

Toward an Energy Recovery Linac x-ray source at Cornell University

Georg Hoffstaetter Cornell Physics Department 14 February 2006

- Some history
- Beams in Rings and Linacs
- The ERL principle
- What an x-ray ERL could do
- Limits of ERLs
- ERL prototyping at Cornell
- Studies for an x-ray ERL
- Other ERLs

5

Synchrotron Radiation @ Cornell

- 1947: 1st detection of synchrotron light at General Electrics. Soon advised by D.H.Tomboulian (Cornell University)
- 1 1952: **1**st accurate measurement of synchrotron radiation power by Dale Corson with the Cornell 300MeV synchrotron.
- 1 1953: **1**st measurement of the synchrotron radiation spectrum by Paul Hartman with the Cornell 300MeV synchrotron.
- 1 Worlds 1st synchrotron radiation beam line (Cornell 230MeV synch.)
- 1 1961: **1**st measurement of radiation polarization by Peter Joos with the Cornell 1.1GeV synchrotron.
- 1 1978: X-Ray facility CHESS is being build at CESR
- 2003: 1st Nobel prize with CESR data goes to R.MacKinnon

7

Beam Size in a Linear Accelerator

The beam properties are to a very large extend determined by the injector system:

- **1** The horizontal beam size can be made much smaller than in a ring
- 1 While the smallest beams that are possible in rings have almost been reached, a linear accelerator can take advantage of any future improvement in the electron source or injector system.

9

Smaller Beams and more Coherence

CHESS & LEPP

- Coherent x-ray diffraction imaging
- It would, in principle, allow atomic resolution imaging on non-crystalline materials.
- This type of experiments is completely limited by coherent flux.

Real-time insect breathing

Tracheal Respiration in Insects Visualized with Synchrotron X-ray Imaging

Mark W. Westneat,^{*1} Oliver Betz,^{1,2} Richard W. Blob,^{1,3} Kamel Fezzaa,⁴ W. James Cooper,^{1,5} Wah-Keat Lee⁴ Field museum of Chicago & APS, Argonne National Lab.

Science (2003) 299, 598-599.

- Animal functions
- Biomechanics
- Internal movements
- New findings

Real-time insect breathing

Tracheal Respiration in Insects Visualized with Synchrotron X-ray Imaging

Mark W. Westneat,^{*1} Oliver Betz,^{1,2} Richard W. Blob,^{1,3} Kamel Fezzaa,⁴ W. James Cooper,^{1,5} Wah-Keat Lee⁴ Field museum of Chicago & APS, Argonne National Lab.

> wood beetle

Science (2003) 299, 598-599.

- Animal functions
- Biomechanics
- Internal movements
- New findings

• ERL would extend these studies to much higher lateral resolution (sub μm) and faster time scales

Georg H. Hoffstaetter CAST Seminar, MIT 14 February 2006

- Very low wall losses.
- Therefore continuous operation is possible.
- Energy recovery becomes possible.

Normal conducting cavities

- Significant wall losses.
- Cannot operate continuously with appreciable fields.
- Energy recovery was therefore not possible.

Operation mode	High Flux	Coherence	Short pulse
Current (mA)	100	10	1
Charge/b (nC)	0.08	0.008	1.0
$\epsilon_{x/y}(\text{nm})$	0.1	0.015	1
Energy (GeV)	5.3	5.3	5.3
Rep. rate (GHz)	1.3	1.3	0.001
Av. flux $\left(\frac{\mathrm{ph}}{0.1\% \mathrm{s}}\right)$	$9\;10^{15}$	$9 \ 10^{14}$	9 10^{12}
Av. brilliance			
$\left(\frac{\mathrm{ph}}{0.1\% \mathrm{ s \ mm^2 \ mrad^2}}\right)$	$1.6 \ 10^{22}$	3.010^{22}	$2.0\ 10^{17}$
Bunch length (ps)	2	2	0.1

Optimistic Outlook

- The ERL parameters are <u>dramatically</u> better than present 3rd generation storage rings
- The use of ERL microbeams, coherence, and ultra-fast timing will lead to new unique experiments that can be expected to transform the way future x-ray science experiments are conducted
- Most critical parameters to achieve in an ERL are therefore, narrow beams, small emittances, short bunches, at large currents.

Parameter	APS ring	ERL*	Gain factor
Rms source size(µm)	239(h) x 15(v)	2(h) x 2(v)	1/900 in area
x-ray beamsize	100nm - 1µm	1 nm	100 to 1000
Coherent flux	3 x 10 ¹¹	9 x 10 ¹⁴	3,000
x-rays/s/0.1% bw			
Rms duration	32 ps	0.1 ps	over 300

Georg H. Hoffstaetter CAST Seminar, MIT 14 February 2006

After the success of high gradient super-conducting RF, several laboratories have worked on ERLs:

Upgrades of: TJNAF, JAERI Light production: Cornell, KEK, Daresbury, Novosibirsk Electron Ion colliders: TJNAF High energy electron cooling for RHIC: Brookhaven

Neither an electron source, nor an injector system, nor an ERL has ever been built for the required large beam powers and small transverse and longitudinal emittances.

A prototype at Cornell should verify the functionality

Advantages of ERL@CESR

- 1 Operation of CESR and ERL test simultaneously.
- 1 Use all of the CESR tunnel.
- 1 Lots of space for undulators.
- 1 Space for future upgrades, like an FEL.
- 1 No basements of existing buildings to worry about.
- 1 Only one tunnel for two linacs.
- 1 Less competition, since other sights cannot offer upgrades.
- 1 Example character for other existing light sources.

Limits to an ERL

Limits to Energy :

Ø Length of Linac and power for its cooling to 2K (supercond. RF)

Limits to Current :

- Ø Beam Break Up (BBU) instability (collective effects)
- Ø HOM heating (supercond. RF)

For small emittances in all 3 dimensions :

- Ø Coulomb expulsion of bunched particles (Space Charge, e-Source)
- Ø Radiation back reaction on a bunch (ISR and CSR)
- Ø Nonlinear beam dynamics
- Ø Ion accumulation in the beam potential
- ${\it {\it O}}$ Stability against ground vibration (µm level)

Georg H. Hoffstaetter CAST Seminar, MIT 14 February 2006

Ongoing Developments

1) DC electron source

- Gun development
- HV power supply
- Photocathode development
- ERL injector lab
- Laser system development

2) Superconducting RF

- RF control (tests at CESR/JLAB)
- HOM absorbers
- Injector klystron
- Input coupler (with MEPI)
- Injector cavity / Cryomodule

Beam dynamics

- Injector optimization with space charge
- Beam break up instability (BBU)
- Optics design / ion clearing

Accelerator design

- Optics
- Beam dynamics
- Beam stability

X-ray beamline design

- X-ray optics
- Undulator design

Bright Electron Source and ERL

500-750 kV Photoemission Gun with preparation, cleaning, and load lock chambers

Emittances: down to 0.1mm mrad

Current: up to 100mA

DC, 1.3GHz

- Gun development, coating for low field emission
- Photocathode development, neg. el. affinity GaAs, cooled
 - Laser beam shaping

Georg H. Hoffstaetter CAST Seminar, MIT 14 February 2006

SRF & Solid State/Surface Physics

Research Subjects with Solid State Physics aspects:

- Higher gradients in solid niobium cavities (ILC and ERL)
- Understand the dependence on Q on field (ILC and ERL)
- Alternate materials for superconducting cavities, e.g. Nb3Sn, Nb bonded to Cu, Nb on Cu, single crystal cavities, epitaxial Nb surfaces,... (ILC, ERL, Muon accelerator)
- Improve breakdown characteristics of cavities to assure high duty factor operation

HOM with BBU: Starting from Noise

Georg H. Hoffstaetter CAST Seminar, MIT 14 February 2006

Georg H. Hoffstaetter CAST Seminar, MIT 14 February 2006

Ion are quickly produced due to high beam density

Ion	$\sigma_{col}, 10 \text{MeV}$	$\sigma_{col}, 5 \text{GeV}$	$\tau_{col}, 5 \text{GeV}$
H_2	$2.0 \cdot 10^{-23} \mathrm{m}^2$	$3.1 \cdot 10^{-23} \mathrm{m}^2$	$5.6\mathrm{s}$
CO	$1.0 \cdot 10^{-22} \mathrm{m}^2$	$1.9 \cdot 10^{-22} \mathrm{m}^2$	92.7s
CH_4	$1.2 \cdot 10^{-22} \mathrm{m}^2$	$2.0 \cdot 10^{-22} \mathrm{m}^2$	85.2s

- Ion accumulate in the beam potential. Since the beam is very narrow, ions produce an extremely steep potential – they have to be eliminated.
- Conventional ion clearing techniques can most likely not be used:
 - 1) Long clearing gaps have transient RF effects in the ERL.
 - 2) Short clearing gaps have transient effects in injector and gun.
- DC fields of about 150kV/m have to be applied to appropriate places of the along the accelerator, without disturbing the electron beam.

R&D toward an X-ray ERL

- Full average current injector with the specified emittance and bunch length
- Emittance preservation during acceleration and beam transport:
 - Nonlinear optics (code validation at CEBAF), coherent synchrotron radiation (JLAB,TTF), space charge
- Delivery of short duration (ca. 100 fs, and less in simulations), high charge bunches (TTF)
- Dependence of emittance on bunch charge
- Stable RF control of injector cryomodule at high beam power
- Stable RF control of main linac cavities at high external Q, high current, and no net beam loading (JLAB to 10mA)
- Understanding of how high the main linac external Q can be pushed (JLAB)
- Study of microphonic control using piezo tuners (JLAB, SNS, NSCL, TTF)
- Recirculating beam stability as a function of beam current with real HOMs, and benchmarking the Cornell BBU code (JLAB)
- · Feedback stabilization of beam orbit at the level necessary to utilize a high brightness ERL
- Photocathode operational lifetime supporting effective ERL operation
- Performance of high power RF couplers for injector cryomodule
- Demonstration of non-intercepting beam size and bunch length diagnostics with high average current at injector energy and at high energy (TTF)
- HOM extraction and damping per design in injector and main linac (code validation from Prototype)
- Performance of HOM load materials to very high frequency
- Performance of full power beam dump
- Detailed comparison of modeled and measured injector performance
- Study of halo generation and control in a high average current accelerator at low energy and with energy recovery (JLAB)
- Study of beam losses and their reduction in recirculation of high average current with energy recovery (JLAB, NAA)
- Precision path length measurement and stabilization (Prototype, JLAB)

R&D toward an X-ray ERL

- 1. Emittance preservation during acceleration and beam transport
- 2. Recirculating beam stability (JLAB)
- Diagnostics with high average current at injector energy and at high energy (TTF)
 Delivery of short duration (ca. 100 fs, and less in simulations), high charge bunches (TTF)
- 4. Stable RF control of main linac cavities at high external Q, high current, and no net beam loading (JLAB to 10mA)

Understanding of how high the main linac external Q can be pushed (JLAB) Study of microphonic control using piezo tuners (JLAB, SNS, NSCL, TTF)

- HOM extraction and damping per design in injector and main linac (code validation from Prototype)
- Study of halo generation and control in a high average current accelerator at low energy and with energy recovery (JLAB)
- Study of beam losses and their reduction in recirculation of high average current with energy recovery (JLAB, NAA)
- Precision path length measurement and stabilization (Prototype, JLAB)

