

Energy Recovery Linac X-ray Opportunities

by Don Bilderback, CHESS & Applied Physics Cornell University, Ithaca, NY 14853

- 1. Exciting Science! What ERL Parameters Needed?
- 2. Short period, small gap undulators
- 3. Great Source for Microfocusing and Diffraction
- 4. Holography and Speckle
- 5. Heat Load on X-ray Optics and Front End
- 6. 'Hot' Monochromatic Beams
- 7. Pump & Probe on 100 fs time scale
- 8. Very Flexible Operations of ERL

Exciting Science! What ERL Parameters Needed?

Adjustable Parameters (Though not all independently adjustable parameters!)

Machine current:1 to 100 mAGun emittance:0.2 to 2 microns at 0 to 100 mA (scaled from Jlab experience)Full transverse coherence when emittance $< \lambda/4\pi$, i.e., 0.01 nm-rad for 8 keV (1.5 Å)Bunch length:100 fs to 10 psecBunch rep rate:1 MHz to 1.3 GHzInside undulators:a) Electron beam size: 3 to 40 µm sigma (x or y)Electron beam shape: Flat or round

b) X-ray beam divergence: 3 to 10 microradians

<u>Assuming</u>

Machine energy:	5 to 7 GeV, energy spread $< 0.1\%$			
Beam lifetime:	continuous injection			
ID gaps:	> 2 mm			
Undulator lengths:	$\leq 25 \mathrm{m}$			
Bend magnet critical energy: $10 - 20 \text{ keV}$				

Short period, small gap undulators

Undulator brilliance ~ N^x for 1 < x < 2Undulator flux ~ N, # of periods $\lambda(A) = 13.056 * \lambda_u(cm) * (1 + K^2)/E^2 (GeV)$ K = deflection parameter, E = machine energy Spectral bandwidth $\Delta\lambda/\lambda = 1/(nN)$ For $\lambda = 1.5$ Angstrom, K=1, n=1, L=25 m undulator for E=7 Gev, $\lambda_u(cm) = 3.75$ cm, N = 667 periods for E=3.5 Gev, $\lambda_u(cm) = 0.93$ cm, 2668 periods

Stefan et.al. BNL/Spring-8Prototype small gap und.3.3 mm gap, 1.1 cm period

for comparison, silicon 111 monochromator has $\Delta\lambda/\lambda = 1.4x^{-4}$ or 1 / 7100

Idea: you might be able to run with no monochromator with enough poles

Great Source for Microfocusing & Diffraction

Emittance Mode	Undulator 1 $I = 2 m \beta = 1 m$		Undul $I = 25 m$	Undulator 2 $I = 25 m \beta = 12 m$	
moue	L^{-2} III, p^{-1} III		L=23 m, $p=12$ m		
	$\sigma_x (\mu m)$	$\sigma_{x'}$ (µrad)	$\sigma_x(\mu m)$	$\sigma_{x'}$ (µrad)	
0.15 nm-rad (large)	12	15	42	4.3	
0.01 nm-rad (small)	3.2	8.7	12	2.7	
Note: σ includes radiative terms	Demagnify by 100 to 1000 times to reach 3 to 30 nm probe sizes				

Don Bilderback, X-ray Science Workshop for ERL, December 2-3, 2000

Conclusion: ERL very good coherent source of x-rays

Don Bilderback, X-ray Science Workshop for ERL, December 2-3, 2000

Rogers and Mills APS crogenically cooled Si mono.

Power (kW)=0.633*(7 GeV)**2*(.29 T)**2*(25 m)*(.1 A) = 6.5 kW

for K=1, 3.75 cm period undulator, 667 poles, 25 m long & front end + optics @ 20 m

On-axis power density of $\sim 1200 \text{ w/mm}^2$

This will be require care in engineering front end,

cryogenic silicon or diamond optics, etc.

IR camera view of Si monochromator 'hot spot' from prior APS/CHESS undulator run

Example from 'white paper' for 10 to 20 keV x-rays:

F=1x10¹⁶ x-rays/sec/0.1% bw for 7 GeV, 100 mA, 1.65 cm period, L=20 m undulator

Hence, F(Si 111) ~ $1x10^{15}$ x-rays/sec ~ 1.6 watts in size of order 400 µm FWHM at 40 meters F(1% multilayer) ~ 70x Si(111) ~ $7x10^{16}$ ~ 100 watts

Conclusion: This is a very 'hot' monochromatic beam!

Pump and Probe on 100 fs Time Scale

Chemical reactions
Phase Transitions
Surface Processes
Atomic vibrational period ~ 100 fs

Conclusion: ERL with 100 fs x-rays will be very well matched for repetitive pump & probe experiments Schoenlein & Leemans, et.al. Center for Beam Physics Test Facility ALS Linac, .4 A x-rays, 300 fs

Very Flexible Operations of ERL

- •ERL more flexible than a Storage Ring source of x-rays
- •Tradeoff emittance for current
- •Adjustable bunch lengths and timing patterns
- •Beam lasts as long as you want it
- •Tolerates very low gap Insertion Devices
- •Can make round or flat beams
- •Able to serve a wide variety of x-ray user needs

Conclusion: ERL will be a great machine for experimentation!