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Abstract

The notion of brightness is efficiently conveyed in geometric optics as density of rays in phase

space. Wigner has introduced his famous distribution in quantum mechanics as a quasi-probability

density of a quantum system in phase space. Naturally, the same formalism can be used to

represent light including all the wave phenomena. It provides a natural framework for radiation

propagation and optics matching by transferring the familiar ‘baggage’ of accelerator physics (β-

function, emittance, phase space transforms, etc.) to synchrotron radiation. This paper details

many of the properties of the Wigner distribution and provides examples of how its use enables

physically insightful description of partially coherent synchrotron radiation in phase space.

PACS numbers: 41.60.Ap
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I. INTRODUCTION

The concept of phase space plays an important role in accelerator physics. Useful tools

such as Twiss parameters, emittance, phase space propagation have been in long use in

the accelerator community. The extension of classical phase space concept to synchrotron

radiation is straightforward for geometric optics, applicable for incoherent radiation. The

Wigner distribution, or Wigner distribution function (WDF), was recognized to be a general

framework to represent quantum [1] and therefore wave phenomena in phase space [2, 3]. The

approach allows light characterization of arbitrary degree of coherence [4] and polarization

[5] in phase space, though its application by the accelerator community has so far been

mostly limited to simplest cases of Gaussian or Gauss-Schell beams [6, 7]. This provides

a set of useful analytical expressions for quick estimates of performance of modern x-ray

sources with improved coherence properties. In particular, the concepts of the diffraction

limit and brightness have been extended to cover partially coherent radiation cases following

the notion of Gaussian distributions in the phase space for both the synchrotron radiation

of the undulator central cone and density of electrons. More detailed approach to coherent

or partially coherent sources inevitably calls on physically rigorous wave description of the

radiation, either through using cross-spectral density [8] or the Wigner distribution. In

particular, since neither undulator radiation, nor electron distribution in the phase need to

be Gaussian, the general framework becomes essential to be able to describe the performance

of x-ray sources with improved coherence.

The Wigner distribution function provides a natural and elegant description of the prop-

erties of light, and can serve as a useful tool in accelerator and x-ray beamline design

including electron to x-ray beam matching, light propagation, fully accounting for arbitrary

polarization and coherence properties of radiation. The intuitive picture provided by the

WDF, being the phase space density of light or generalized brightness, is particularly ap-

pealing to the accelerator community trained to view many aspects of the beam dynamics

in phase space. Not only can the WDF be readily computed from the first principles, the

first measurement of x-ray Wigner distribution has been reported in the literature [9]. The

knowledge of the Wigner distribution represents the entirety of what can be known about the

radiation and its importance will only increase with advent of more coherent x-ray sources.

The purpose of this paper is to review many of the useful properties of the Wigner
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distribution and demonstrate that the WDF can be used with physical insight to describe

partially coherent synchrotron radiation. In what follows, the Wigner distribution properties

are first reviewed in Section II using the language of quantum mechanics. Various examples

illustrate the physical meaning of the WDF for both pure and mixed quantum states. The

case of the synchrotron radiation as discussed in Section III is then viewed as a natural

extension of the quantum mechanical treatment. Coherence and dispersion properties of light

as conveniently conveyed by the WDF are emphasized. A special attention is given to light

polarization, being an important characteristic of synchrotron radiation. Practical matters

of computing the WDF are covered in Section IV, which outlines the general procedure

for obtaining the Wigner distribution first for a single electron, and then extending the

result to include electron bunches of Energy Recovery Linac as an example. Since neither

synchrotron radiation nor electron beam in this case have Gaussian phase space density,

some consideration is given to generalizing the concepts of emittance and brightness to

describe non-Gaussian distributions.

II. WIGNER DISTRIBUTION IN QUANTUM MECHANICS

The Wigner distribution, initially introduced to account for quantum phenomena in sta-

tistical mechanics [1], provides a convenient description of a quantum mechanical system

in phase space. The Wigner distribution itself does not possess any new information not

already contained in quantum state itself, which is fully described (together with its com-

plete time evolution through Hamiltonian Ĥ) either by a pure state ψ or more generally for

a mixed state by its density matrix ρ̂ =
∑
j

pj |ψj〉〈ψj|, with state weights
∑
j

pj = 1. The

utility of the Wigner distribution is in convenient and visual representation of the quantum

system (and by extension wave optics phenomena) in terms of quasi-probability of having

both phase space quantities (e.g. x, p). Such characterization, being very familiar to ac-

celerator physicists, is a natural framework of description for a unified phenomena of both

classical and wave nature reusing many of the concepts from the accelerator field (emittance,

β-function, phase space propagation, brightness, etc.). Quasi-probability refers to the fact

that while the Wigner distribution is normalized to 1 and is used to compute averages of var-

ious quanitites as expected for a probability density function, the function can take on local

negative values. This deviation from non-negativity is essential for general quantum or wave
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phenomena where position and momentum operators do not commute and the uncertainty

principle must hold contrary to the classical description. Nevertheless, this non-positivity

does not preclude measurement of Wigner distribution using tomography techniques [9, 10].

The properties of the Wigner distribution have been studied extensively in the context of

quantum mechanics [11, 12], wave optics [4, 5, 13] and signal processing [14–16]. To provide

a suitable context, the properties of the WDF are reviewed in this section. For simplicity,

we limit our consideration here to a 1D scalar wavefunction, ψ(x). Extension to higher

dimensions and polarization as required for synchrotron radiation is detailed in Section IV.

A. Pure quantum state

First, we consider a pure quantum state ψ. Particularly insightful definition of the Wigner

distribution can be given in Dirac notation:

W (x, p) =

∫
〈ψ|x+ x′

2
〉〈x+ x′

2
|p〉〈p|x− x′

2
〉〈x− x′

2
|ψ〉 dx′. (1)

(The integration here and elsewhere in this paper is taken over the entire range −∞ to +∞

unless stated otherwise.) The integrand is the quantum equivalent of a classical phase-space

trajectory as seen by reading Dirac brackets from right to left: (1) the probability amplitude

for a particle in state ψ to have a position (x − x′

2
); (2) the amplitude for a particle with

position (x − x′

2
) to have momentum p; (3) the amplitude for a particle with momentum p

to have position (x+ x′

2
); and finally (4) the amplitude for a particle with position (x+ x′

2
)

to (still) be in the state ψ. The integration over the entire space x′ therefore creates a

superposition of all possible quantum trajectories of state ψ, which interfere constructively

and destructively, providing a quasi-probability distribution in phase space [17]. Using a

well known identity (with h = 2π~ the Planck constant)

〈x|p〉 = 1√
h
e
ipx
~ ,

we rewrite

〈x+ x′

2
|p〉〈p|x− x′

2
〉 = 1

h
e
ipx′
~ .

Eq. 1 then assumes its most frequently quoted form

W (x, p) =
1

h

∫
ψ∗(x+ x′

2
)ψ(x− x′

2
)e

ipx′
~ dx′, (2)
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where ψ∗(x+ x′

2
) ≡ 〈ψ|x+ x′

2
〉 and ψ(x− x′

2
) ≡ 〈x− x′

2
|ψ〉.

In the same spirit, Eq. 1 can be rewritten in terms of integration over the entire momentum

space,

W (x, p) =

∫
〈ψ|p+ p′

2
〉〈p+ p′

2
|x〉〈x|p− p′

2
〉〈p− p′

2
|ψ〉 dp′, (3)

leading to an equivalent definition of the Wigner distribution function now in terms of

momentum representation of the state Ψ(p) ≡ 〈p|ψ〉:

W (x, p) =
1

h

∫
Ψ ∗(p+ p′

2
)Ψ(p− p′

2
)e−

ipx′
~ dp′. (4)

The momentum and position representations, ψ(x) and Ψ(p), are related via the Fourier

transform

Ψ(p) = 1√
h

∫
ψ(x)e−

ipx
~ dx,

ψ(x) = 1√
h

∫
Ψ(p)e

ipx
~ dp.

(5)

A summary of the main properties of the Wigner distribution function is given below.

Properties that are revisited later for a more general case of a mixed state are denoted by

an asterisk (*).

Property 1 (Realness)

W (x, p) ∈ R. (6)

This property follows from W ∗(x, p) = W (x, p).

Property 2 (Normalization and Marginals*) The WDF is normalized to 1 with its

projections (or marginals) corresponding to nonnegative probability densities in either po-

sition or momentum ∫∫
W (x, p) dx dp = 1,∫

W (x, p) dp = |ψ(x)|2,∫
W (x, p) dx = |Ψ(p)|2.

(7)

The proof is by substitution of the Wigner definition into Eqs. 7 and then using the identify

∫
e
iab
~ da = h δ(b). (8)
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Property 3 (Boundness)

|W (x, p)| ≤ 2

h
=

1

π~
. (9)

This property can be proven using the Cauchy-Schwarz inequality on the definition of the

Wigner function.

It is illustrative to consider when the WDF assumes ± 2
h

extrema. An arbitrary wave-

function ψ(x) can be written in terms of even ψe(−x) = ψe(x) and odd ψo(−x) = −ψo(x)

parts: ψ(x) = ψe(x) + ψo(x). Then, the WDF at the origin becomes

W (0, 0) =
1

h

∫
ψ∗(x

′

2
)ψ(−x′

2
) dx′,

=
2

h

∫
ψ∗(x)ψ(−x) dx.

This can be written in terms of the wavefunction’s even and odd parts:

W (0, 0) =
2

h

∫ (
|ψe(x)|2 − |ψo(x)|2

)
dx. (10)

As can be seen from Eq. 10 and the wavefunction normalization, W (0, 0) = 2
h

if ψ(x) is even

and W (0, 0) = − 2
h

if ψ(x) is odd and vice versa [12].

Property 4 (Expectation values) The expectation value of an operator Â can be found

from its phase-space representation function A(x, p) according to

〈Â〉 =

∫∫
A(x, p)W (x, p) dx dp, (11)

where W (x, p) acts as a phase-space probability density. The function A(x, p) and operator

Â satisfy the following relationships [11]

A(x, p) =

∫
〈x− x′

2
|Â|x+ x′

2
〉 e

ipx′
~ dx′, (12)

〈x1|Â|x2〉 =
1

h

∫
A(x1+x2

2
, p)e

ip(x1−x2)
~ dp. (13)

The pair of Eqs. 12 and 13 is referred to as the Wigner-Weyl transformation [18].

Refer to [11] for proof. A practical significance of this property is that any linear com-

bination of functions of only position operators or only momentum operators correspond

to the classical phase-space representation given by Eq. 12 where one replaces x̂ → x and
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p̂→ p. In particular, the n-th moments of the distribution are readily obtained using

〈pn〉 =

∫
pnW (x, p) dx dp,

〈xn〉 =

∫
xnW (x, p) dx dp.

Quantum mechanical correspondence to the classical correlation expectation of position-

momentum is more involved due to non-commuting nature of the operators. Indeed, the

operator x̂p̂ is not Hermitian, i.e. (x̂p̂)† = p̂†x̂† = p̂x̂ 6= x̂p̂ since [x̂, p̂] = i~ 6= 0. As a

result, the expectation value 〈x̂p̂〉 is generally complex and 〈x̂p̂〉 6= 〈p̂x̂〉. A solution is to

write 〈1
2
(x̂p̂+ p̂x̂)〉 = 〈xp〉 = 〈px〉, where the symmetric operator is now Hermitian and its

corresponding phase space function is found from Eq. 12 to be 1
2
(x̂p̂+ p̂x̂)→ xp. Therefore,

〈xp〉 = 〈px〉 =

∫∫
xpW (x, p) dx dp.

The above equations allows us to compute the Σ-matrix of the quantum phase-space

distribution familiar to accelerator physicists

Σ =

 〈x2〉 〈xp〉

〈px〉 〈p2〉

 =

 εβ −εα

−εα εγ

 = ε

 β −α

−α γ

 = εT, (14)

with the usual meaning of emittance ε =
√

det Σ and Twiss parameters satisfying det T = 1.

The Heisenberg uncertainty principle can then be written as

ε ≥ ~
2
. (15)

Property 5 (Time evolution) For a time-independent Hamiltonian Ĥ = p̂2/2m+ V (x̂),

the time evolution for the Wigner distribution W is governed by

∂W

∂t
= − p

m

∂W

∂x
+

1

i~

[
V
(
x+ i~

2
∂
∂p

)
− V

(
x− i~

2
∂
∂p

)]
W. (16)

The proof is straightforward using time-dependant Schrödinger equation. Refer to [12] for

details. In particular, for a linear force F (x) = F0 − kx with a potential energy V (x) =

V0 − F0x + 1
2
kx2 (F0, k, and V0 are arbitrary constants), ~ drops out from the Eq. 16 and

we recover the classical Liouville’s evolution of the phase-space distribution

∂W

∂t
+
p

m

∂W

∂x
+ F

∂W

∂p
= 0. (17)

This property further illustrates the connection to the classical concept of phase space. In

particular, classical invariants and transformation rules directly carry over to the quantum

phase space density in case of no or linear forces.
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Property 6 (State cross-correlation*) Cross-correlation of the wavefunction can be re-

covered from the WDF of a pure state via a Fourier transform

ψ(x1)ψ∗(x2) =

∫
W
(
x1+x2

2
, p
)
e
i(x1−x2)p

~ dp,

Ψ(p1)Ψ ∗(p2) =

∫
W
(
x, p1+p2

2

)
e−

ix(p1−p2)
~ dx.

(18)

This property is proven by substituting the WDF definition and using the identity (8).

Note the similarity to Weyl’s relationship, the Eq. 13.

It should be noted that the cross-correlation function of Eq. 18 is just a density matrix

of a pure state ψ in either position or momentum basis

ψ(x1)ψ∗(x2) = 〈x1|ψ〉〈ψ|x2〉 ,

Ψ(p1)Ψ ∗(p2) = 〈p1|ψ〉〈ψ|p2〉 .
(19)

This connection of the Wigner distribution to the density operator matrix will continue for

mixed states as discussed later.

Property 7 (State recovery*) Property 6 allows to recover the wavefunction from the

WDF modulo a complex constant

ψ(x)ψ∗(0) =

∫
W
(
x
2
, p
)
e
ixp
~ dp,

Ψ(p)Ψ ∗(0) =

∫
W
(
x, p

2

)
e−

ixp
~ dx.

(20)

Property 8 (Integrated product) For two WDFs corresponding to pure states ψ and χ

W(ψ)(x, p) =
1

h

∫
ψ∗(x+ x′

2
)ψ(x− x′

2
)e

ipx′
~ dx′,

W(χ)(x, p) =
1

h

∫
χ∗(x+ x′

2
)χ(x− x′

2
)e

ipx′
~ dx′,

the integrated (overlapping) product is related to scalar state product according to∫∫
W(ψ)(x, p)W(χ)(x, p) dx dp =

1

h

∣∣∣∫ ψ∗(x)χ(x) dx
∣∣∣2 =

1

h
|〈ψ|χ〉|2 . (21)

The proof of this property again involves a substitution of the WDF definition into Eq. 21,

the use of identity (8) and a change of integration variables.
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Property 9 (Generalized integrated product) To account for Wigner distribution of

a superposition of quantum states, we introduce a generalized Wigner distribution (now

generally complex) using

W(ψ1,ψ2)(x, p) =
1

h

∫
ψ∗1(x+ x′

2
)ψ2(x− x′

2
)e

ipx′
~ dx′. (22)

Note that W ∗
(ψ1,ψ2) = W(ψ2,ψ1). The standard Wigner distribution W(ψ) ≡ W(ψ,ψ) is obtained

by setting ψ1(x) = ψ2(x) = ψ(x) in Eq. 22.

Then the integrated overlapping product of two generalized WDFs becomes∫∫
W(ψ1,ψ2)(x, p)W(χ1,χ2)(x, p) dx dp =

1

h
〈ψ1|χ2〉〈χ1|ψ2〉 (23)

Property 10 (Superposition of states) Consider a superposition of states |ψ〉 =
∑
n

αn |φn〉

(either finite or infinite sum). States φn need not be orthogonal, but all states are assumed

normalized: 〈ψ|ψ〉 = 1 and 〈φn|φn〉 = 1. The Wigner distribution can then be written as

W(ψ) =
∑
n

∑
m

α∗nαmW(φn,φm). (24)

Note that the superposition of states generally leads to appearance of cross-terms W(φn,φm) in

the Wigner distribution. Realness of W(ψ) is readily verified by noting that the off-diagonal

terms in Eq. 24 are complex conjugates of each other (α∗nαmW(φn,φm))
∗ = α∗mαnW(φm,φn) =

α∗mαnW
∗
(φn,φm) and therefore their sum must be real.

For example, consider a stationary Hamiltonian Ĥ producing a complete orthogonal basis

|n〉 with corresponding energy eigenvalues En

Ĥ |n〉 = En |n〉 . (25)

Then, the time evolution of an arbitrary state characterized by the initial vector |ψ0〉 =

|ψ(t = 0)〉 adopts the familiar form

|ψ(t)〉 =
∑
n

an |n〉 e−
iEnt
~ , (26)

where the expansion coefficients are found in terms of projections of the initial state on the

eigenbasis an = 〈n|ψ0〉 and must satisfy normalization requirement
∑

n |an|2 = 1.

The time evolution of the WDF for |ψ(t)〉 is given by

W(ψ)(x, p; t) =
∑
n

∑
m

a∗name
i(En−Em)t

~ W(n,m)(x, p). (27)
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Eq. 27 can be also rewritten using (23) in terms of integrated products of the Wigner

functions

W(ψ)(x, p; t) = h
∑
n

∑
m

[∫∫
W(ψ0)(x

′, p′)W(m,n)(x
′, p′) dx′dp′

]
W(n,m)(x, p)e

i(En−Em)t
~ . (28)

Note that the decomposition of the Wigner distribution for a pure state into an othronormal

basis generally requires the presence of non-vanishing interference cross-terms. We shall

revisit this subject when considering incoherent addition of states.

Property 11 (Gaussian state) A positive WDF can only be realized for a wavefunction

of the form

ψ(x) = e−(ax2+bx+c), <{a} > 0, (29)

leading to a joint Gaussian WDF in position and momentum [12]. We also note in passing

a well-known fact that a Gaussian state yields the phase-space probability density with the

smallest rms spread (quantum emittance) ε = ~/2.

Property 12 (Convolution) The distribution function obtained by convolving two WDFs

each corresponding to an arbitrary pure state is everywhere positive.

This property is introduced in [19] and is mentioned here for completeness. It should be

noted that the distribution function so obtained is no longer the quasi-probability suitable

for finding the expectation values of the original state. For further implications of this

property, including it being a possible mathematical tool of the concept of measurement in

quantum mechanics, the reader is directed to the discussion in [19].

1. Example: wave packet time evolution in 1D potential

Next, we consider several examples that illustrate the concept of the Wigner distribution.

The first example shows the phase-space motion of an electron in 1D potential depicted in

Fig. 1. The potential consists of a perfectly reflecting barrier on the left and a simple

harmonic oscillator (SHO) potential on the right. In units of eV the potential is given by
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FIG. 1. Potential for an electron V (x). The initial state ψ(x, t = 0) and the first 40 energy

eigenstates ψn(x) offset by their eigenvalues are shown.

(the position x is in nm):

V (x) =


∞, x ≤ 0

0, 0 < x ≤ 2

10(x− 2)2, x > 2

(30)

The initial wave packet is described by a Gaussian ψ(x, t = 0) ∝ e
− (x−x0)

2

2σ2x with x0 = 3

and σx = 0.3. Fig. 1 shows ψ(x, t = 0) and first 40 energy eigenstates ψn(x). The intial

quantum state is then evolved according to Eq. 26. The motion in the phase space of a

classical particle with an initial position x = 3 and a zero velocity is shown in Fig. 2 along

with expectation values for position xav = 〈x〉 and velocity vav = 〈p〉/m for the quantum

case. Points on the plot correspond to T/16 time steps where T is the natural period of

motion of the system, equal to about 3.8 fs in this case. The apparent damping in the

quantum case corresponds to delocalization of the initial Gaussian wave packet.

Fig. 3 shows the Wigner distribution of the quantum motion along with its classical
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FIG. 2. Motion of a classical (left) and quantum (right) electron in phase space. In both cases the

initial position is 3 nm with no velocity. Points show time steps from 0 to T with steps of T/16,

where T = 3.8 fs is the natural period of the motion.

counterpart (marked by ×) at the same times as depicted on Fig. 2. The Wigner projections

|〈x|ψ〉|2 and |〈p|ψ〉|2 are also shown. In addition, the rms emittance of the quantum phase

space distribution is shown. As can be seen from Fig. 3, the emittance of the initial wave

packet is ~/2, increasing when the wave packet reaches the hard reflective potential boundary

(and more generally when discontinuities in the potential are encountered). Here and in all

subsequent plots of the Wigner distribution we use the same color map: blue and red colors

correspond to negative and positive values respectively and the white corresponds to zero.

It should be noted that despite increase in the phase space area, the mode obviously remains

pure at all times.

2. Example: eigenstates of a simple harmonic oscillator

Another example we consider is the WDF of energy eigenstates for a SHO [20], which

adopts the same math as Hermite-Gaussian modes in optics (at a waist and a single coor-

dinate). The well-known eigenstates of the Hamiltonian Ĥ = −1
2
d2

dx2
+ 1

2
x2 are of the form
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t = 4T/16, ԑ = 0.5ħ t = 5T/16, ԑ = 0.5ħ t = 6T/16, ԑ = 0.61ħ t = 7T/16, ԑ = 3.6ħ
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t = 12T/16, ԑ = 2.3ħ t = 13T/16, ԑ = 2.9ħ t = 14T/16, ԑ = 3.6ħ t = 15T/16, ԑ = 4.1ħ

0–2/h +2/h

FIG. 3. Time evolution of the Wigner distribution. Solid curves show projections of the WDF,

probability densities in position and momentum (velocity) respectively. The electron’s classical

counterpart is depicted by ×.

ψn(x) =
π−

1
4

√
2nn!

e−
x2

2 Hn(x), with n = 0, 1, 2, . . . . (31)

Hn are Hermite polynomials. For this example we set the usual constants ~,m, ω → 1 to

minimize clutter in the expressions. The Wigner distribution is then a radial function in
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FIG. 4. First three states (left) of a simple harmonic oscillator along with the radial Wigner

distribution (right).

phase space with r2 = x2 + p2

W =
(−1)n

π
e−r

2

Ln(2r2). (32)

Here Ln are Laguerre polynomials. The first three states along with W (r) are shown in

Fig. 4. We make a couple of observations regarding Eq. 32:

• The WDF is the maximum possible value at the origin for even n and the minimum

possible for odd n in accordance with Eq. 10: W (0) = (−1)n/π or in the regular units

W (x = 0, p = 0) =
(−1)n

~π
. (33)

• The uncertainty in position and momentum or emittance for mode n is 2n + 1 times

1/2 in the natural units or ~/2 in regular units. In optics, ε/(~/2) quantity is known

as the M2-parameter, i.e.

M2 = 2n+ 1. (34)

In natural units used in this example we have

〈x2〉 = 〈p2〉 = ε =
M2

2
. (35)

Thus, the ground Gaussian state has the smallest possible uncertainty of 1/2 (or ~/2),

whereas each subsequent excitation adds an additional node to the wavefunction and the

radial Wigner distribution, and increases the emittance by 1 (or ~).
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B. Mixed quantum state

Generally real quantum systems cannot be described as a superposition of pure modes

(which is itself a pure mode) instead adopting a statistical language to describe an incoherent

mixture of pure states characterized via the density operator

ρ̂ =
∑
j

pj |ψj〉〈ψj| , (36)

with state probabilities pj adding up to one. When only one coefficient pj = 1 for some j is

present the formalism is reduced to that of a pure state. Recall that an expectation value

of an operator Â is given in terms of a trace

〈Â〉 =
∑
j

pj 〈ψj|Â|ψj〉 = Tr(ρ̂Â). (37)

Other standard properties are

Tr(ρ̂) = 1, (38)

Tr(ρ̂2) ≤ 1, (39)

where the equal sign in Eq. 39 is for a pure state case and less than 1 otherwise.

The definitions Eq. 2 and 4 are now replaced with

W (x, p) =
1

h

∫
〈x− x′

2
|ρ̂|x+ x′

2
〉 e

ipx′
~ dx′,

=
1

h

∫
〈p− p′

2
|ρ̂|p+ p′

2
〉 e−

ip′x
~ dp′.

(40)

In other words, the WDF of a mixed state is a weighted sum of the WDFs corresponding to

individual pure states of the density matrix

W (x, p) =
∑
j

pjW(ψj)(x, p). (41)

Since, the Wigner distribution is a quadratic (intensity-like) function of the state, addition

of individual WDFs corresponds to an incoherent addition, which is to be contrasted with

coherent superposition of Eq. 24. This language of a pure state vs. a mixed state, incoherent

addition vs. coherent superposition carries over directly to optics and allows characterization

of partially coherent sources.
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Next, we present a new property that relates the WDF to modal purity. We then revisit

some of the properties introduced earlier to extend them for the mixed state case. Most of

the properties discussed previously, namely Properties 1 through 7 directly carry over to the

mixed state case after the necessary modifications to Properties 2, 6, and 7.

Property 13 (Measure of modal purity) The integrated WDF squared is a measure of

modal purity

Tr(ρ̂2) = h

∫∫
W 2(x, p) dx dp ≤ 1. (42)

The equal sign in Eq. 42 is for a pure state.

The proof of this property follows directly from Eq. 41 and Property 8.

Property 14 (Marginals — Property 2 revisited)∫
W (x, p) dp = 〈x|ρ̂|x〉 =

∑
j

pj|ψj(x)|2,∫
W (x, p) dx = 〈p|ρ̂|p〉 =

∑
j

pj|Ψj(p)|2.
(43)

Again, this property reinforces the notion of simply adding the intensities (here probability

densities) for mixed states.

Property 15 (Density matrix — Property 6 revisited) The density matrix is related

to the Wigner distribution via a Fourier transform

ρ(x1, x2) ≡ 〈x1|ρ̂|x2〉 =

∫
W
(
x1+x2

2
, p
)
e
i(x1−x2)p

~ dp,

%(p1, p2) ≡ 〈p1|ρ̂|p2〉 =

∫
W
(
x, p1+p2

2

)
e−

ix(p1−p2)
~ dx,

(44)

which are simply the inverse of the Wigner function definitions

W (x, p) =

∫
ρ(x− x′

2
, x+ x′

2
)e

ipx′
~ dx′,

=

∫
%(p− p′

2
, p+ p′

2
)e−

ip′x
~ dp′.

(45)

Property 16 (Mode decomposition — Property 7 revisited) Property 7 to invert

the wavefunction from its WDF is only applicable for a pure state returning a meaningless

“wavefunction” otherwise. Since the density matrix is a positive-semidefinite Hermitian
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operator with unit trace, it has an orthonormal basis of eigenstates φn whose corresponding

real eigenvalues λn ≥ 0 and
∑

n λn = 1 [21]:

ρ̂ =
N∑
n=1

λn |φn〉〈φn| , λn ≥ 0,
∑
n

λn = 1. (46)

Therefore, from Eq. 45, the WDF can also be written as an incoherent sum of orthogonal

pure modes

W (x, p) =
N∑
n=1

λnW(φn)(x, p). (47)

The knowledge of the Wigner function or the corresponding density matrix ρ̂ allows

finding the modes and their weights via the standard eigenvector and eigenvalue problem,

i.e. as seen from multiplying both sides of Eq. 46 by |φm〉 and using orthonormality condition

〈φn|φm〉 = δnm

ρ̂ |φm〉 = λm |φm〉 . (48)

Any convenient complete orthonormal basis can be chosen to represent the density matrix

ρ̂ and its eigenstates φn [22].

Some additional comments about this property are in order. The decomposition given

by Eq. 47 is distinct from Eq. 41 in that the decomposition yields orthogonal states, which

is generally not the case in how the mixed state has been originally set up. As a result, the

modes of the decomposition, Eq. 46, may bear little resemblance to the original preparation

states of the density matrix (i.e. different mixtures may correspond to the same density

operator). For the case of a mixed state with orthogonal preparation states, Eq. 41, the

decomposition recovers the modes and their weights exactly. Small negative eigenvalues

λn usually indicate an experimental error in arriving at the density matrix (or the Wigner

distribution) [22] and can serve as a diagnostics and a self-consistency check. Finally, as is

generally the case for pure states, the modes φn need not be simple in the sense that they

don’t necessarily have a small momentum-position uncertainty (i.e. M2 can be M2 � 1).

As an example, consider a relatively complicated mode of Fig. 3 after one or more oscillation

periods, which, despite having a large dispersion, is still a pure (fully coherent) mode with

Tr(ρ̂2) = 1. The use of Property 16 recovers just that mode, which itself may have a very

rich spectrum in some other basis.
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1. Example: superposition of two states

In this example we demonstrate the difference between a coherent superposition and

an incoherent mixture of two Gaussian states. A numerical example of a mixed mode

decomposition further demonstrates the use of Property 16.

First, let us consider another property useful in this example.

Property 17 (Quadratic phase) The effect of multiplying an arbitrary wavefunction

ψ(x) by a pure phase factor of the form ei(c0+c1x+
1
2
c2x2) for arbitrary real coefficients c0, c1,

and c2

ψ̃(x) = ψ(x)ei(c0+c1x+
1
2
c2x2), (49)

leads to the WDF W(ψ̃) related to the original W(ψ) via the linear momentum transformation

W(ψ̃)(x, p) = W(ψ)(x, p̃), with p̃ = p− ~(c1 + c2x). (50)

In other words, multiplying the wavefunction by a linear phase factor amounts to a shift

in momentum, whereas the quadratic phase shift adds a linear correlation (chirp) to the

momentum vs. position.

Fig. 5 shows a superposition and an incoherent addition of two Gaussian wave packets.

In this example, the position is in nm and velocity is in nm/fs (an electron is assumed).

Coherent superposition is for two Gaussian wave packets with equal weights (the Gaussians

are nearly orthogonal as seen from the fact that their Wigner distributions don’t overlap

and the Property 8).

Consider a superposition of two states |ψ〉 ∝ |ψ1〉+ |ψ2〉. Using Property 10, the Wigner

distribution has 3 terms

W(ψ) ∝ W(ψ1) +W(ψ2) +Wi, (51)

where the interference term Wi = W(ψ1,ψ2) + W ∗
(ψ1,ψ2). The interference term is responsible

for oscillations seen in Fig. 5, and it is easy to show that Wi for two orthogonal states carries

no energy ∫∫
Wi(x, p) dx dp = 0, if 〈ψ1|ψ2〉 = 0. (52)

On the other hand, a mixed state ρ̂ ∝ |ψ1〉〈ψ1| + |ψ2〉〈ψ2| has only 2 terms from each

individual states in its Wigner distribution

W(ρ̂) ∝ W(ψ1) +W(ψ2), (53)
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FIG. 5. The Wigner distribution for coherent (left) and incoherent (right) superposition of

two quantum states with equal weights. Solid curves show projections of the WDF, prob-

ability densities in position and velocity respectively. The states are of the form ψ(x) ∝

e−∆x2/2σ2
xei

m
~ (v0∆x+

1
2
dv
dx∆x2), where ∆x = x − x0. The parameters {x0, σx, v0, dv/dx} are equal

to {3 nm, 0.3 nm, 0 nm/fs, 4 fs−1} and {2 nm, 0.5 nm, 3 nm/fs, 1.5 fs−1} for the two Gaussian states

depicted.

without the interference term.

Fig. 6 demonstrates orthogonal mode decomposition using Property 16 for a mixed state

with two Gaussians of equal weights. As seen from the Fig. 6, recovered modes generally

reflect the shape of the mixed state and can have large dispersion (emittance) if the mixed

state itself has had a large dispersion.
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FIG. 6. The Wigner distribution for a mixed state of two Gaussians of equal weight (left column)

and corresponding orthogonal mode decomposition (middle and right columns). The prepara-

tion states are of the form ψ(x) ∝ e−∆x2/2σ2
xei

m
2~

dv
dx∆x2 , where ∆x = x − x0. The parameters

{x0, σx, dv/dx} are equal to {3 nm, 0.3 nm, 4 fs−1} for fixed and {1-2-3 nm, 0.4 nm, 1 fs−1} for

displaced Gaussians. The reconstructed WDF is recovered through W(ρ̂) = λ1W(φ1) + λ2W(φ2)

2. Example: Gauss-Schell model

Now we consider a quantum mechanical analog of what is known as a Guass-Schell model

in optics [23]. Using same natural units of SHO with ~,m, ω → 1, we rewrite the Wigner

distribution similar to Eq. 32 in a generalized Gaussian form

W (r) =
1

M2π
e−

r2

M2 , M2 ≥ 1, (54)

where as previously r2 = x2 + p2. Setting M2 → 1 recovers a pure Gaussian ground state,

whereas M2 > 1 corresponds to a mixed state. As previously, Eq. 35 applies for our choice

of units

〈x2〉 = 〈p2〉 = ε =
M2

2
.
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Next, we use Eq. 44 to recover the density matrix

ρ(x1, x2) =
1√
πM

e−
1
4

[M2(x1−x2)2+M−2(x1+x2)2]. (55)

A more common form of presenting the density matrix is as a Schell-model source

ρ(x1, x2) ≡
√
I(x1)

√
I(x2)µ(x1 − x2), (56)

where the probability density

I(x) = ρ(x, x) =
1√

2πσx
e
− x2

2σ2x , with σx =
M√

2
, (57)

and the degree of spatial coherence

µ(x1 − x2) = e
− (x1−x2)

2

2σ2µ , with σµ =

√
2M√

M4 − 1
. (58)

The function µ(∆x) is bound 0 ≤ |µ(∆x)| ≤ 1 with 1 or 0 corresponding to a perfect or

no phase correlation respectively. σµ is known as a coherence length in optics. E.g. M2 → 1

yields σµ → ∞ (a perfect phase correlation or pure state) whereas M2 → ∞ gives σµ → 0

(no phase correlation in the state).

Decomposition eigen problem (48) can be rewritten as

〈x|ρ̂|φm〉 = λm 〈x|φm〉 ,∫
〈x|ρ̂|x′〉〈x′|φm〉 dx′ = λm 〈x|φm〉 ,∫
ρ(x, x′)φm(x′) dx′ = λmφm(x).

This Fredholm integral equation yields the following spectrum of eigenvalues and eigenfunc-

tions for the density matrix of Eq. 55 [23, 24]

φm(x) =
π−

1
4

√
2mm!

e−
x2

2 Hm(x), (59)

λm = λ0q
m, with m = 0, 1, 2, . . . , (60)

where

λ0 =
2

M2 + 1
, (61)

q =
M2 − 1

M2 + 1
. (62)
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Thus, the Gauss-Schell model adopts a particularly simple mode decomposition, which are

the pure states of a simple harmonic oscillator. Additionally, it can be checked that

Tr(ρ̂) =
∞∑
m=0

λm = 1, (63)

Tr(ρ̂2) =
∞∑
m=0

λ2
m =

1

M2
. (64)

Eq. 64 can be a source of confusion in that one may be tempted to equate M2 (phase-

space area, or emittance, or dispersion) directly to spectral purity Tr(ρ̂2) for an arbitrary

mixed state. This temptation should be resisted since quantum-mechanically the two con-

cepts, the phase-space uncertainty M2 and the mode purity Tr(ρ̂2), are distinct as argued

previously. To the extent that the Gauss-Schell model is applicable to a quantum or optical

system, such blurred interpretation of M2 simultaneously being a measure of dispersion and

coherence may be justified. A notable exception is when M2 → 1, which corresponds to

both perfect coherence and minimum uncertainty of a pure Gaussian state. We shall see

later, however, that the synchrotron radiation from an undulator source by a single electron

is far from a Gaussian and, therefore, such dual interpretation of M2 needs to be rejected

for the diffraction-limited electron beams. Similarly, the use of the Gauss-Schell model on a

distinctly non-Gaussian phase space distribution function has little merit.

III. WIGNER DISTRIBUTION FOR SYNCHROTRON RADIATION

The connection of the Wigner distribution to describing partially coherent sources is

usually made through the cross-spectral density function Γ(r1, r2, ω) [4]

Γ(r1, r2;ω) = 〈E(r1;ω)E∗(r2;ω)〉 . (65)

Here E(r1, ω) is frequency representation of the electric field, which assumed for now to

be a scalar function (e.g. linearly polarized light) of 2D transverse coordinates r = (x, y)

(e.g. the detector plane) and 〈. . .〉 means ensemble average (e.g. over electron bunches for

synchrotron radiation). For Eq. 65 to fully describe coherence properties, the source needs

to be stationary in that all ensemble averages do not vary with respect to time (or at

least first and second moments are time-independent, which is a requirement for wide-

sense stationary processes). The synchrotron radiation with its pulsed bunch structure is
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generally non-stationary. However, as argued in [8], one can use the cross-spectral density

in the form of Eq. 65 if individual synchrotron radiation pulses last much longer than their

coherence time (the time scale of short-term field fluctuations, inversely related to the source

bandwidth), or σt � Nuω0 for an undulator source with Nu undulator periods and resonant

(radiation) frequency ω0 and electron bunches of σt duration. This condition is usually well

satisfied (though an extension of the formalism can be straightforwardly made to describe

nearly transform-limited sources in time-frequency domains). One also typically defines the

spectral degree of coherence [25]

µ(r1, r2;ω) =
Γ(r1, r2;ω)√

Γ(r1, r1;ω)
√

Γ(r2, r2;ω)
. (66)

The modulus of the spectral degree of coherence ranges from 0 to 1 for incoherent to fully

coherent sources, 0 ≤ |µ| ≤ 1. For a fully coherent radiation, |µ| = 1 everywhere. This

quantity is directly related to the fringe visibility in interference experiments.

A fully equivalent characterization can of course be made in time domain [26]. In what

follows, we restrict our treatment to frequency domain, being a more natural choice for

x-rays. Therefore, the frequency dependence for the functions will be understood while the

symbol itself will usually be omitted from the expressions, e.g. E(r) ≡ E(r;ω).

The Wigner distribution for optics is then given by [2]

W (r,θ) =

(
1

λ

)2 ∫
Γ(r− r′

2
, r + r′

2
)eikr

′·θd2r′, (67)

=

(
1

λ

)2 ∫
Γ (θ− θ′

2
,θ + θ′

2
)e−ikr·θ

′
d2θ′, (68)

where transverse position r and angle θ = (θx, θy) form a conjugate pair similar to position-

momentum in quantum mechanics (small angle approximation is used throughout). Cross-

spectral density in position and angular representations are defined according to

Γ(r1, r2) = 〈E(r1)E∗(r2)〉 , (69)

Γ (θ1,θ2) = 〈E(θ1)E∗(θ2)〉 , (70)

where the angular representation E(θ) of radiation (far field) is related to its spatial repre-

sentation E(r) via the Fourier transform pair

E(θ) =
1

λ

∫
E(r)e−ikr·θd2r,

E(r) =
1

λ

∫
E(θ)eikr·θd2θ.

(71)
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The radiation wavenumber k above is given by k = 2π/λ = ω/c in terms of wavelength λ,

frequency ω, and the speed of light c.

The connection to quantum mechanics now becomes obvious. Refer to Table I. All the

properties introduced in the previous section have their counterparts in optics. In particular,

we note that the radiation wavelength λ in wave optics plays a role of Planck constant h

in quantum mechanics. E.g. geometric optics is recovered in the limit λ → 0 just as the

classical behavior can be obtained through h→ 0.

TABLE I. Correspondence between quantum and optical formalisms.

Quantum mechanics Wave optics

State ψ(x) E(r) Field

Planck constant h λ Wavelength

Uncertainty principle ε ≥ h/4π εx,y ≥ λ/4π Diffraction limit

Conjugate pair x
FT←−−→ p r

FT←−−→ θ Conjugate pair

Density matrix ρ(x1, x2) Γ(r1, r2) Cross-spectral density

Classical mechanics h→ 0 λ→ 0 Geometric optics

Phase space density W (x, p) W (r,θ) Spectral brightness

Normalized to 1 spectral flux Normalized to

Measure of state purity h
∫∫

W 2dx dp λ2
∫∫
W 2d2r d2θ

(
∫∫
Wd2r d2θ)2

Measure of coherence

Also, the overall degree of coherence µ2
g, which is directly equivalent to Tr(ρ̂2) of density

matrix ρ̂ in quantum mechanics, can be expressed in terms of the Wigner distribution

function

µ2
g = λ2

∫∫
W 2(r,θ) d2r d2θ

(
∫∫

W (r,θ) d2r d2θ)2
, (72)

where the denominator, the total flux squared, plays a normalization role so that 0 ≤ µ2
g ≤ 1.

A. Polarized light

Treatment of polarized light [27] is directly analogous to WDF of spin-1
2

quantum particle

[28], which require a 2-component spinor to characterize a state. The reason that a spin-1

particle (photon) can be described by a 2-component spinor (as opposed to 3) is well known
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in that only ±~ spin projections along the direction of propagation (helicity) are realized

for a massless particle.

The Wigner distribution now becomes a 2× 2 matrix W(r,θ) (complex for off-diagonal

elements) with components defined according to

Wkl(r,θ) =

(
1

λ

)2 ∫
〈E∗k(r + r′

2
)El(r− r′

2
)〉 eikr′·θd2r′, with k, l = x, y. (73)

Generalizing the formalism of polarized light [27, 29], W(r,θ) can be represented as a scalar

function on the Poincaré sphere using

W (r,θ,Ω) = Ω · S(r,θ), (74)

where generalized Stokes parameters are found from

Sj(r,θ) = Tr[σjW(r,θ)], with j = 0, 1, 2, 3. (75)

Here σj are 2×2 Pauli matrices with σ0 being an identity matrix, and Ω is a vector mapping

Stokes parameters onto the Poincaré sphere with polar χ and azimuthal φ angles

Ω = 1
2


1

√
3 sinχ cosφ
√

3 sinχ sinφ
√

3 cosχ

 . (76)

The generalized Stokes parameters, which now play a role of a 4-component phase space

distribution, can we written explicitly in terms of the WDF components

S0(r,θ) = Wxx(r,θ) +Wyy(r,θ)

S1(r,θ) = Wxy(r,θ) +Wyx(r,θ)

S2(r,θ) = i[Wxy(r,θ)−Wyx(r,θ)]

S3(r,θ) = Wxx(r,θ)−Wyy(r,θ).

(77)

In what follows we may occasionally refer to the generalized Stokes parameters as simply

Wigner distribution functions. These four functions completely characterize radiation of

arbitrary degree of coherence and polarization in phase space. They can be propagated in

linear optics just like the scalar WDF. The usual Stokes parameters are found from those

in Eqs. 77 by integrating away angles

sj(r) =

∫
Sj(r,θ) d2θ, with j = 0, 1, 2, 3. (78)
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Thus, the generalized Stokes parameters have their usual meaning for polarized light (the

exact ordering of the Stokes components 1 through 3 may differ in literature): S0(r,θ)

represents total intensity in phase space, S1(r,θ) represents +45◦/− 45◦ linearly polarized

light (for +/− respectively), S2(r,θ) corresponds to right/left-hand circular polarization,

and S3(r,θ) to x/y-linear polarization. We note that exact signs here apply only to in-

tensity projections sj(r) since the WDF (S0) is allowed to take on negative values while

its projections (marginals) are guaranteed to be positive. For example, a Gaussian mode

with x-polarization will have S0(r,θ) = S3(r,θ) > 0 with other Stokes parameters being

0, or for left-hand circular polarization S2(r,θ) = −S0(r,θ). Whereas fully polarized light

satisfies s0 =
√
s2

1 + s2
2 + s2

3 and partial polarization manifests itself as s0 >
√
s2

1 + s2
2 + s2

3,

the generalized Stokes parameter S0 can take on local negative values and deviate from these

expressions.

As shown in [27], the overall degree of coherence for vectorial waves can be written as

µ2
g = 2πλ2

∫∫
d2r d2θ

∫
4π
d2ΩW 2(r,θ,Ω)

[
∫∫

d2r d2θ
∫

4π
d2ΩW (r,θ,Ω)]2

, (79)

where d2Ω = sinχdχ dφ. Or equivalently in terms of generalized Stokes parameters

µ2
g = 1

2
λ2

∫∫
S2(r,θ) d2r d2θ

[
∫∫

S0(r,θ) d2r d2θ]2
, (80)

and explicitly in terms of the WDF components as

µ2
g = λ2

∫∫
(W 2

xx + 2WxyWyx +W 2
yy) d

2r d2θ

[
∫∫

(Wxx +Wyy) d2r d2θ]2
. (81)

B. Wigner distribution projections

One of practical limitations of the Wigner distribution is that generally one needs to

employ four-dimensional arrays as a function of light frequency (and possibly time if the

temporal structure inside an individual synchrotron pulse is important) times 4 for Stokes

parameters to represent the radiation fully. In addition to large memory requirements, one

typically prefers to visualize two-dimensional projections rather than the entire phase space,

much as it is done in accelerator physics for particle tracking. Here, we mention some of

the properties of such projected WDFs, limiting our discussion to linearly polarized light for

simplicity. Important 2D projections of the Wigner distribution are intensity I(x, y), the far
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field (angular) intensity I(θx, θy), x − θx and y − θy phase space projections, Bx(x, θx) and

By(y, θy).

I(x, y) ≡
∫∫

W (x, y, θx, θy) dθx dθy, (82)

I(θx, θy) ≡
∫∫

W (x, y, θx, θy) dx dy, (83)

Bx(x, θx) ≡
∫∫

W (x, y, θx, θy) dy dθy, (84)

By(y, θy) ≡
∫∫

W (x, y, θx, θy) dx dθx. (85)

Carrying out the integration and using the identity
∫
eikabda = 2πδ(b)/k, one obtains

I(x, y) = 〈E∗(x, y)E(x, y)〉 , (86)

Bx(x, θx) =
1

λ

∫∫
Γx(x− x′

2
, x+ x′

2
)eikx

′θxdx′, (87)

By(y, θy) =
1

λ

∫∫
Γy(y − y′

2
, y + y′

2
)eiky

′θydy′, (88)

I(θx, θy) = 〈E∗(θx, θy)E(θx, θy)〉 , (89)

where Γx(x1, x2) ≡
∫
〈E(x1, y)E∗(x2, y)〉 dy and Γy(y1, y2) ≡

∫
〈E(x, y1)E∗(x, y2)〉 dx.

If the radiation modes are separable, i.e. can be written in the form E(x, y) = φx(x)φy(y)

(for example Hermite-Gaussian modes), then all the properties discussed in Section II for

two-dimensional WDF in quantum mechanics apply to the Wigner 2D projections after

normalization Wx,y = Bx,y/F , where F =
∫∫

I(x, y) dx dy is the total (spectral) flux. It

includes the interpretation of the λ
∫∫

W 2
x (x, θx) dx dθx and a similar expression for y-plane

to be a measure of coherence µ2
gx,y (the analog of the Tr(ρ̂2) in quantum mechanics). On

the other hand, for non-separable radiation fields (e.g. general radially symmetric modes),

the same interpretation of λ
∫∫

W 2
x (x, θx) dx dθx = µ2

gx cannot be made.

Nevertheless, for simple linear optics without coupling of x, y-planes (drifts and lenses),

the WDF projections can be propagated in the same way as the full four-dimensional Wigner

distribution. We also note that a pure mode with symmetric fields E(−x,−y) = E(x, y),

which are of a practical importance to synchrotron radiation, the on-axis 2D brightness takes

on the possible maximum value

max{Bx,y(0, 0)} =
2

λ
F , (90)

where F is the total spectral flux contained in the mode.
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C. Light propagation

One of the strong appeals of the Wigner distribution function is in its natural propagation

for linear optics, which is entirely similar to the classical phase space evlolution. As a result,

the formalism developed in the accelerator physics for classical phase space distributions

can be directly carried over to (partially) coherent synchrotron radiation. In analogy to

Property 5, the local values of WDF stay constant on phase space trajectories subject to

classical transformation in drifts and lenses along the longitudinal position z

W (r(z2),θ(z2)) = W (r(z1),θ(z1)), (91)

where 
x

θx

y

θy


z2

= M(z1 → z2)


x

θx

y

θy


z1

, with det M = 1. (92)

Similarly, for a decoupled in x, y-plane transport, the 2D projections of the WDF follow the

classical transformation

Bx(x(z2), θx(z2)) = Bx(x(z1), θx(z1)), (93)

By(y(z2), θy(z2)) = By(y(z1), θy(y1)). (94)

Drift or lens transformations lead to a rotated or sheered WDF, and since the projections

of the WDF are accessible for measurement, this allows a reconstruction of the Wigner distri-

bution through tomography, similar to the use of tomography in phase space reconstruction

in accelerators.

The introduction of spatial filters (e.g. a pinhole or a slit) naturally leads to diffraction

phenomena and the Wigner distribution gets altered in a non-trivial way. Whereas, the

electric field after an aperture with transmission t(r) is simply E(r)→ E(r)t(r), the Wigner

distribution is given by the convolution of the angular variables θ of the input Wigner

function with that of the spatial filter [5]

W (r,θ)→
∫
W (r,θ)Wt(r,θ− θ′) d2θ′, (95)

where

Wt(r,θ) =

(
1

λ

)2 ∫
t∗(r + r′

2
)t(r− r′

2
)eikr

′·θd2r′.
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IV. NUMERICAL EVALUATION

In this section we discuss practical matters pertaining to computing the Wigner distribu-

tion for undulator radiation. As we shall see, as long as the effects of cosh-dependence of the

undulator fields can be ignored, the synchrotron radiation in phase space can be obtained

by a convolution of the WDF from a single electron with that of the entire electron beam

phase space. This is a consequence of the well-known fact that the electrons in a single

bunch do not interfere with each other unless there is a microbunching structure on the

wavelength scale. In which case, the computation of radiation fields proceeds differently. In

what follows, we limit our examples to the “electron only interferes with itself” scenario, as

applicable for non-free-electron-laser (non-FEL) emission regimes.

A. Radiation field generation

Calculation of radiation fields is well established, e.g. see [30, 31]. The frequency repre-

sentation of the electric field is given by

E(r;ω) =
ieω

4πε0c

∫
1

R

[
β− n

(
1 +

ic

ωR

)]
eiω(τ+R/c)dτ, (96)

for an observer at r, the position vector from the observer to the electron R = r− re, with

re(τ) being the electron’s trajectory as a function of time τ , the velocity β = c−1dre/dτ ,

and the unit vector n = R/R with R = |R|. The expression 96 is exact and is convenient

for numerical evaluation in that once the trajectory re(τ) is found, the integral evaluation is

direct. We assume transversality of the field, i.e. E ≈ (Ex, Ey, 0). An expression with parax-

ial approximation for the field can be obtained [32], however, it represents little advantage

over the exact expression for numerical work. A simulation tool has been developed that

solves for the electron trajectory in arbitrary field configuration and evaluates the radiation

integral, Eq. 96.

The undulator magnetic fields are taken of the usual form

Bx = B0x sin(kuz) cosh(kux),

By = B0y cos(kuz) cosh(kuy),

Bz = B0x cos(kuz) sinh(kux)−B0y sin(kuz) sinh(kuy).

(97)
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Here λu = 2π/ku is the undulator period, B0x,y are the maximum magnetic fields in both

planes with B0x = 0 for a conventionally oriented planar undulator. The total undulator

length is taken to be Lu = Nuλu, and the relation to the undulator K parameter is via the

usual Kx,y = eB0x,yλu/2πmec. To ensure on-axis orbits with no net deflection, the undulator

fields are 1/4 and 3/4 of their nominal values for the first and second period halves on either

undulator end.

For numerical evaluation of the Wigner distribution function, the Fourier transform of

Eqs. 87, 88 is replaced with its discrete analog. A detector is placed at an arbitrary position

z downstream of the undulator, and the electric field is evaluated on a transverse grid of

positions rkl = (xk, yl, z). The phase space distribution is then typically back-propagated

to the undulator center using the usual transforms. It should be noted that the discrete

Fourier transform can suffer from aliasing problems and, in order to avoid this problem, the

maximum angular extent of the radiation must be within π/k∆x,y, where ∆x,y is the grid

size of the radiation field sampling. To avoid very small grid sizes, it is convenient to use

Property 17 to first remove the quadratic phase present in the radiation pattern. This is

equivalent to introduction of a perfect thin lens, which is subsequently removed after the

WDF is evaluated but prior to phase-space propagation to a point of interest.

B. Electron bunch effect

The effect of adding radiation from many electrons is equivalent to an earlier considered

example of superposition from two quantum states. For any two electrons in the bunch, the

electric field will differ by a phase factor eiωtj , where tj represents time of the electron inside

the bunch. It is easy to see that the interference term of Eq. 51 averages out to 0 since it

contains essentially random phase factors e±iω(tj−tk) inside the averaging brackets. In other

words, the uncertain phase relationship between the two electrons on the optical scale leads

to a density matrix case analogue where the interference term drops out and the WDF is

simply an incoherent sum over all the electrons.

Therefore, if the Wigner distribution function of a single electron does not change its

shape, but simply shifts in position and angle, as one would expect for an undulator in

which the trajectories remains linear with small position and angle offsets, the overall radi-

ation pattern is just a convolution (summation) of the electron distribution in phase space
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with the WDF of a single electron. Additional effects arise for either segmented undulator

(with focusing between the segments), due to the vertical focusing of a planar (horizon-

tally deflecting) undulator, or due to the effect of a larger off-axis field which has cosh-like

dependence in the vertical plane for the planar undulator or in both planes for a helical

undulator.

In other words, the most general form of the Wigner distribution obtained from incoherent

addition of radiation from individual electrons is of the form

W (r,θ) = Ne

∫
W0(r,θ;Ve)P (Ve) d4Ve, (98)

Here Ne is the total number of electrons inside a bunch described by the probability density

function P (Ve) such as
∫
P (Ve)d4Ve = 1 with Ve representing 4 phase-space variables of

electrons: two transverse components of position (xe, ye) and angle (θex, θey). If, on the

other hand, the different electron trajectories simply lead to an offset in position and angle

of the WDF of a single electron

W0(r,θ; re,θe) = W0(r− re,θ− θe), (99)

the integral of Eq. 98 is then replaced with a convolution integral

W (r,θ) = Ne

∫∫
W0(r− re,θ− θe)P (re,θe) d

2re d
2θe. (100)

The effect of energy spread in electron beam can be quite significant, and most generally

it is accounted by extending the integration variable Ve to also include the energy. E.g. the

effect of a small energy spread δe ≡ ∆γe/γe � 1, where γe is the normalized electron energy

(later denoted as simply γ), leads to

W (r,θ) = Ne

∫∫
W0(r− re,θ− θe; δe)P (re,θe, δe) d

2re d
2θe dδe. (101)

Note that for a small energy change δe ∼ 1/Nu with a large number of undulator periods

Nu � 1, the effect on the radiation pattern at a given frequency ω0 is identical to that of

the on-energy particle ∆δe = 0 while tuning the radiation frequency off the resonance by

∆ω/ω0 = −2δe.

The evaluation of Eq. 101 can be quite involved in terms of computational resources

required even if being straightforward in all other respects. However, if the electron distri-

bution P (Ve) is separable, i.e. P (Ve) = Px(xe, θex)Py(ye, θey)Pγ(δe), then the 2D projection

of the WDF, Bx(x, θx) and By(y, θy) can be easily computed.

31



It is instructive to consider the requirements for when Eq. 99 is applicable in case of a

planar undulator (horizontally deflecting). As mentioned previously, two effects can change

the shape of the WDF depending on the (small) electron trajectory offsets in position and

angle in vertical plane. One is the cosh-dependence of the vertical field, whereas the other

is the natural undulator focusing.

The equation of motion for the average vertical position yav when B0x = 0 for the undu-

lator, Eqs. 97, can be written as [33]

d2yav
dz2

= −k2
βyyav, (102)

where the vertical focusing strength is given by kβy = B0ye/
√

2γmec, or in terms of the period

of oscillations due to focusing Lβy = 2π/kβy =
√

2γλu/Ky, where Ky is the undulator K-

value and γ = E/mec
2 is the normalized energy of the electron. Typically, Lβy � Lu, i.e. the

slow oscillation phase increment due to the focusing is � 2π in undulators. Nevertheless,

in order to be able to treat vertically offset trajectories as simple copies of each other, we

require that the slow sine-like oscillations due to focusing produce a change in the electron

trajectory’s deviation over the length of the undulator that is much smaller than the natural

cone of the radiation,
√
λ/Lu [6]. Integrating Eq. 102 for a typical vertical size σy, the

angle change of the electron trajectory is of the order σyk
2
βy
Lu, which leads to the following

requirement

σy �
1

k2
βy
Lu

√
λ

Lu
. (103)

Similarly, the vertical dependence of the magnetic field in the undulator By ∝ cosh(kuy),

leads to the vertical trajectories with an offset to effectively sample a larger Ky value.

Therefore, to enable the simpler treatment, we require that ∆Ky/Ky ≈ (kyy)2/2 produces

a change in the undulator wavelength λ = λu/2γ
2(1 + K2

y/2) which is much smaller than

the natural undulator bandwidth ∆λ/λ ∼ 1/Nu. This leads to another requirement for the

electron beam size

σy �
λu
2π

√
1

Nu

√
2 +K2

K2
. (104)

Electrons coming with a vertical angle into a planar undulator generally sample a more com-

plicated magnetic field pattern, such as shown in Fig. 7. Therefore, the following requirement
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FIG. 7. An example of a vertical trajectory in a planar undulator and the magnetic field as seen

by the particle. The angular offset is taken to be rather large to illustrate the effect of cosh-like

dependence of the field on vertical postion.

can be imposed on the vertical angular size σy′

Luσy′ �
λu
2π

√
1

Nu

√
2 +K2

K2
, (105)

σy′ �
1

2πN
3/2
u

√
2 +K2

K2
. (106)

In summary, if the requirements 103, 104, and 106 are satisfied, the simple convolution of

a single electron radiation pattern with that of the electron bunch phase-space distribution,

Eq. 100 or Eq. 101 can be used. Otherwise, the more general integral, Eq. 98, needs to be

evaluated. We note that the potential complications discussed here apply only to the vertical

plane for a planar undulator with exact translational symmetry of fields in the x-direction.

C. Revisiting emittance definition

Rms emittance, Eq. 14, is widely used as a measure of beam quality in accelerator physics.

While this definition is attractive due to the fact that it can be applied to a variety of different

distributions, the connection of the rms emittance to phase space density or brightness
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available in the beam is generally distribution dependent. Whereas equilibrium processes

(e.g. radiation damping in storage rings, equilibrium beam in a focusing channel under the

influence of space charge [34], etc.) lead to a Gaussian distribution in phase space, beams

in linear accelerators are rarely in equilibrium. As a result a meaningful characterization of

the phase space of electron beams or, as we shall see later, the synchrotron radiation, needs

a more flexible metric than the rms emittance alone. Short of the complete knowledge of the

actual phase space distribution, a useful way to reduce and represent the information is to

extend the concept of the rms emittance to the so-called brightness curve or rms emittance

vs. beam fraction [35]. As we will see, a wide class of practical phase space distributions can

be effectively characterized by such a curve as the beam fraction is varied from 0 to 100%.

Three parameters, the usual rms emittance (ε = ε(100%) with 100% denoting that the

entire beam is included in the emittance calculation), core emittance, εc, and core fraction

fc can convey the information not only about the second moments of the beam distribution,

but also the peak brightness and what fraction of the beam effectively contributes to this

brightness. The situation is somewhat analogous to how the peak height and the full-width

at half maximum complement the rms width information for arbitrary (unimodal and finite

integrable in the second moment sense) pulses.

Below is one prescription for obtaining emittance vs. fraction curve. Here we only consider

the case of a two-dimensional phase space, x = (x, p)ᵀ where x is the transverse coordinate

and p can represent (normalized) transverse momentum or angle. The phase space distri-

bution function P (x, p) is assumed to be normalized,
∫∫

P (x, p) dx dp = 1. One can apply

the following procedure:

1) For an ellipse of a fixed area πa, choose Twiss parameters T of the ellipse (c.f. Eq. 14)

that maximize the beam fraction contained therein:

f(a) = max
[∫∫

D(a)

P (x, p) dx dp
]

with D(a) = {x : xᵀT−1x ≤ a}. (107)

2) Obtain the rms emittance ε(a) for x ∈ D(a) of Eq. 107:

ε(a) =

√
〈x2〉D 〈p2〉D − 〈xp〉

2
D, with 〈u〉D =

∫∫
D(a)

u
P (x, p)

f(a)
dx dp. (108)

The parametric curve (f(a), ε(a)) is the emittance vs. fraction curve, ε(f).
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3) Define the core emittance, εc, and the core fraction, fc, according to

εc ≡
dε(f)

df

∣∣∣∣
f→0

, (109)

fc : ε(fc) = εc. (110)

We have assumed that each individual ellipse D(a) remains centered around the origin as

does the corresponding centroid of the beam fraction. Generalization to when this is not the

case is straightforward by allowing the clipping ellipse to shift. This procedure for obtaining

emittance vs. fraction curve is meaningful for distributions which are unimodal (i.e. with a

single hump) and finite integrable (for second moments).

It is easy to show that the core emittance is directly related to the peak phase space

density or brightness P0 = max{P (x, p)}:

εc =
1

4πP0

. (111)

To see that one simply needs to note that a small area clipping ellipse in the limit a → 0

cuts out a uniform slice containing the beam fraction πaP0 and having the rms emittance of

a/4. It is interesting to note that because of the Property 3, which states that a maximum

Wigner distribution is h/2 for any even pure state, and a corresponding 2D equivalent in

optics of λ/2, the minimum core emittance (the diffraction limit) is therefore

min(εc) =
λ

8π
, (112)

and it can only be larger for a symmetric mode when the coherence µ2
g < 1. Thus, the

core emittance (or peak brightness) is a more general than the rms emittance indicator of

whether the radiation is coherent. This is because the rms emittance minimum is restricted

only to a Gaussian coherent mode, whereas the minimum core emittance is realized for any

symmetric coherent mode.

Fig. 8 further illustrates the concept of the emittance vs. fraction by showing the curve

for 3 different distributions: uniform, gaussian, and elliptical. The correlation in x and p is

removed and the units for x and p are chosen so that the distributions can be written as a

radial function of r =
√
x2 + p2. Furthermore, to facilitate the comparison, each distribution

is normalized to have ε = σx = σp = 1 in these natural units. As seen, the core emittance

conveniently captures the fact that the peak brightness of a Gaussian is ×2 larger than that
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FIG. 8. Radial phase-space distributions (left) and corresponding emittance vs. fraction curves

(right). All distributions are scaled to have ε = 1. Core fraction and emittance for different

distribution types are shown as well.

of the uniform distribution of the same rms width, as well as the fact that the core fraction

in the Gaussian is smaller (0.715 vs. 1 for the uniform).
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FIG. 9. Radial phase-space distributions (left) and corresponding emittance vs. fraction curves

(right). Both distributions are scaled to have ε = 1. Core fraction and emittance for the two

distribution are shown as well.

Another example, Fig. 9, compares a Gaussian distribution P (r) = 1
2π
e−

r2

2 and P (r) =

p
2πε1

e
− r2

2ε1 + 1−p
2πε2

e
− r2

2ε2 , with p = 0.5, ε1 = 1
5
, and ε2 = 9

5
. The total emittance in this case

is ε = pε1 + (1 − p)ε2 = 1. Once again, the information about the peak brightness is lost

with the rms emittance quoted only, but is conveyed conveniently with the three parameters:
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{ε, εc, fc}. A practical measure of beam brightness available can be defined as fc/εc, a subject

that we explore further below.

D. Possible definitions of brightness

As a phase space quasi-probability, the WDF is the generalized brightness (also known

as microscopic brightness [35]), B(r,θ) ≡ W (r,θ). It is convenient, however, to be able to

reduce the information to a single parameter, which, for example, can facilitate comparison

of various partially coherent sources. Here we revisit several of the definitions that can be

useful for this purpose remembering that no single reduced parameter or a figure of merit

can suit all the practical purposes.

1) The following definition, which we denote as classical, can be written (modulo a prefactor

that generally depends on the actual distribution shape) as

Bcl =
F
εxεy

. (113)

F is the overall (spectral) flux. In the definition above we have assumed that the 4D

emittance can be represented as a product of two 2D emittances. This definition, which

gives a positive quantity, is easy to compute and can serve as a measure of brightness. One

drawback is in the use of rms emittance, which, as discussed previously fails to capture

the peak brightness available in the beam and tends to exaggerate the importance of

tails when non-Gaussian distributions are encountered. A possible modification to the

definition of Eq. 113 can be made to write the effective brightness in terms of

Bcl,alt =
Ffcxfcy
εcxεcy

, (114)

where in place of rms emittances as a measure of effective phase space area we use the

core emittance εcx,y while at the same time reducing the participating flux by the product

of the core fractions in each plane fcx,y. All the necessary quantities in Eq. 114 can be

found from the WDF as discussed previously.

These classical definitions, however, fail to capture the concept of coherence. A mode

with a large dispersion (emittance) but perfectly coherent is indistinguishable from its

incoherent analog of the same emittance.
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2) As we have seen, the WDF contains the information about the density matrix, which, to

the overall flux factor leads to the following natural definition for brightness (denoted as

average brightness)

Bav =

∫∫
W 2d2r d2θ

F
. (115)

This definition is discussed in a classical context in [36], though its genuine justification

becomes clear from the connection to quantum or wave phenomena. The brightness of

Eq. 115 is higher for more coherent radiation, even though the dispersion or emittance no

longer comes into this definition. In particular, as pointed out previously, a pure mode,

no matter how dispersed it gets, would have the same Bav provided the flux remains

unchanged.

3) Another definition is simply to quote the on-axis peak brightness

B0 = W (r = 0,θ = 0). (116)

An obvious drawback of this definition is that the WDF is not guaranteed to be posi-

tive. However, as previously discussed, the on-axis WDF is always positive for symmetric

(even) modes, which are of most practical interest for synchrotron radiation. Addition-

ally, the peak brightness due to the boundness property (Property 3) can serve as a

measure of coherence because for any pure and symmetric (even) mode B0 is guaranteed

to be related to the total (coherent) spectral flux according to

B0,pure,ev =

(
2

λ

)2

F . (117)

As pointed out previously, the core emittance is inversely related to the peak brightness.

Finally, for the purpose of the numerical examples below, it will be convenient to con-

sider 2D projections of the WDF which are easy to visualize. The extension of the above

definitions to 2D is straightforward and the equivalent meaning remains intact only when

the mode is separable in x, y-planes. In particular, the Eq. 115 in 2D becomes

Bavx =

∫∫
B2
xdx dθx
F

, (118)
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and equations Eqs. 116 and 117

B0x = Bx(x = 0, θx = 0), (119)

B0x,pure,ev =
2

λ
F , (120)

with equivalent expressions for y-plane. We are going to use Eq. 118 even when the mode

is not separable as a measure of effective average brightness in one plane.

E. Numerical examples

Here we demonstrate numerical examples of using the Wigner distribution function for-

malism for undulator radiation. We start out with a zero emittance electron case. For

convenience, we scale the results to 100 mA average current for otherwise perfect (pencil)

electron beam. Throughout all the examples, the electron energy is set to 5 GeV and the

undulator period λu = 2 cm.

Fig. 10 illustrates the calculated angular flux and the central cone for an undulator with

Nu = 250 periods. To convert the computed from radiation fields quantities to the standard

units of photons/s/0.1%BW for spectral flux and corresponding angular (per mrad2 or mrad

in one plane projection) and areal densities (per mm2 or mm in one plane projection), we

note that the spectral flux density is related to the computed fields |E(r)|2 in frequency

domain according to
d2F

dAdω/ω
=
I

e

cε0
π~
|E(r)|2, (121)

where I is the average beam current (non-FEL process is assumed), and ε0 is the vacuum

permittivity.

Fig. 10a checks the angular flux density (or the on-axis radiation field) against the well-

known expression for the planar undulator [6]

d2F
dΩdω/ω

=
I

e
αN2

uγ
2Fn(K), (122)

with fine-structure constant α, and function Fn(K) = K2n2/(1 + K2

2
)2[JJ ] for the harmonic

number n and the undulator K where [JJ ] = [J(n−1)/2(ξ)−J(n+1)/2(ξ)]2 in terms of the Bessel

functions and ξ = nK2/(4 + 2K2). The area dA and solid angle dΩ elements are related

via dA = R2dΩ with R being the distance to the source, allowing to cross-check the angular
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FIG. 10. Comparison of calculated (dots) vs. theoretical values (solid curves) for undulator ra-

diation: (a) angular flux density, (b) central cone flux, (c) on-axis 4D brightness, (d) on-axis 2D

brightness. The first three odd harmonics are shown. The undulator is planar with Nu = 250.

Refer to text for other parameters.

flux, Eq. 122, in terms of the computed fields via Eq. 121. Fig. 10b compares on-resonance

spectral flux with the analytical result

F0

dω/ω
=

1

2

I

e
παNuQn(K), (123)

where Qn(K) = (1 + K2/2)Fn(K)/n. In what follows, we denote the spectral flux by

simply F0 implicitly assuming the usual 0.1% bandwidth scaling. To find the total flux, the

detector in simulations is placed 50 m away from the undulator center and the electric field

is computed on a 1024× 1024 3 mm square grid.

To check that the code correctly computes on-axis (peak) brightness for 4D and 2D WDF

computed from the fields, we use the Eq. 123 with Eqs. 117 and 120, which relate the total

flux to the peak brightness of any symmetric coherent mode according to B0 = (2/λ)2F0
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and B0x = (2/λ)F0. The results of this cross-check are shown in Fig. 10c and 10d.

1. Example: helical undulator on resonance

x (m)

θ x (r
ad

)

S0x

 

 

−5 0 5

x 10−5

−2

−1

0

1

2

x 10−5

x (m)

θ x (r
ad

)

S1x

 

 

−5 0 5

x 10−5

−2

−1

0

1

2

x 10−5

x (m)

θ x (r
ad

)

S2x

 

 

−5 0 5

x 10−5

−2

−1

0

1

2

x 10−5

x (m)

θ x (r
ad

)

S3x

 

 

−5 0 5

x 10−5

−2

−1

0

1

2

x 10−5

 

−1

−0.5

0

0.5

1

x 1019

Wigner-Stokes distribution function (ph/s/0.1%BW/mm/mrad)

FIG. 11. Wigner-Stokes density distribution functions computed for a helical undulator. The x-ray

phase space is back-propagated to the undulator center. Refer to text for details.

While the planar undulator radiation on-axis is fully horizontally polarized, Fig. 11 shows

the WDF for a helical undulator at its first harmonic (Nu = 250, Kx = Ky = 0.696, ~ω =

8 keV). The WDF is obtained from the detector plane placed 50 m away from the undulator

center, and subsequent back-propagation of the radiation phase space back to the center of

the undulator. As discussed previously, the case of a (nearly) pure circularly polarized wave

leads to |S0| = |S1| with other generalized Stokes parameters being approximately zero as

seen in Fig. 11.

The ×-like shape of the x-ray phase space is persistent throughout all the examples.
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The explanation behind it is simple — undulator, being an extended source, has radiation

emitted from its beginning and the end, which must advance different distances to reach

the observer, or when (back)propagated to the undulator center. This results in the ×-like

shape, with the two branches corresponding to the undulator ends.

In the remainder of this section, we limit our numerical examples to planar undulators

investigating x-ray phase space for radiation on and off resonance, the segmented undula-

tor with a quadrupole focusing in between, and a 25-m long undulator including electron

emittance and energy spread effects.

2. Example: planar undulator on resonance
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FIG. 12. (a) Wigner 2D distribution for a planar undulator with Nu = 250 on resonance of the

1st harmonic at 8 keV photon energy along with (b) the emittance of light vs. fraction curve. The

WDF is back-propagated to the undulator center.

This example illustrates the x-ray phase space for radiation at undulator resonance,

Fig. 12, along with the emittance vs. fraction curve. It is seen that M2 > 1 or emittance

is not the minimum possible for the fully coherent mode. On the other hand, the core

emittance is its possible minimum as discussed previously. Also, note the value of the β-

function or Rayleigh range, is somewhat different than Lu/2 or Lu/2π values commonly

quoted in the literature. Additionally, the full beam and its core have different β-function

values. Therefore, a proper matching with the electron beam depends on whether one
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maximizes the peak brightness or minimizes the overall rms emittance of light.

3. Example: segmented undulator with quad focusing

Next, we consider a segmented undulator with a quadrupole focusing in between the two

segments. Fig. 13 shows trajectories for different horizontal offsets of electrons going into

the undulator.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1

0

1

2

3

4

5

6

7
x 10

−4

z (m)

x 
(m

)

 

 
x

ini
 = 0

x
ini

 = 0.25 mm

x
ini

 = 0.5 mm

FIG. 13. Trajectories inside a segmented undulator with a quadrupole focusing. The undulator has

two segments each with Nu = 100 periods. The separation between the two is 0.486 m. A single

horizontally focusing quadrupole of length 0.3 m is located at the center with 3.5 T/m gradient.

Fig. 14 shows the flux at a detector 30 m away from the center of the undulator and

the WDF back-propagated to the undulator center. It is seen that in this case the electron

interferes with itself and the WDF clearly shows features present in a coherent superposition

of two modes.
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FIG. 14. Radiation of the 1st harmonic on 8 keV energy resonance from the segmented undulator

with quadrupole focusing of Fig. 13. Different rows correspond to different trajectory offsets, xini,

as shown. The left column is 2D WDF back-propagated to the center of the undulator, which

corresponds to the right column showing the radiation spectral flux density at the detector 30 m

away from the undulator center.

4. Example: radiation off undulator resonance

Here we consider the radiation off the undulator resonance. This is not only of interest

for practical cases of detuning or selecting photon energy in a monochromator but also when

considering off-energy electrons (electron beams with energy spread). This is because for

undulators with a large number of periods, the effect of tuning off resonance is identical to
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keeping the radiation frequency ω0 the same but changing the electron energy according to

∆ω/ω0 = −2∆γ/γ.
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FIG. 15. Scanning around the 1st harmonic resonance of 8 keV for Nu = 250 period planar

undulator: (a) angular flux on axis, (b) integrated (central cone) flux. Red circles denote analytical

values.

Fig. 15 shows the effect of the radiation frequency scanning around the resonance of the

1st harmonic on the angular (spectral) flux density on axis and integrated flux. Twice the

spectral flux is available for radiation ∆ω/ω0 ∼ 1/Nu below the resonance.

Fig. 16 demonstrates the light phase space for 3 different values of the radiation frequency

detuning along with the radiation pattern (50 m from the undulator center).

Fig. 17 shows the emittance and β-function of light for scanning the radiation frequency

around the resonance. As shown previously, the core emittance is λ/8π in all cases, whereas

the rms emittance is minimal (though with M2 > 1) around the resonance.

Finally, Fig. 18 shows the effective 2D average brightness Bavx =
∫∫

W 2
x (x, θx) dx dθx

and µ2
gx = λ

∫∫
W 2
x (x, θx) dx dθx where the normalized WDF Wx(x, θx) = Bx(x, θx)/F with

F =
∫∫
Bx(x, θx) dx dθx. The deviation of µ2

gx from 1 is due to the fact that the radiation

mode is not separable, even though the radiation is fully transversely coherent in this case

and therefore the full 4D µ2
g = 1. The peak 2D brightness, which is not shown, simply

follows the trend of Fig. 15 since it is related to the flux according to B0x = F(2/λ).
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FIG. 16. The WDF (top row) corresponding to Fig. 15 for different detuning off the resonance. The

WDF is back-propagated to the undulator center. Solid lines show position and angular intensity

projections. The radiation pattern used to calculate WDF (bottom row) is obtained at 50 m from

the undulator center.

5. Example: including emittance and energy spread of electrons

Here we provide an example of including emittance and energy spread to the calculated

WDF. For simplicity, we continue to limit ourselves to 2D projection of the Wigner distribu-

tion function and treat electron phase space probability distribution function as separable

P (re,θe, δe) = Px(xe, θex)Py(ye, θey)Pδ(δe). Fig. 19 shows the horizontal phase space at

5 GeV obtained from the simulations of the photoinjector for 77 pC per bunch and 1.3 GHz

repetition rate (average current of 100 mA), including the effects of the merger and the linear

accelerator [37]. See Fig. 19. The energy spread of the electron beam is σδe = 2× 10−4. To

illustrate its effect, we consider a 25-m long undulator with Nu = 1250 periods. Table II

summarizes the parameters used in this example. As seen, the radiation is computed slightly

below the resonance where the flux is roughly doubled.

To provide more optimal matching for the core of the beam, βx is chosen to be βx = 4 m

close to the Rayleigh range of the core of the radiation from a pencil (zero emittance) beam,
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−2 −1 0 1 2
0

1

2

3

4

5

6

7

8

9

10
x 10

18

N
u
(Δω/ω

0
)

B
av

x (
ph

/s
/0

.1
%

B
W

/m
m

/m
r)

−2 −1 0 1 2

0.4

0.5

0.6

0.7

0.8

0.9

1

N
u
(Δω/ω

0
)

μ gx2

FIG. 18. The average 2D brightness Bavx, and µ2
gx corresponding to Fig. 15.

Fig. 20a. Fig. 20b shows the effect of the energy spread for otherwise ideal (zero emittance)

beam. Some degradation of the Bavx can be seen.

Fig. 21 shows the effect of the beam emittance on the radiation phase space. It can be

seen that the negative parts of the WDF are no longer present after the convolution, and

the average 2D brightness is degraded by a factor of about 2 and 3 for 25 and 100 mA cases

respectively compared to zero emittance. Other relevant parameters of the radiation are

shown in Fig. 21.
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FIG. 19. Electron phase space at the center of 25 m long undulator corresponding to two different

currents: 25 mA (left) and 100 mA (right).

TABLE II. Parameters used in computing the radiation phase space.

Number of periods, Nu = 1250

Undulator period, λu = 2 cm

Harmonic number, n = 1

Resonant photon energy, ~ω = 8 keV

Detuning radiation frequency, ∆ω = −0.75ω/Nu

Beam energy, E = 5 GeV

Electron energy spread, σδe = 2× 10−4

Electron emittance, εx = 11, 29 pm

Average current, I = 25, 100 mA

β-function, βx = 4 m

V. CONCLUSIONS

The Wigner distribution function approach to describe partially coherent radiation in

phase space has been presented. Despite the general nature of the approach, the true power

of the method to describe modern and future x-ray synchrotron sources is to employ 5 or 6D

phase space (times 4 for arbitrary polarized light) complementing the 4D transverse phase
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FIG. 20. X-ray phase space corresponding to zero emittance and zero energy spread (left) and

non-zero energy spread σδe = 2× 10−4 (right). The beam current is 100 mA.
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FIG. 21. X-ray phase space including the effects of emittance and energy spread for the two

different currents.

space with frequency and time where the timing structure is important. Though straightfor-

ward, such a description is rather challenging from the point of computational requirements,

even though a sampled approach similar to particle tracking in accelerator physics can be

employed to represent the radiation in the entire 6D phase space (the microscopic brightness

is allowed to take on negative values). When the x-ray optics beamline consists of drifts and

perfect lenses without clipping apertues, this description is complete and allows to fully ac-
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count for the light properties following geometric optics transformation rules. Introduction

of apertures in the beam, however, requires the convolution of the transmissive mask’s WDF

with that of the beam. In this cases, it might be more efficient to consider decomposition of

the partially coherent light into orthogonal mutually incoherent modes and to include the

diffraction effects on each mode separately.

Nevertheless, the Wigner distribution function is demonstrated in this paper to be a

rigorous and insightful way to describe the coherence and other properties of the synchrotron

radiation. Its use will grow in importance as synchrotron x-ray sources with higher coherence

become more prevalent.
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