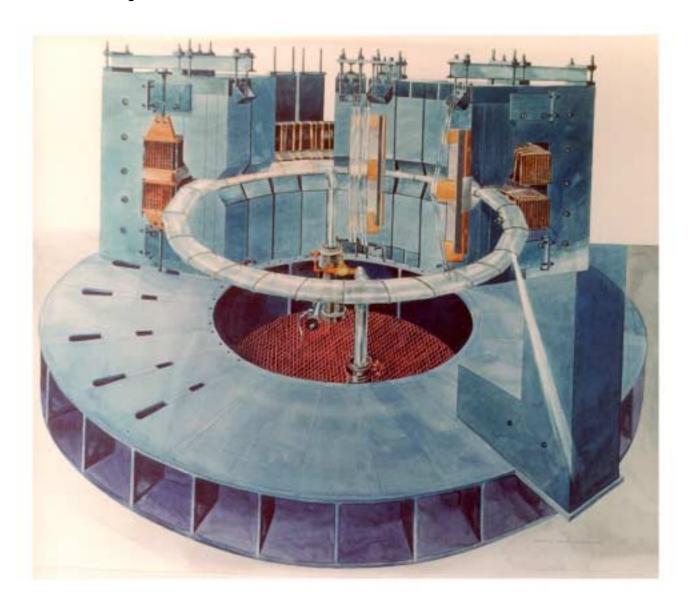
Energy Recovery Linac (ERL) Science Workshop

Sol M. Gruner, CHESS & Physics Dept.

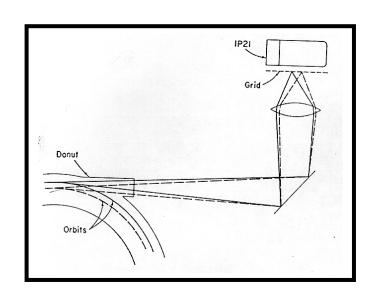
Objective: Examine science possible with an ERL x-ray source.

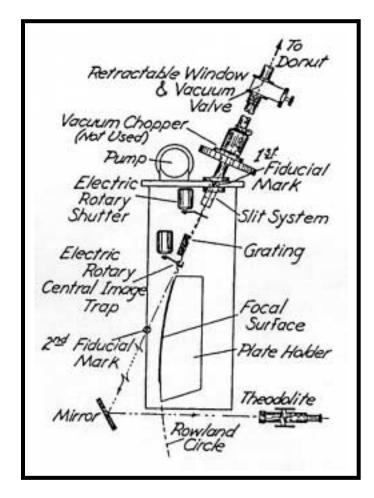
Ques.: Why do this?


Ans.: Need for more and better SR

machines.

- World wide, ~70 SR sources built or in works.
- Use is still growing in many sectors. Community is large and growing.
- All major SR sources based on storage rings, with exception of FELs.


Timely to examine if there are alternatives to storage rings which present advantages.


There is a long history of interaction between accelerator physics and synchrotron radiation at Cornell

Cornell 300 MeV Synchrotron (circa 1950) Newman Hall

First SR Beamlines were built on 300 MeV Machine to Characterize SR

Hartman & Tomboulian, Phys Rev, 87 (1952) 33.

Corson, Phys Rev, <u>87</u> (1952) 233.

Hartman & Tomboulian, Phys Rev, <u>91</u>(1953)1577.

Tomboulian & Hartman, Phys Rev, 102(1956)1423.

Definitions:

1st generation SR source: parasitic on HEP, optimized for HEP.

 2^{nd} generation SR source: dedicated to SR production. Optimized for flux.

3rd generation SR source: dedicated to SR. Optimized for brilliance and flux.

4th generation SR source: FELs. A whole different animal, especially in hard x-ray. Super-intense peak power, very low duty cycle.

• *Flux*: phot /s/ 0.1% bw

• Brightness: phot /s/ 0.1% bw/ mrad²

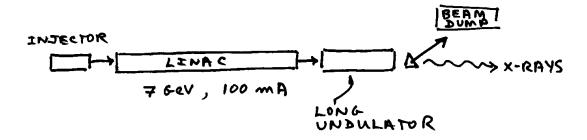
• Brilliance: phot/s/0.1% bw/mrad²/mm²

SR source wish list

- 1. Low emittance
- 2. Flexible pulse structure
 - complex pulse trains
 - pulse lengths: 10 fs to ~100 ps
- 3. Better average
 - brilliance
 - brightness
 - flux
- 4. Very stable beams

Question: Where do storage ring limitations fundamentally arise from?

Answer: From the dynamical equilibrium which is characteristic of the machine lattice.

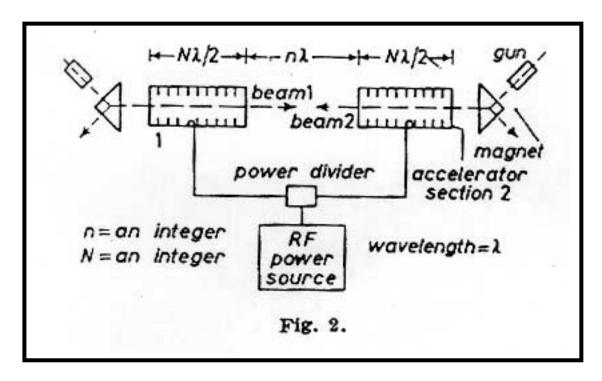

Important Fact: The equilibration times are long, typically thousands of circuits around the ring.

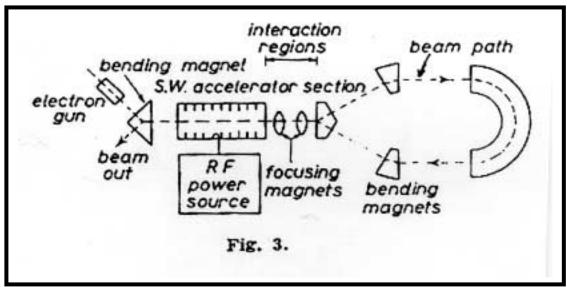
Equilibrium dynamics determine

- Minimum Emittance
- Minimum bunch length
- Shape (Gaussian cross-sectional profile) of bunch
- Fill decay

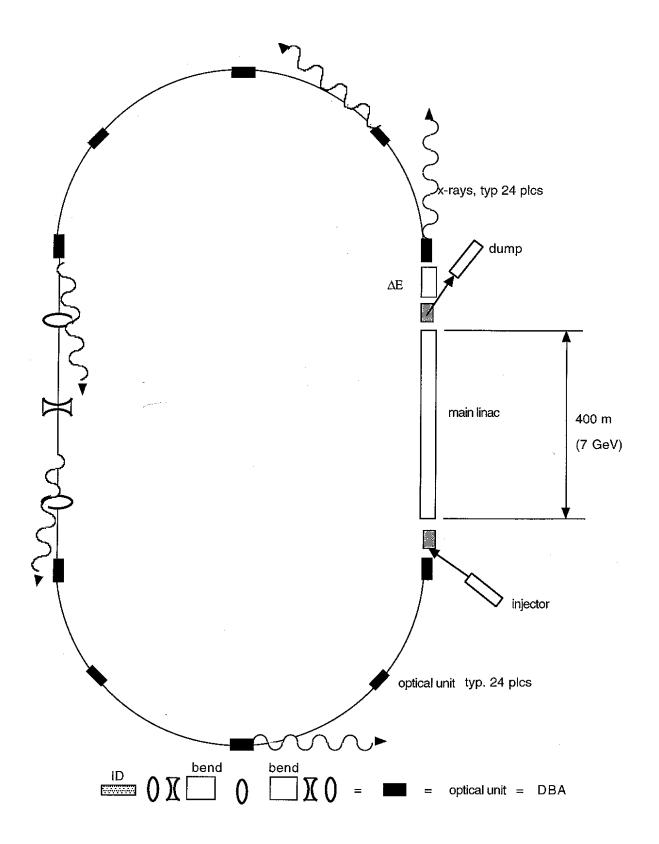
i.e., essentially all the factors of importance for synchrotron radiation!

Let's take a different approach: In principle, injectors can be built with very brilliant e beams and linacs can accelerate with very low emittance growth. Why not use this to produce SR?


Advantages:


- Emittance & pulse length determined by injector
- Complete flexibility of pulse structure.
- No fill decay
- Scrapers allowed to limit pulse profile

Disadvantage:


You'd go broke!! (7 GeV) x (100 mA) = 700 MW!!

Solution: Use energy recovery. First proposed by Tigner in 1965.

M. Tigner, Nuovo Cimento 37 (1965)1228.

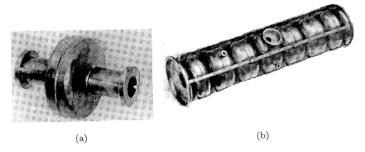
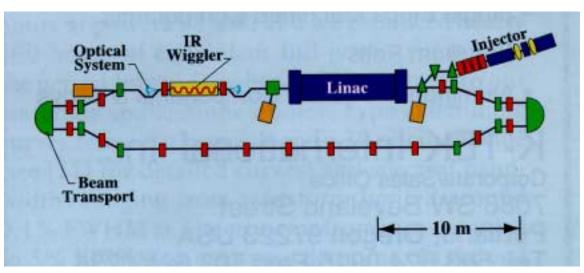


Figure 1.6: (a) Single-cell HEPL niobium cavity, resonant frequency 1.3 GHz, active cell length 11.5 cm. (b) HEPL 7-cell subsection. The niobium cavities were fabricated by sheet metal forming and electron beam welding. (Courtesy of Stanford University.)

The devil is always in the details. Can an ERL be made suitable as a brilliant, high intensity SR source?


Some Key Dates in Superconducting (SC) Technology Leading to an ERL

1965	Tigner proposes ERL idea
1965	Stanford SC resonator
1975	Cornell SC synchrotron tests
1977	Stanford SC recircul. linac tests
1982	First storage ring SC tests (CESR)
1984	CEBAF cavities tested at CESR
1994	CEBAF experimental beams
1998	Jlab ERL-FEL

See Padamsee et al., RF Superconductivity for Accelerators (John Wiley, NY, 1998) for history.

Jlab ERL FEL

ERL Machine Physics Workshop Cornell University, 11-12 Aug 2000

Workshop Participants

- Jlab experts
 Charlie Sinclair, Lia Merminga &
 Geoff Krafft.
- LNS accelerator types
 Special thanks to Gerry Dugan, Joe Rogers, Richard Talman, Ivan
 Bazarov (LNS & CHESS)
- CHESS x-ray types Special thanks to Ken Finkelstein
- Cornell laser types

Primary Conclusions of Machine Workshop

- High current, very brilliant ERL has never been built, but seems feasible.
- Challenges arise from high current & brilliance.

Areas in particular need of R&D:

- Injectors
- Energy budget
- Linac optics

In all cases, however, likely solutions exist. Will require R&D, but do not foresee killer problems.

ERL SR source opens new science opportunities stemming from

- Low emittance, in both x & y
- Unprecedented brilliance
- Ultra-short bunches
- Flexible bunch structure
- Control of bunch cross-section
- Stable beams
- Flux
- Extreme flexibility

Charge to workshop

- 1. What are the best science opportunities?
- 2. What machine parameters should be optimized to realize the science?

Experiment	Microdiffraction w/3 - 30 nm probe size highly demagnify ERL source size by x100 to x1000
Important machine parameters	Small source size in ERL of 3 - 10 microns Stable beams
Undulator needs	Small beta ~ 1 m Short period , ID length of ~ 2 m
Special concerns	Low floor vibrations