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Abstract

We present results of multiobjective optimization of the
International Linear Collider (ILC) which seeks to maxi-
mize luminosity at each given total cost of the linac (cap-
ital and operating costs of cryomodules, refrigeration and
RF). Evolutionary algorithms allow quick exploration of
optimal sets of parameters in a complicated system such as
ILC in the presence of realistic constraints as well as in-
vestigation of various what-if scenarios in potential perfor-
mance. Among the parameters we varied there were accel-
erating gradient and Q of the cavities (in a coupled manner
following a realistic Q vs. E curve), the number of parti-
cles per bunch, the bunch length, number of bunches in the
train, etc. We find an optimum which decreases (relative to
TESLA TDR baseline) the total linac cost by 22%, capital
cost by 25% at the same luminosity of 3 × 1038 m−2s−1.
For this optimum the gradient is 35 MV/m, the final spot
size is 3.6 nm, and the beam power is 15.9 MW. Changing
the luminosity by 1038 m−2s−1 results in 10% change in
the total linac cost and 4% in the capital cost. We have
also explored the optimal fronts of luminosity vs. cost for
several other scenarios using the same approach.

MULTIOBJECTIVE OPTIMIZATIONS

In any problem involving many decision variables, one
typically seeks to find an optimum choice of such variables
by minimizing/maximizing a certain merit function which
corresponds in a certain way to the overall performance of
the system. Various parameters that characterize the sys-
tem are combined to form such merit function (or objec-
tive function) and through the optimization of this single
objective one is typically able to find a single set of opti-
mal decision variables. In reality, it is often the case that a
single objective cannot adequately describe a complex sys-
tem, and, instead, it becomes convinient to employ more
than one objective. The optimization problem becomes a
multiobjective optimization problem, in which one seeks to
minimize/maximize several objectives simultaneously. A
classical example of such problem is cost vs. benefit opti-
mization in economics. One desires to know the maximum
benefit he can have for any given expense in a particular
economic setting. Once such a trade-off of cost vs. benefit,
also called optimal front, is known, a knowledgeable choice
can be made with regards to the right amount of money that
should be spent to obtain the wanted benefit.

Multiobjective optimization problem can be defined as
following:
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maximize fm(x), m = 1, . . . ,M ;
subject to gj(x) ≥ 0, j = 1, . . . , J ;

x
(L)
i ≤ xi ≤ x
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i , i = 1, . . . , n.






To compare between two possible solutions one can em-
ploy the concept of dominance: a solution x1 is said to
dominate another solution x2 if solution x1 is no worse
than x2 in all objectives fm (m = 1, . . . ,M ) and is better
at least in one objective. Then, the optimal Pareto front that
one seeks to obtain can be defined as being composed of all
solutions x that are both feasible (i.e. constraints gj(x) ≥ 0
are met for all j = 1, . . . , J) and are not dominated by any
other possible choice of x (which is also feasible).

We have used modified versions of evolutionary algo-
rithms SPEA-II [1] and NSGA2 [2] to obtain optimal fronts
in performance of the International Linear Collider. Evo-
lutionary algorithms mimic the natural selection process
in nature and the optimization proceeds by ‘improving’ a
fixed size set of trial solutions {x}, called population. The
fittest individuals in the population (e.g. non-dominated
ones) are primary candidates to produce ‘offspring’ trial
candidates. Upon evaluation of all objectives and con-
straints (i.e. fm and gj) these individuals are either for-
feited or carried over to the next generation cycle depend-
ing on whether they improve over their predecessors. For
more details on evolutionary algorithms, the reader is re-
ferred to [3].

ILC MODEL

The following two functions L and −Ctot were used as
objectives in our optimizations, corresponding to luminos-
ity and (negative) total cost of the linac:

L =
N2f

4πσxσy
HD

Ctot = Ccap + Cop

here HD is disruption enhancement parameter, N is num-
ber of particles per bunch, f is beam collision rate, σx,y is
horizontal or vertical beam size at the IP. Ccap and Cop are
capital and operational costs of the ILC linac respectively.

All optimizations were subject to at least the following
constraints (with certain additional constraints added to ex-
plore various possible scenarios as discussed later):

trf ≤ 2.2ms, 100 ≤ R ≤ 120
Dy ≤ 25, Υ ≤ 0.1

δ ≤ 0.05, nγ ≤ 2
σz ≤ β∗y , Pb ≤ 30MW
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here trf is the time that RF stays on, R = σx/σy is the as-
pect ratio, Dy is vertical disruption parameter, Υ is beam-
strahlung parameter, δ is fractional energy loss, nγ number
of γ-quanta created, β∗y and σz are vertical β-function and
the bunch length at the IP correspondingly, and Pb is the
beam power.

Refer to [4] for a complete description of all the formulas
in the model. In addition, it was assumed that the total
operational life-time of the accelerator will be 5 years and
the cost of electricity was assumed to be 10 ¢/kW-h. The
two objectives were functions of ten decision variables with
the corresponding lower and upper boundaries:

25 ≤ E (MV/m) ≤ 45, 1010 ≤ N ≤ 2× 1010,
0.15 ≤ σz (mm) ≤ 0.3, 168 ≤ tbs (ns) ≤ 674,
0.1 ≤ f0 (Hz) ≤ 10, 1000 ≤ n0 ≤ 3000,
5 ≤ εx (µm) ≤ 20, 30 ≤ εy (nm) ≤ 60,
0.75 ≤ β∗x (cm) ≤ 3.0, 0.2 ≤ β∗y (mm) ≤ 0.8.

Here E is accelerating gradient, tbs is bunch separation, f0

is repetition rate, n0 is number of bunches per pulse, εx,y

are normalized emittances and β∗x is horizontal β-function
at the IP. Q and E are related in a typical Q-curve fashion:
Q = [5− 10]× 109 for E = [25− 45] MV/m range.

OPTIMIZATION RESULTS

Fig. 1 shows the results of multiobjective optimization
for several possible scenarios. The curve named ‘base’ cor-
responds to the constraints specified in the previous sec-
tion. ‘E = 30 MV/m’ shows the optimal front if the gra-
dient is kept fixed to that value. Certain concerns exist
that too high a value of disruption parameter may result
in kink instability. In order to address this we show the
curve labeled ‘Dy = 15’. Curves ‘εy = 6 × 10−8 m’ and
‘σy = 5× 10−9 m’ show optimal curves when either verti-
cal emittance or the beam size at the IP is kept to somewhat
higher values than the more optimistic numbers. Finally,
the plot also shows the ‘original point’ that corresponds to
the old TESLA TDR design values. Cost coefficients in [4]
have been adjusted to match the TDR costs for linac, RF
and refrigeration.

Fig. 2 shows the improvement one can expect in the op-
timal luminosity vs. cost curve if Q = 1010 regardless of
the cavity gradient.

Table 1 presents the ‘snapshots’ of parameters that corre-
spond to the lowest cost for L = 3× 1038 m−2s−1 for five
different cases: a) base, b) Dy = 15, c) εy = 6 × 10−8 m,
d) Q = 1010, f) E = 30MV/m as well as g) the original
TESLA TDR point. Additional parameters encountered in
the Table 1 are: wall plug power PAC, cryogenic power
Pcryo, loaded QL and number of klystrons Nkly.

DISCUSSION & CONCLUSION

We have employed multiobjective genetic algorithms in
optimizations of the ILC luminosity vs. cost. This approach
allows quick exploration of various scenarios for the ILC.
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Figure 1: Optimal fronts of luminosity vs. total linac cost
for the ILC.
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Figure 2: Optimal fronts of luminosity vs. total linac cost
for the ILC.

The model can be of almost arbitrary degree of sophisti-
cation, e.g. include beam tracking to provide more accu-
rate estimates of the objective function(s) of interest in case
these functions are not ammenable to simpler analytical ex-
pressions. For example, this approach has been used in op-
timizing the injector design for the Energy Recovery Linac
which involved beam tracking in the space-charge domi-
nated region of the accelerator [5].

The analysis of the simple model [4] presented here al-
lows us to make several observations. The optimum choice
of parameters for L = 3 × 1038 m−2s−1 (‘base’ curve of
Fig. 1) decreases the total linac cost by 22% and the capital
cost by 25% relative to the original specifications, which
represents a substantial gain. We have examined the cost
reduction of choosing L = 2 × 1038 m−2s−1 instead of
3× 1038 m−2s−1. For the optimal base curve the total cost
drops by 10% and the capital cost by 4%. Overall, the total
cost savings relative to the original TDR point is 29% and
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Table 1: Parameters for L = 3× 1038 m−2s−1 for various scenarios.
Parameter a) b) c) d) e) f) g)
E (MV/m) 34.6 32.7 34.2 39.8 30.0 35.3 25.0
N (×1010) 1.75 1.74 2.00 1.75 1.64 1.48 2.00
f0 (Hz) 3.8 4.8 4.9 3.8 4.0 4.4 5.0
σz (mm) 0.19 0.16 0.19 0.19 0.19 0.19 0.30
tbs (µs) 0.42 0.44 0.46 0.36 0.45 0.27 0.34
εx (µm) 8.3 8.6 11.5 8.2 8.0 6.0 10.0
εy (nm) 30 30 60 30 30 30 30
β∗x (cm) 1.1 1.4 1.0 1.1 1.0 1.1 1.5
β∗y (mm) 0.21 0.28 0.20 0.21 0.20 0.20 0.40
L (m−2s−1) 3× 1038 3× 1038 3× 1038 3× 1038 3× 1038 3× 1038 3× 1038

Ctot ($) 1.74× 109 1.87× 109 1.96× 109 1.68× 109 1.76× 109 1.83× 109 2.22× 109

Ccap ($) 1.33× 109 1.37× 109 1.40× 109 1.27× 109 1.37× 109 1.41× 109 1.76× 109

σx (µm) 0.43 0.50 0.50 0.43 0.40 0.37 0.55
σy (nm) 3.6 4.2 5.0 3.6 3.5 3.5 5.0
R 119 120 100 120 115 105 112
Pb (MW) 15.9 20.1 23.7 15.9 15.7 15.6 22.6
PAC (MW) 94.7 114 129 94.0 89.8 95.4 105.6
Q 7.8× 109 8.3× 109 7.9× 109 10× 109 9.0× 109 7.7× 109 10× 109

QL 5.0× 106 5.0× 106 4.8× 106 5.0× 106 5.0× 106 4.0× 106 2.5× 106

Nkly 422 400 437 485 367 543 600
Pcryo (kW) 42.2 48.3 53.7 35.8 39.4 37.7 37
Dy 24.9 15 17.6 24.9 25 24.9 25
HD 1.68 1.78 1.57 1.68 1.66 1.68 1.79
δ 0.050 0.045 0.050 0.050 0.050 0.050 0.029
nγ 1.62 1.36 1.59 1.62 1.61 1.62 1.48
Υ 0.095 0.100 0.095 0.096 0.097 0.098 0.055
trf (ms) 2.1 2.2 2.2 1.9 2.2 1.5 1.4
a) base; b) Dy = 15; c) εy = 6× 10−8 m; d) Q = 1010;
e) E = 30MV/m; f) trf = 1.5ms; g) original TDR point

the capital savings is 27%.
One of the most important parameters under discussion

now is the choice of the gradient for the 0.5 TeV col-
lider. Comparing the optimal base curve with the optimal
30 MV/m curve in Fig. 1 shows a small total cost differ-
ence for L ≥ 2 × 1038 m−2s−1. The choice of 30 MV/m
over 35 MV/m will certainly provide a larger safety margin,
considering that the best 9-cell cavities today reach about
35 MV/m.

If Q values of 1010 can be maintained at high accelerat-
ing fields, then the optimum gradient moves up to 40 MV/m
(Table 1 - column d) with a total cost savings of 24% over
the TDR original point as compared to a total cost savings
of about 21% for the 30 MV/m choice. Therefore the gain
in choosing a risky gradient of 40 MV/m and Q of 1010 is
limited to only 3%.

The optimal front Dy = 15 of Fig. 1 shows that it is
possible to avoid the kink instablility and still get a total
cost savings (16%) over the TDR original point. Similarly,
the optimal front εy = 6× 10−8 m of Fig. 1 shows that it is
possible to relieve some of the damping ring challenges by
increasing the vertical emittance by a factor of 2 and still
maintain a cost savings of 12%.

Finally, in almost all cases the optimal fronts push

towards smaller bunch lengths, smaller spot sizes, and
smaller beam power. This results in higher (but tol-
erable) beamstrahlung and higher (but tolerable) energy
spreads. In the linac the optimal fronts push towards fewer
klystrons, longer rf pulse lengths, larger bunch spacing,
slightly lower repetition rate and higher QL. This will of
course increase the challenges for bunch compressors and
RF control systems in the presence of Lorentz force detun-
ing. Some of the latter challenges would be lessened by the
choice of 30 MV/m instead of 35 MV/m.
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