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Not only must a precise definition of mother liquor components and their 
concentration be undertaken, but the method used to grow the crystals, to 
produce supersaturation, should also be optimized. It is important to remember 
that the pathway a system follows from a regime of undersaturation to one of
supersaturation is critical in determining the point at which nucleation takes place 
and the conditions under which the nuclei develop into crystals. The physical 
apparatus or device in which this takes place is a major determinant in this 
regard.

McPherson
Crystallization of Biological Macromolecules

Crystallization = Formulation + Kinetics
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Foffi et al, PRE 65, 31407 (2002)
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S.K.W. Dertinger, D.T. Chiu, N.L. Jeon, and G.M. Whitesides.
"Generation of gradients having complex shapes using microfluidic networks," 

Analytical Chemistry 73, 1240-46 (2001).
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1 – 10 nl drops, 50 micron nozzle
100 micron channel

50x time lapse      40 drops / sec

oil

oil

aqueous

High speed camera: 5000 frames/sec

Create and store
microdrops

Create isolated aqueous microdrops of protein 
solution in an inert oil using flow focusing.
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TEMPERATURE

drop

Heat conducts through sealed chambers.

CONCENTRATION

drop

PDMS membrane

reservoir
Water permeates, drop swells.

Control temperature and concentration
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Reversible Permeation
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3.6M            4M

Salt and lysozyme in wells

Reservoir osmolality 

Oil

glass

15 m

PDMS membrane

Protein / salt PDMS

reservoir

1 mm
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Control kinetics
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Vary temperature, concentration constant

Control kinetics
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Decoupling Nucleation and Growth (Tempereature Control)

500 um

initial

4°C for 0.5 hrs (nucleation)

final

20°C (drop filling)

14°C (crystal growth)

Measured date: Apr 29, 2009
Oil: FC-43, Surfactant: 12% 
Tridecafluoro-1-Octanol,  
Aqueous: Lysozyme 75 
mg/ml, 0.05M NaAc, pH 4.5
0.5M NaCl

time lapse: 20 hours
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Initial

NaCl 6M in Reservoir for 42hrs

NaCl 2M in Reservoir for 96hrs

Final

300 m

Time lapse: 4 days

PEG / lysozyme

Decoupling Nucleation and Growth (Composition Control)
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T = 0.1
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Slight Quench

Deep Quench

# 
co

nt
ac

ts

time



One crystal per drop when growth rate >> nucleation rate
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1D crystal nucleation and growth ct
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Lysozme.
Emulsion 50 m does not crystallize at Room T, but bulk does.

Optimal quench conditions



Diffraction pattern from
the lysozyme crystal above,
taken with a 100 μm collimated 
monochromatic beam at CHESS 
beam line F1.

Lysozyme crystal-bearing
drops in a thin-walled 200 m 
diameter glass capillary, 
mounted for data collection
at CHESS. The central circle 
is 100 m across.

Shotgun Diffraction (ShDi)
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