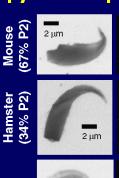


20 nm zones in 60 nm Ni

Cornell ERL, Dec. 2000

Zone plate microscopy

- SUNY Stony Brook: A. Stein, C. Jacobsen (past: S. Spector)
- Bell Labs: D. Tennant
- Image resolution essentially equal to outermost zone width
- JEOL JBX-9300FS: 1 nA into 4 nm spot at 100 keV, 500 μm field



S. Spector, C. Jacobsen, D. Tennant, *J. Vac. Sci. Tech. B* **15**, 2872 (1997)

1

Spectromicroscopy of DNA packing in sperm

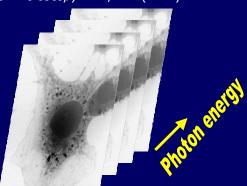
- X. Zhang, R. Balhorn, J. Mazrimas, and J. Kirz, J. Structural Biology 116, 335 (1996)
- Use XANES/NEXAFS resonances for chemical state mapping
- Each sample imaged at N=6 energies; images aligned by hand
- Conclusion: protamine II replaces protamine I, rather than binding to protamine I complex (implications for infertility)

Image

Protein map

Cornell ERL, Dec. 2000

.

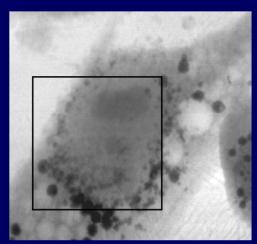

Spectromicroscopy by image stacks

- Acquire sequence of images over XANES spectral region; automatically align using Fourier cross-correlations; extract spectra.
- Full data set to exploit with multivariate statistics (e.g., principal component analysis)
- C. Jacobsen *et al., J. Microscopy* **197**, 173 (2000).

Images at N=150 energies are common.

Total acquisition time at NSLS X-1A (10¹⁸ brightness): 3-10 hours for a 10 μm field at 50 nm resolution

Cornell ERL, Dec. 2000

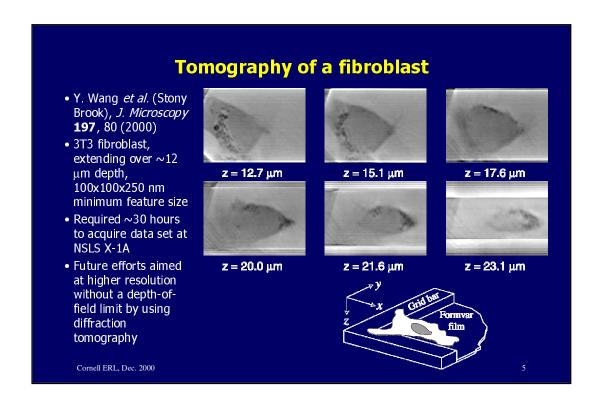


3

Cryo specimens can withstand multiple images

Left: frozen hydrated image after exposing several regions to $\sim 10^{10}$ Gray (about 10^4 times single image dose)

Right: after warmup in microscope (eventually freeze-dried): holes indicate irradiated regions!


Maser *et al., J. Microscopy* **197**, 68 (2000)

— 7 μm

Cornell ERL, Dec. 2000

4

Imaging using x-ray diffraction from non-periodic specimens • Diffraction pattern can be recorded with no optics-imposed resolution • Proposed by Sayre (in Schlenker, ed., *Imaging and Coherence Properties in Physics*, Springer-Verlag, 1980) • Previous experiments by Sayre, Yun, Chapman, Miao, Kirz • Reconstruction: iterate between real and Fourier space Real space: Fourier space: • Finite support: • Re-impose the object fills only measured part of the field intensities while letting the phases Positivity? evolve Cornell ERL, Dec. 2000

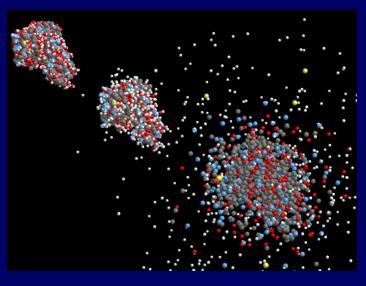
Imaging using soft x-ray diffraction from non-periodic specimens

- Reconstruction: λ=1.8
 nm diffraction pattern,
 plus optical
 micrograph for low
 spatial frequencies
- Miao, Charalambous, Kirz, Sayre, Nature 400, 342 (1999).

Soft x-ray diffraction pattern (left) with low-angle information from optical micrograph (below)

Scanning electron micrograph of object

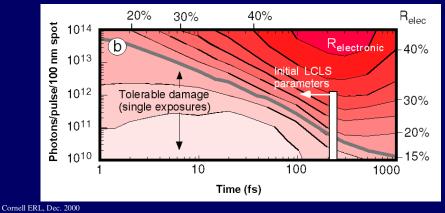
Image reconstructed from diffraction pattern (θ_{max} corresponds to 80 nm)


Cornell ERL, Dec. 2000

7

Single molecule imaging?

- R. Neutze et al., Nature 406, 752 (2000)
- For macromolecules that can't be crystallized, collect many single molecule diffraction patterns from fast x-ray pulses, and reconstruct


and reconstruct
Lysozyme explodes in ~50 fsec

8

Single molecule imaging: what's needed?

- Lots of coherent photons in a short pulse!
- R. Neutze *et al., Nature* **406**, 752 (2000)
- LCLS (Stanford), TESLA (Hamburg) X-FEL experiment proposals led by J. Hajdu (Uppsala)

