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Darwin’s Formula

I(hkl) - photons/spot (fully-recorded)

Ibeam - incident (photons/s/m2 )

re - classical electron radius 
(2.818x10-15 m)

Vxtal - volume of crystal (in m3)

Vcell - volume of unit cell (in m3)

� - x-ray wavelength (in meters!)

� - rotation speed (radians/s)

L - Lorentz factor (speed/speed)

P - polarization factor 

(1+cos2(2�) -Pfac·cos(2�)sin2(2�))/2

A - absorption factor 

exp(-�xtal·lpath)

F(hkl) - structure amplitude (electrons)

C. G. Darwin (1914)

P A | F(hkl) |2I(hkl) = Ibeam re
2 Vxtal

Vcell

�3 L
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Dose Formula

dose - absorbed energy (Gy)

Ibeam - incident (photons/s/�m2 )

texp - exposure time (s)

� - x-ray wavelength (in Å)

dose � Ibeam �texp
�2

2000



Dose Formula

Dmax - maximum dose (Gy)

Ibeam - incident (photons/s/�m2 )

tdataset - accumulated exposure time (s)

� - x-ray wavelength (in Å)

Dmax � Ibeam �tdataset
�2

2000
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Darwin’s Formula

Dmax - maximum dose (kGy)

tdataset - accumulated exposure (s)

re - classical electron radius 
(2.818x10-15 m)

Vxtal - volume of crystal (in m3)
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� - x-ray wavelength (in meters!)

� - rotation speed (radians/s)

L - Lorentz factor (speed/speed)

P - polarization factor 

(1+cos2(2�) -Pfac·cos(2�)sin2(2�))/2

A - absorption factor 

exp(-�xtal·lpath)

F(hkl) - structure amplitude (electrons)

C. G. Darwin (1914)

P A | F(hkl) |2I(hkl) = re
2 Vxtal

Vcell

2 � L
�Vcell

Dmax

tdataset



Darwin’s Formula

Dmax - maximum dose (kGy)

re - classical electron radius 
(2.818x10-15 m)

Vxtal - volume of crystal (in m3)

Vcell - volume of unit cell (in m3)

� - x-ray wavelength (in meters!)

2� - rotation range (radians)

L - Lorentz factor (speed/speed)

P - polarization factor 

(1+cos2(2�) -Pfac·cos(2�)sin2(2�))/2

A - absorption factor 

exp(-�xtal·lpath)

F(hkl) - structure amplitude (electrons)

C. G. Darwin (1914)

P A | F(hkl) |2I(hkl) = re
2 Vxtal

Vcell

2 � L
2	Vcell

Dmax



Where:
�I�DL - average damage-limited intensity (photons/hkl) at a given resolution
105 - converting R from �m to m, re from m to Å, � from g/cm3 to kg/m3 and MGy to Gy
re - classical electron radius (2.818 x 10-15 m/electron)
h - Planck’s constant (6.626 x 10-34 J·s)
c - speed of light (299792458 m/s)
fdecayed - fractional progress toward completely faded spots at end of data set
� - density of crystal (~1.2 g/cm3)
R - radius of the spherical crystal (�m)
� - X-ray wavelength (Å)
fNH - the Nave & Hill (2005) dose capture fraction (1 for large crystals)
nASU - number of proteins in the asymmetric unit
Mr - molecular weight of the protein (Daltons or g/mol)
VM - Matthews’s coefficient (~2.4 Å3/Dalton)
H - Howells’s criterion (10 MGy/Å)
� - Bragg angle
��a

2� - number-averaged squared structure factor per protein atom (electron2)
�Ma� - number-averaged atomic weight of a protein atom (~7.1 Daltons)
B - average (Wilson) temperature factor (Å2)
� - attenuation coefficient of sphere material (m-1)
�en - mass energy-absorption coefficient of sphere material (m-1)

Self-calibrated damage limit
� � � �� �
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Holton & Frankel (2010) Acta D 66 393-408.



Dose-rate dependence of damage

0.01

0.1

1

10

100

1000

0.0001 0.1 100 100000 1E+08 1E+11 1E+14 1E+17 1E+20

Blake & Phillips (1962)

room temperature

cryo-cooled

Chapman (2011)

dose rate (Gy/s)

m
ax

im
um

 u
se

fu
l d

os
e 

(M
G

y)

0.1       100      105 108 1011        1014 1017        1020 1023



low-energy X-rays

Cu

�=2d sin�

2.5 Å data 
with 5 Å X-rays

International Tables for 
Crystallography, Vol. C, 2nd ed., 
chapter 6.3



Problems and Promises

• radiation damage
• non-isomorphism
• anomalous differences
• the “twin problem”
• postrefinement
• the structure of disorder



Problems and Promises

• radiation damage
• non-isomorphism
• anomalous differences
• the “twin problem”
• postrefinement
• the structure of disorder



0                 20                 40               60                80               100

Anomalous differences are resilient to non-isomorphism

Riso (%)

1.0

0.8

0.6

0.4

0.2

0

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t o

f �
F a

no

100 x 100 
lysozyme PDBs



d = 2.5 Å d = 2.5 Å

d = 2.5 Åd = 2.5 Å

sa
m

pl
e 

in
je

ct
or

M
irr

or
s

M
irr

or
s

� = 5 Å
d = 2.5 Å

h,k,l

-h,-k,-l

Colliding
Beam
Anomalous
Measurement



Problems and Promises

• radiation damage
• non-isomorphism
• anomalous differences
• the “twin problem”
• postrefinement
• the structure of disorder



the “twin problem”
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Internal consistency of data
1,850,000 images

112,000 > 10 peaks

33,000 indexed

16,500 good preds

rigid-body:

Rcryst = 0.252

Rfree = 0.232
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Super-cell formalism for diffuse scatter
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Super-cell formalism for diffuse scatter

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8

supercell

average density

in
te

ns
ity

 (F
2 )

one-cell hkl index



Super-cell formalism for diffuse scatter

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8

supercell

in
te

ns
ity

 (F
2 )

one-cell hkl index



Super-cell formalism for diffuse scatter
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Super-cell formalism for diffuse scatter
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nearBragg program
http://bl831.als.lbl.gov/~jamesh/nearBragg/

•“assumption-free” total scattering

•no Fourier Transform

•no unit cells

•no “mosaicity”

•arbitrary “atoms”

•arbitrary “source”

•coherent or not
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which of these still apply?

• light is “coherent”
• near-zero divergence
• near-zero dispersion
• crystal cannot rotate
• crystals may be 1 mosaic block
• are small crystals “more perfect”?
• will we see any spots?!
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to source

d·sin(�)

�

atom #1

atom #2

Bragg’s Law
n� = 2d sin(�)



to source

d·sin(�)

�

atom #1

atom #2

Bragg’s Law
n� = 2d sin(�)



source

detector

atom #1

atom #2

“near”-ly Bragg’s Law



to source

d·sin(�)

�

atom #1

atom #2

Bragg’s Law
n� = 2d sin(�)





scattering from a structure

sample detector



forward Fourier Transforminverse Fourier Transform
no phase



scattering from a structure
colored by phase

sample detector

inverse Fourier Transform



scattering from a lattice
colored by phase

sample detector



scattering from a lattice
colored by phase

sample detector



scattering from a lattice
colored by phase

sample detector

Scherrer broadening



scattering from a crystal structure
colored by phase

sample detector



Inter-Bragg spots over-sample unit cell



scattering from a lattice
colored by phase

sample detector



scattering from a crystal structure
colored by phase

sample detector



scattering from a crystal structure
colored by phase

sample detector

Spence, J. C. H., Kirian, R. A., Wang, X., Weierstall, U., Schmidt, K. E., White, T., Barty, 
A., Chapman, H. N., Marchesini, S. & Holton, J. (2011)."Phasing of coherent 
femtosecond X-ray diffraction from size-varying nanocrystals", Opt. Express 19, 2866-
2873. 
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Ewald’s “mosaic” picture



Ewald’s “mosaic” picture



mosaic spread = 0 º



mosaic spread = 0.1º



mosaic spread = 0.2º



mosaic spread = 0.4º



mosaic spread = 0.6º



mosaic spread = 0.8º



mosaic spread = 1.0º



mosaic spread = 1.5º



mosaic spread = 2.0º



mosaic spread = 2.5º



mosaic spread = 3.2º



mosaic spread = 6.4º



mosaic spread = 12.8º



Ewald’s “mosaic” picture

What is
this stuff?



Ewald’s “mosaic” picture

What is
this stuff?



Darwin’s original picture
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How big is a “mosaic block”
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•depends on detector distance !!!



mosaic block = “coherence length”

James R. W. (1962) Optical Principles of the Diffraction of X rays. Ox Bow press.



“coherence” effects



Observed “coherence” effects



…what is “incoherence” then?

• light is “coherent”
• near-zero divergence
• near-zero dispersion
• crystal cannot rotate
• crystals may be 1 mosaic block
• are small crystals “more perfect”?
• will we see any spots?!
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scattering from two atoms
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sample detector



beam divergence

1000 mm



beam divergence
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beam divergence
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beam divergence

1000 mm
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1 mrad
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beam divergence

1000 mm

300 um

0.3 mrad

60 seconds



divergence = 0 º



divergence = 0.3 º



dispersion = 0



dispersion = 0.014%



dispersion = 0.25% 



dispersion = 0.6%



dispersion = 1.3%



dispersion = 2.6%



dispersion = 5.1%











Every spot is an unpaired partial!

Ispot = k Ncells
2

Ewald sphere
range



Every spot is an unpaired partial!

Ewald sphere
range

Ispot = k Ncells
1

Woolfson, M. M.  (1997). An introduction to X-ray crystallography. Ch. 2 & 6
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nearBragg program
http://bl831.als.lbl.gov/~jamesh/nearBragg/

•“assumption-free” total scattering

•no Fourier Transform

•no unit cells

•no “mosaicity”

•arbitrary “atoms”

•arbitrary “source”

•coherent or not



fastBragg program
http://bl831.als.lbl.gov/~jamesh/fastBragg/

•“total scattering

•Fourier Transform

•unit cells

•no “mosaicity”

•structure factors
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“coherence” effects



“coherence” effects

“speckle”



lysozyme: real and reciprocal


