after a silicon monochromator from an undulator source is
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longitudinally coherent.  So far no existing or proposed synchrotron sources can offer pulse lengths less than ~100
fs, and thus all sources, including the FELs [Kim, 1997], are only partially coherent in the longitudinal direction.
However, these ~100 fs sources, including the ERL, can have substantial temporal coherence if filtered through a
30-meV x-ray monochromator.  Here we avoid using the word ‘fully’ coherent because is requires a more precise
definition of coherence.

Photon Degeneracy

Based on the discussion at the end of last section, we see that a photon pulse with its pulse length defined by
Eq.(18) can be considered coherent in the longitudinal direction.  A question that may come to mind is the
following.  If a pulse is substantially longer than that specified by Eq.(18), then on average how many photons
within the pulse can be considered longitudinally coherent?  The answer is simple.  For a pulse of FWHM duration
τ, only the fraction ∆tc/τ is longitudinally coherent.

A similar question can be asked for the transverse coherence.  In fact we already went through the answer in
the section from Eq.(13) to Eq.(14), and obtained the number of photons per second Fc that are transversely
coherent.  The number of coherent photons per pulse is simply given by Fcp = Fc /f, where f is the number of pulses
per second.

Combining the answers to the above two questions, we can speak of the number of photons in a single pulse
that are both transversely and longitudinally coherent, which is called the photon degeneracy parameter δD

[Mandel, 1961]:
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Strictly speaking, the pulse width and the bandwidth in Eq.(19) should be the Gaussian normalized τσπ2 =

( )τπ 35.22 and ( ) λλπ ∆35.22 , so it becomes:
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or in practical units,
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Using Fcp = Fc /f, and Eqs.(14) and (12), it can be shown that Eq.(20) leads to the following relation between
the photon degeneracy parameter δD and the peak brilliance B̂ :
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This agrees with those found in the literature [Brinkmann, et al., 1997; LCLS, 1998], although the bandwidth
factor is usually only implied and often omitted.  In practice, again the units need to be straightened out and the
formula becomes:
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Eq.(23) tells us right away that for hard x-rays of λ ~ 1 Å , the peak brilliance needs to be much larger than 1024 in
order to have δD significantly greater than unity.  As indicated in Table 1, to date no existing synchrotron sources
provide degeneracy parameters close to or greater than unity, and thus these existing sources are not laser-like
sources.  This situation would be changed with the proposed ERL or FEL sources.  How to exploit this type of
degenerate sources for novel x-ray applications is a wide-open area that the ERL could contribute significantly.

Quantum Modes for Photons

Another way of deriving the photon coherence and degeneracy is to use the uncertainty principles in position-
momentum and energy-time space.  The idea here is that each photon is identified or labeled by (x, y, t) or by (kx,
ky, E).  Note that z is not an independent variable since an electromagnetic wave is a transverse wave.  Because of
the uncertainty principle, these labels on photons can only be determined simultaneously within certain intervals
that cannot be arbitrarily small.  The smallest intervals thus define a photon quantum mode, which can also be
interpreted as the fundamental volume element in photon phase space, as given by the following uncertainty
relationship:

σx σkx = 2/1 ,   σy σky = 2/1 ,   σt σE = h .

Since σk = (2π/λ)σθ, the above equations are equivalent to the following in the photon position-angle and time-
energy phase space:

σx σx’ = λ/4π,   σy σy’ = λ/4π,   σt σE = h .

Obviously the first two equations are related to the transverse coherence and the last one is related to the
longitudinal coherence discussed in the previous sections.  In fact, one can derive the above relations precisely
from Eqs.(13) and (18).  The first two relations also define a diffraction-limited source.  Considering the volume
under a two-dimensional Gaussain curve for each of the phase-space pairs, we obtain the fundamental volume units
for each single quantum mode of a photon:

2/2 ' λσπσ =xx ,   2/2 ' λσπσ =yy ,   hπσπσ 22 =Et . (24)

From this point of view, the degeneracy parameter δD is defined as the number of photons in a pulse within a
single quantum mode in phase space.  We now consider the transverse modes first.  For a source with an average
brilliance B, the number of photons (per second) in a single transverse mode (transversely coherent) is given by

BBF yyxxc
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which is the same as Eq.(14), as expected.
To take the longitudinal mode into account, we realize that a synchrotron source is pulsed, and it is the number

of photons in each single pulse, Fcp, that needs to satisfy the uncertainty principle.  For a photon pulse of FWHM
duration τ and energy FWHM ∆E, the number of quantum modes in the pulse is [2π(τ/2.35)(∆E/2.35)]/( Etσπσ2 )
= (τ∆E)/(5.52 h ).  In another word, the phase-space unit (FWHM) of a single longitudinal mode is 5.52 h , which
equals to 3.63 eV-fs, since seceV10582.6 16−×=h .  Thus the number of photons per quantum mode is

    
E

FcpD ∆⋅
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δ
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. (26)

or:
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As an example, for LCLS (1998), Fcp = 2x1012 photons per pulse, τ = 277 fs, ∆E = 8 eV at 8 keV for 0.1%
bandwidth, so the degeneracy parameter for LCLS is

9
12

103.3
8277

10263.3
×=

×
××

=Dδ ,

which is a very large number comparable to optical lasers.

Energy Flow and Electric Field

As already mentioned in Introduction, energy flow and power characteristics of a quasi-monochromatic x-ray
beam can be calculated directly by multiplying photon energy with the corresponding flux numbers.  For some
applications, it would be interesting to know the transversely coherent power Pc in a beam and its coherent power
density Sc.  For a beam with coherent flux Fc, coherent power in the beam is simply

cc FhP ⋅= ν .

To calculate the power density, one usually needs to know the distance to the source.  For simplicity, we assume a
perfect 1:1 focusing, by e.g. a zone plate, so that the area illuminated by the beam is equal to the source area:

2222235.2 ryrxA σσσσ ++= .

The coherent power density, which is the magnitude of the time-averaged Poynting vector Sc, is therefore given by

AFhS cc ⋅= ν . (28)

Since the Poynting vector is related to the electric field E0 [Jackson, 1975]:

2
08

E
c

Sc π
= ,

we obtain a time-averaged electric field E0, expressed in practical units:

]W/mm[10746.2]V/m[ 24
0 cSE ×= . (29)

Even though one could use Eq.(29) to convert any power density into some kind of electric-field strength, one has
to be careful about its physical meaning, because strictly speaking Eq.(29) is only valid for plane electromagnetic
waves of a single frequency which is a fully coherent wave.  A detailed discussion in this area is beyond the scope
of this document.

As Table 1 indicates, focused peak (coherent) electric fields for the ERL can be in the 107-108 V/m range,
making it comparable to those from visible laser sources.  Thus a possible new research area for the ERL would be
in the field of nonlinear x-ray interactions with condensed matter.  This could be a unique regime that the ERL (or
spontaneous radiation from any long linac) can serve very well because the peak fields from 3rd generation sources
are usually not strong enough to excite nonlinear interactions, and those from 4th generation FEL sources on the
other hand would be above the threshold of electron binding field in atoms which is on the order of 1010 V/m.
Further discussions will be given in a future technical memo.
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Results and Conclusions

Using the analytical formulae listed in the previous sections, we have calculated the various parameters that
characterize the proposed ERL source at Cornell, and compared them with those at the existing and some proposed
synchrotron sources.  These results are summarized in Table 1, and shown in Figures 1-5.  The comparison table is
based on the suggestions [Shenoy & Arthur, 2000] at the ERL Science Workshop held at Cornell in December
2000.  Two options are chosen for the ERL with slight modifications from the white paper [Gruner et al., 2000].
One is based on a machine current of 100 mA and a transverse emittance of 0.15 nm.  The other is based on an
ultra-high emittance of 0.015nm but a low current of 10 mA.  Both assume a FWHM bunch duration of 300 fs
[Kraft, 2000], and a machine energy of 5.3 GeV.  All calculations assume perfect machine and undulator
conditions, without any field errors, nor electron energy spreads.  For simplicity, only the first and the third
harmonic curves are shown in the Figures.

All flux and brilliance calculations are performed at 8 keV fundamental energy except for the proposed FEL
sources LCLS and TESLA.  Thus in some cases the value of brilliance may be somewhat lower than the value at
the peak fundamental energy of the undulator.  This is done for the purpose of proper coherence comparisons since
coherence is very sensitive to x-ray wavelength.  The FEL numbers are obtained from the LCLS (1998) and the
TESLA (Brinkmann, et al., 1997) design reports.  Power density numbers at 20m for SASE are for average
coherent power only and include the effects from source size and beam divergence, while all other numbers for
that row are calculated using the formula listed at the end of “Flux, Brightness and Power”.

All calculated results are for high-duty cycle operations only (APS: 6+21 singlets; ESRF: 2x1/3 filling of 992
RF buckets; SPring8: 2/3 filling of 2436 RF buckets).  A separate table for single-bunch oriented running and
performances are being assembled and may be added to this document at a later date.  These and additional
machine parameters are obtained from the respective web sites.  APS parameters are obtained from
http://www.aps.anl.gov/xfd/calendar/fp_2000-4.html on 1/8/01, and from e-mail communications with Dr. Dennis
Mills.  Upgraded parameters for APS are based on Arthur (2000).  ESRF parameters are obtained from
http://www.esrf.fr/machine/myweb/machine/brill.html on 12/18/00, and from communications with Dr. Pascal
Elleaume (2000).  SPring8 parameters are obtained from SPring8 Annual Report 1998, available at
http://www.spring8.jp/, and from Don Bilderback’s personal communication with Dr. Kitamura at SPring8.

The following reasoning is used to justify the bunch length for the ERL 10mA option, based on the proposed
transverse and longitudinal emittance for TESLA.  Assuming that similar emittances could be achieved with the
DC gun for the ERL, then scaling charge per bunch from 1 nC to 0.008 nC means a bunch volume reduction by a
factor 125 or a factor of 5 in each direction.  Thus εx = εy = 0.02 nm for TESLA becomes 0.004 nm for ERL.
However, TESLA is a 25 GeV machine, so ERL can only reach 0.004x25/5.3 = 0.019 nm.  What this means is that
to reach 0.015 nm transverse emittances, we have to reduce the longitudinal factor of 5 to 5x(0.015/0.019)2 = 3.1.
Assuming that the ERL can achieve the same longitudinal rms emittance of 27 keV-mm at 1 nC as that for
TESLA, and has an energy spread of 1x10-4 (rms) or σE = 5.3x105 eV at 5.3 GeV, then the bunch length for 1 nC is
FWHM = 2.35x27000/(5.3x105) = 120 µm, which is 400 fs.  Now going back to use the reduction factor of 3.1 due
to 0.008 nC/bunch yields a FWHM bunch length of 130 fs.  Because several assumptions are involved in the above
argument, we have adopted a more conservative 300 fs as the proposed value for the ERL.

A couple of rounds of optimizations are performed for the Cornell ERL, in an effort to obtain the best
conditions for highest brilliance and thus best coherent properties.

The first is on the choice of the β functions.  Because of the radiative terms, Eq.(5) and (7), in the total
emittance, horizontal and vertical β functions have noticeable effects on photon brilliance, especially when
electron emittance is approaching the diffraction limit.  For a given undulator length L and a fixed electron
emittance, the smallest total emittance in each direction, Eq.(8), is obtained when the electron source-size to
divergence ratio is equal to the radiative size to divergence ratio.  This then defines the best β for the highest
photon brilliance for a given L:

πσ
σ

σ

σ
β

2'','

,
,

L

r

r

yx

yx
yx ===   . (30)
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Based on this idea, the high-coherence option for the ERL is calculated using β = 4 m for a 25 m undulator.
Whether this is feasible in practice would of course depend on a lot of other things such as space for segmentation
due to focusing and defocusing requirements.

The second optimization is about the best electron emittance for peak photon brilliance, given a certain
dependence on beam current.  These results are summarized in Figure 6.  Two types of current dependence are
assumed, a linear dependence Iyx ∝,ε  in (a) and a 2/3 power dependence 3/2

, Iyx ∝ε  in (b).  According to Ivan

Bazarov, the latter may be closer to reality, although no one seems to know for sure.  If that is the case, then only a
low-β undulator would be able to take advantage of a lower emittance, as Fig.6(b) suggests. In another word it
may not be advantageous to go for ultra-low emittance with sacrifices in beam current.  In (c) we show brilliance
for different fundamental energies for an optimal-brilliance undulator with β given by Eq.(30).

The basic conclusion from this exercise is that the Cornell ERL can be an extremely brilliant source of x-rays.
With a long, short-period undulator at a low-β section, it can offer roughly one orders of magnitude more average
brilliance and coherent flux than the best from the existing 3rd generation storage rings, making them comparable
to that from prototype 4th generation sources.  The combination of its high brilliance with its short pulses in the
high-duty-cycle mode would mean two-to-three-orders-of-magnitude higher peak brilliance, peak coherent flux,
and peak photon degeneracy, making it an outstanding leader in these fields before the 4th generation sources come
along.  Even with the 4th generation prototype sources, the high-duty-cycle frequency from the ERL would make it
well balanced in all three categories of source characteristics: high flux, high coherence, and high peak properties.

This work is supported by the National Science Foundation through CHESS under award DMR 97-13424.
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Table 1:  Comparison of the Cornell ERL source with other existing and proposed synchrotron light sources.

Assuming high duty-cycle
operations

ERL
hi-flux

ERL
hi-coh.

APS
und. A

APS
upgrade

ESRF
U35

Spring8
5m

Spring8
25m

LCLS
spont.

LCLS
SASE

TESLA
spont.

TESLA
SASE

Energy EG (GeV) 5.3 5.3 7 7 6 8 8 15 15 25 25

Current I (mA) 100 10 100 300 200 100 100 72·10-6 72·10-6 0.063 0.063

Charge q (nC/bunch) 0.077 0.008 14 14 0.85 0.29 0.29 1 1 1 1

εx (nm-rad) 0.15 0.015 8 3.5 4 6 6 0.05 0.05 0.02 0.02

εy (nm-rad) 0.15 0.015 0.08 0.0035 0.01 0.003 0.003 0.05 0.05 0.02 0.02

Bunch fwhm τ (ps) 0.3 0.3 73 73 35 36 36 0.23 0.23 0.188 0.090

M
ac

hi
ne

 d
es

ig
n

# of bunches f (Hz) 1.3·109 1.3·109 7.3·106 22·106 2.3·108 3.4·108 3.4·108 120 120 56575 56575

Undulator L (m) 25 25 2.4 4.8 5 4.5 25 100 100 30 87

Period λu (cm) 1.7 1.7 3.3 3.3 3.5 2.4 3.2 3 3 3.81 5

# of period Nu 1470 1470 72 145 142 187 781 3300 3300 787 1740

Horizontal βx (m) 12.5 4.0 15.9 4.0 35 24 24 18 18 14.7 33.3

Vertical βy (m) 12.5 4.0 5.3 4.0 2.5 3.9 15 18 18 14.7 33.3

Und. K (@ E1) 1.38 1.38 1.24 1.24 0.67 2.08 1.66 3.9 3.9 2.28 4.14

In
se

rt
io

n 
de

vi
ce

1st harmonic E1 (keV) 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.26 8.26 10 12.4

H. div. fwhm (µrad) 9.1 6.2 54.3 70.2 26.8 38.4 37.4 4.9 1 6.7 1.76

V. div. fwhm (µrad) 9.1 6.2 16.2 9.7 10.4 10.0 4.3 4.9 1 6.7 1.76

H. source fwhm (µm) 103 24.5 839 277 879 892 890 82 78 60 60

V. source fwhm (µm) 103 24.5 48.6 11.4 13.9 10.6 22.8 82 78 60 60

Power P0 (kW) 33.9 3.4 1.2 7.2 1 15.7 31.2 0.0027 0.003 0.070 1.6

B
ea

m
lin

e 
&

 o
pt

ic
s

dP/dA @20m (W/mm2) 2600 260 180 1080 194 1830 4568 0.45 63 336 2·105

Ave. flux Fn (p/s/0.1%) 1.5·1016 1.5·1015 7.0·1014 4.2·1015 1.3·1015 2.4·1015 9.0·1015 3.3·1010 2.4·1014 6.4·1012 4·1017

Ave. brilliance B
(p/s/0.1%/mm2/mr2) 1.3·1022 5.2·1022 1.5·1019 1.5·1021 3.1·1020 5.0·1020 2.2·1021 1.6·1017 4.2·1022 3.6·1019 8·1025

Coh flux Fc (p/s/0.1%) 8.1·1013 3.1·1014 0.9·1011 9.0·1012 1.8·1012 3.0·1012 1.3·1013 9.0·108 2.4·1014 1.4·1011 4·1017

D
C

 e
xp

er
im

en
ts

Coh. fraction pc (%) 0.52 20 0.013 0.22 0.14 0.13 0.14 2.7 100 2.1 100

Photons / bunch 1.2·107 1.2·106 9.6·107 1.9·108 5.7·106 7.1·106 2.7·107 2.8·108 2·1012 1.1·108 7·1012

Peak brilliance
(p/s/0.1%/mm2/mr2) 3.0·1025 1.2·1026 2.5·1022 8.3·1023 3.3·1022 3.6·1022 1.6·1023 4.8·1027 1.2·1033 3.4·1027 7·1033

Peak flux (p/s/0.1%) 3.9·1019 3.9·1018 1.3·1018 2.6·1018 1.6·1017 1.9·1017 7.4·1017 1.2·1021 7.2·1024 6.0·1020 3·1025

Pk coh. flux (p/s/0.1%) 2.1·1017 7.9·1017 1.7·1014 5.6·1015 2.2·1014 2.5·1014 1.1·1015 2.7·1019 7.2·1024 1.4·1019 3·1025

Pu
ls

ed
 e

xp
ts

.

Peak degen. par. δD 95 368 0.078 2.6 0.103 0.113 0.49 1.3·104 3.3·109 4.7·103 8·109

Ave. coh. power (W) 0.10 0.40 1.2·10-4 0.011 0.0023 0.0038 0.017 1.2·10-6 0.32 2.2·10-4 794

Peak coh. power (W) 269 1011 0.22 7.2 0.28 0.32 1.4 3.8·104 9·109 2.2·104 60·109

A coh dP/dA (W/mm2) 12.0 848 0.0029 3.5 0.19 0.40 0.84 2.3·10-4 0.0077 0.078 2.8·105

P coh dP/dA (W/mm2) 3.2·104 2.2·106 5.4 2280 22.9 33.8 69.0 7.2·106 1.9·1012 7.8·106 2.1·1013

Ave. E-field (V/m) 1.0·105 8.0·105 1479 5.1·104 1.2·104 1.7·104 2.5·104 416 2410 7670 1.5·107

N
on

lin
ea

r e
xp

ts
.

Peak E-field (V/m) 4.9·106 4.1·107 6.4·104 1.3·106 1.3·105 1.6·105 2.3·105 7.4·107 3.8·1010 7.7·107 1.3·1011
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Figure 1:  Comparison of calculated average spectral brilliance of the various sources.  The parameters
used for undulator sources are listed in Table 1.  The CHESS wiggler sources assume 5.3 GeV 300 mA
operation and a FWHM source size of dx = 5.5 mm and dy = 0.9 mm for the 24-pole wiggler at F-line and
dx = 3.3 mm and dy = 0.85 mm for the 49-pole wiggler at A/G-line.
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Figure 2:  Comparison of calculated average photon flux of the various sources.  The parameters
used for all sources are listed in Table 1.
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Figure 3:  Comparison of calculated average coherent photon flux of the various sources.  The
parameters used for all sources are listed in Table 1.
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Figure 4:  Comparison of calculated coherent fractions of the various sources.  The parameters used
for all sources are listed in Table 1.
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Figure 5:  Comparison of calculated photon degeneracy parameter δD of the various sources.
The parameters used for all sources are listed in Table 1.
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Figure 6:  Calculated average spectral brilliance of the ERL as a function of electron beam emittance
ε=εx=εy (round beam) and for different β values.  Top panel (a): assuming emittance ε grows linearly
with beam current I.  Middle panel (b): assuming ε grows with I2/3.  Bottom panel (c): brilliance for
fundamental energy set to different values for optimal β.
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Figure 7:  Comparison of the calculated peak spectral brilliance of the Cornell ERL with some existing
synchrotron sources.  The parameters used for the undulator sources are listed in Table 1.  The CHESS
wiggler sources assume 5.3 GeV 300 mA operation and a FWHM source size of dx = 5.5 mm and dy =
0.9 mm for the 24-pole wiggler at F-line and dx = 3.3 mm and dy = 0.85 mm for the 49-pole wiggler at
A/G-line.  A bunch length FWHM of 153 ps and a lattice of 9x5 in 2.56 µs revolution time, which
represent the present operation mode, are used for the CHESS wigglers.
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