
Probing the Basic Science of Polycrystals with Microfocused High Energy X-rays R. M. Suter (CMU), H. F. Poulsen (Risø) ESRF Beamline ID-11

- Mapping grains and grain boundary networks inside bulk materials
- 40 80 keV monochromatic ($\sim 1\%$) photons
- Six dimensional mappings
 - -3 Euler angles as a function of
 - -3 spatial coordinates
- Watch dynamics: what are fundamental mechanisms under various driving forces?

ESRF ID-11: Grain mapping technique

- Multiple detector $L_i \Rightarrow \mathbf{k}_f \Rightarrow \mathbf{G}_{hkl}$
- Scan $\omega \Rightarrow 3$ Euler angles for each grain
- Detector spot shapes \Rightarrow 2D Grain cross-sections
- Scan $z \Rightarrow$ all 6 dimensions

The Numbers

- Beam size: $\sim 1\mu m \times 1mm$
- Flux: $\sim 10^{11} 10^{12}$ photons/sec
- Spatial resolution $\sim 1 \mu m$ (not yet)
- Dynamics on minute time scale

Limitations

- 1. Large grains: $\sim 100 \mu m$
- 2. Time scale
- 3. Not using intensities!
- 4. Incoherent: missing a million details

ERL Based Microstructure Studies

- 1. Reduced line focus size \Rightarrow better z-resolution
- **2.** Sub-micron spot \Rightarrow
 - (a) Illuminate a line
 - (b) Additional raster dimension slower
 - (c) Defect sensitivity
 - (d) Smaller grains
- 3. Coherence (?)
 - (a) Exquisite defect sensitivity
 - (b) Structure of non-crystalline regions near and within boundaries
 - (c) Rapid dynamics inside individual grains

Many technologically important materials require small grains.

The dynamics mechanisms can be expected to be different from large grains.

These are complex materials: not trendy, but vital.

 \Rightarrow There is a large payoff for pushing resolution limits downwards!