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Self-calibrated damage limit

27[ 105 r ? fdecayedpR4l4 O.SA/H Tsphere( 29 JlLllR) (3 + COS 40) <f612> Sil’l 9 ’
<[>DL - - 2 ; : exp| —2B| —
9 he fyn, MV, ln(2)s1n 0 (1 T pere (O,/zen,R)) sinf <M a>

Where:

DpL - average damage-limited intensity (photons/hkl) at a given resolution
105 - converting R from pm to m, r, from m to A, p from g/cm? to kg/m® and MGy to Gy
r, - classical electron radius (2.818 x 10-'° m/electron)

h - Planck’s constant (6.626 x 10-3* J-s)

c - speed of light (299792458 m/s)

foecayed - fractional progress toward completely faded spots at end of data set
P - density of crystal (~1.2 g/cm3)

R - radius of the spherical crystal (um)

A - X-ray wavelength (A)

e - the Nave & Hill (2005) dose capture fraction (1 for large crystals)
Nysy - number of proteins in the asymmetric unit

M. - molecular weight of the protein (Daltons or g/mol)

vy, - Matthews’s coefficient (~2.4 A%/Dalton)

H - Howells’s criterion (10 MGy/A)

C] - Bragg angle

(1.2 - number-averaged squared structure factor per protein atom (electron?)
(M) - number-averaged atomic weight of a protein atom (~7.1 Daltons)

B - average (Wilson) temperature factor (A2)

u - attenuation coefficient of sphere material (m-1)

Moy, - mass energy-absorption coefficient of sphere material (m-")

Holton & Frankel (2010) Acta D 66 393-408.



) required number of crystals calculator - Mozilla Firefox

file Edt View History Bookmarks JTools Help
e ~ C 0 @ L bepgibigsl.alsbl.gov/xkalsize. html w | W

Lj required number of crystals calculator

&

Required crystal number or size calculator

nxtals = <IpL> / 20 * fiyp * MW * Vi?® / exp( -0.5 * Bireso?) / xtalsize” / (reso” - 1.53)

Enter values:

expenment goal = subtle differences (MAD/SAD) ¥

number of sites = I:’ in asymmetnc urnt

fpp= electrons Bijvoet ratio = %

molecular weight = | kDa N yrmmetric unt

resolution = signal to noise = at this resolution
reso on snapshot = 24 Ang — Wilson B = 35 Angz
background level = ADUlpixel multiplicity =

spot size = 5 puzels

detector type = | ADSC 0210/315¢ (hwbin) v

solvent content = 50 % \

xtal sizeheam = microns

xtal sizevan = 20 :mn::rons beamn sizeyar = 100 ‘microns

xtal sizegpindle = ' MICTONS beam sir.espgndi, = (100 | microns

| Calculate n_xals | | Im 1

fixtals = - ztals you will need to merge  «— <IpL> photons/hkl
Done

Holton & Frankel (2010) Acta D 66 393-408.




Dose-rate dependence of damage
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Anomalous differences are resilient to non-isomorphism
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Internal consistency of data
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Super-cell formalism for diffuse scatter
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Super-cell formalism for diffuse scatter
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Super-cell formalism for diffuse scatter
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nearBragg program

http://bl831.als.1lbl.gov/~jamesh/nearBragg/

*“assumption-free” total scattering

*no Fourier Transform
*no unit cells

*n0 “mosaicity”
*arbitrary “atoms”
earbitrary “source”

ecoherent or not
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which of these still apply?

light is “coherent”

near-zero divergence

near-zero dispersion

crystal cannot rotate

crystals may be 1 mosaic block
are small crystals “more perfect™?
will we see any spots?!
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Bragg's Law

nA = 2d sin(0)
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scattering from a structure
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fomeesd Fourier Transform

no phase
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scattering from a lattice
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Scherrer broadening




scattering from a crystal structure
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Inter-Bragg spots over-sample unit cell
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scattering from a crystal structure
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scattering from a crystal structure

colored by phase

sample detector

Spence, J. C. H., Kirian, R. A., Wang, X., Weierstall, U., Schmidt, K. E., White, T., Barty,
A., Chapman, H. N., Marchesini, S. & Holton, J. (2011)."Phasing of coherent
femtosecond X-ray diffraction from size-varying nanocrystals", Opt. Express 19, 2866-

2873.
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mosaic spread = 0.2°




mosaic spread = 0.4°
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mosaic spread = 0.8°




mosaic spread = 1.0°




mosaic spread = 1.5°




mosaic spread = 2.0°




mosaic spread = 2.5°
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Darwin’s original picture




How big is a "mosaic block”
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%How big iIs a "mosaic block”

intensity (photons/SR/atom)
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How big Is a "mosaic block™
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mosaic block = “coherence length”

INTENSITY OF REFLECTION OF X-RAYS BY CRYSTALS 35

(b) The amplitude reflected by a plane sheet of atoms : We shall first
consider the amplitude of the wave reflected by an infinite plane sheet
of atoms, each of which scatters the incident X-rays.

Suppose A, fig. 15, is
the source of the radia- A B
tion,and let theamplitude
of the reflected wave be -
required at B. Let the
plane APB be normal to
the plane of atoms, and
let AP, PB make equal
angles 6 with this plane.
Then P is such that the
distance APB is the Fic. 15
shortest distance from A
to B via the plane. Let M be a point of the plane such that the distance

-

James R. W. (1962) Optical Principles of the Diffraction of X rays. Ox Bow press.
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Observed “coherence” effects
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scattering from two atoms
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beam divergence
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beam divergence

20 seconds

mm

1000 mm




beam divergence
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dispersion = 1.3%




dispersion = 2.6%




dispersion = 5.1%
















Every spot is an unpaired partial!

Ewald sphere
range




Every spot is an unpaired partial!

Ewald sphere
range

Woolfson, M. M. (1997). An introduction to X-ray crystallography. Ch. 2 & 6
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nearBragg program

http://bl831.als.1lbl.gov/~jamesh/nearBragg/

*“assumption-free” total scattering

*no Fourier Transform
*no unit cells

*n0 “mosaicity”
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fastBragg program

http://bl831.als.1lbl.gov/~jamesh/fastBragg/

“total scattering

*Fourier Transform

.unit Ce”S 12813 cells
*n0 “mosaicity”

estructure factors
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lysozyme: real and reciprocal




