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Obtaining robust predictions from string theory has proven to be very challeng-

ing, simultaneously due to the vast number of possible vacua in the landscape

and to the overwhelming geometric complexity of Calabi-Yau manifolds. We

will present a promising new approach, applicable in the subset of string theory

vacua possessing a warped throat region, in the form of a systematic procedure

for perturbing Calabi-Yau cones. Most of the complexity of the bulk geometry

is filtered out by the warping and effective descriptions for models constructed

in the warped regions can be explicitly obtained. We will demonstrate the ap-

plication of our procedure by analyzing the potential for angular moduli of an

anti-D3-brane sitting at the tip of a Klebanov-Strassler throat.
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CHAPTER 1

INTRODUCTION

String theory is our current best candidate for a “Theory of Everything,” suc-

cessfully combining quantum theory and gravity in a consistent framework.

This is truly a monumental theoretical achievement and the predictions of string

theory at the smallest scales, where the quantum nature of gravity becomes

important, are highly distinct. Qualitatively, it predicts that the fundamental

constituents of the universe are tiny loops of vibrating energy. Nevertheless,

at longer length scales—from those at which current particle accelerators op-

erate up to the scales of galaxies and the cosmos as a whole—the predictivity

of string theory seems to break down. This is because string theory contains a

vast number of possibilities for the low energy configuration of the universe.

This so called string theory landscape 1 has been estimated to contain over 10500

possible universes [1].

Yet theorists have had great difficulty explicitly constructing realistic mod-

els, in string theory, of the principal physical aspects of the observed universe

(namely of the particle interactions and the inflationary stage of cosmic expan-

sion). This is due primarily to the overwhelming geometric complexity into

which the six extra-dimensions tend to settle. If string theory is to have any

hope of being observationally verified, techniques must be developed for con-

structing complete models of realistic four dimensional physics and for extract-

ing any characteristics of these models that are robust within the landscape.

1The term landscape has many controversial connotations in the string theory community.
In this work, we simply use the term to refer to the set of all possible string theory ground states.
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In this work, we set the foundations for a promising approach to addressing

these issues in a particular corner of the landscape. We will see that when the

geometry of the six extra dimensions possesses a highly warped region, mod-

els constructed in this region are to a high degree isolated from the details of

the remaining space. Furthermore, the form of any corrections to the models

generated by the geometry outside this region can be obtained explicitly up to a

finite and manageable set of undetermined parameters. In tuning the values of

these parameters one is effectively varying over the multitude of possible con-

figurations for the remaining geometry. In this way we obtain a high degree

of control over variations in the landscape and are able to calculate all physical

characteristics explicitly, perhaps with the aid of a computer.

1.1 The Need for a More Fundamental Theory

The so called “standard model” successfully accounts for all physical phenom-

ena observed to date and is the most precisely tested scientific theory. It is com-

posed first of a quantum theory of the elementary matter particles (the quarks

and leptons) as well as the interactions between these particles (as mediated

by the gauge bosons). To this one must tack on Einstein’s classical theory of

gravity. This asymmetry between the treatment of gravity and the other funda-

mental interactions causes no problems in the regimes of current observations;

in particle accelerators, gravity has a negligible effect on particle dynamics and

on cosmic scales, quantum fluctuations are not important in determining the

overall space-time geometry of the universe.

However, if we were to probe vastly larger energies (and correspondingly

2



smaller lengths) than those obtained by today’s accelerators, eventually quan-

tum fluctuations of gravity will be excited. But it is known that Einstein’s theory

of gravity is nonrenormalizable meaning that, for quantum process below some

smallest length scale (called the Planck Length lp), the theory yields infinities for

physical observables. Thus the standard model cannot be the whole story and

there must be a more fundamental physical theory that takes over at some scale

above the Planck Length.

String theory avoids the above problem by effectively imposing a lower

bound on physical length scales. It does this, not by some awkward discretiza-

tion of space-time, but by positing that the fundamental building blocks of the

universe are one-dimensional loops of energy (strings) rather than point-like

particles. In a particle theory of nature, one can in principle cause particles in a

collider to approach arbitrarily close to one another by launching them towards

each other at high enough energies. For strings, however, some of the energy the

accelerator provides will end up in the vibrational motion of the string. As the

string vibrates more violently, it tends to “spaghettify,” elongating and forming

highly convoluted configurations (see figure 1.1 below). It then effectively fills

up a volume whose characteristic length grows with energy and this prevents

the centers of two converging strings from approaching arbitrarily close. If one

were to optimize between the two competing effects, one would find a smallest

separation distance that can be achieved called the string length ls > lp.

Let us summarize the salient features of the theory: beyond the closed

strings (strings forming loops), the theory also contains open strings with ends

terminating on extended objects called D-branes. D-branes are multidimen-

sional objects that are dynamical elements of the theory in their own right. Also,

3



Figure 1.1: Low energy strings (left) have simple topology while high en-
ergy strings (right) become highly convoluted effectively occu-
pying a volume which grows with energy

the theory is consistent only if the strings vibrate in ten dimensions (nine space

and one time). In order for this to be consistent with the fact that we have not

observed them, the extra dimensions must be very tiny and curled up on them-

selves.

1.2 Low Energy Physics from String Theory

At the string length and below, the predictions of string theory are more or

less unique. Only a few consistent variants of the theory have been found and

the discovery of various dualities linking them strongly suggests that they are

merely different regimes of a single, even more fundamental theory called M-

theory (see chapter 8 of [2]). However, there is a high degree of degeneracy in

the theory for low energy physics. This is because there is a multitude of ground

states that the universe can settle into.
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The situation is analogous to that which arises for condensed matter sys-

tems. For instance there are two distinct crystal structures that carbon can form

in its solid state — graphite and diamond (see figure 1.2). Although the fun-

damental building blocks (carbon atoms) and their interactions (interatomic

forces) are the same for each case, the two “ground states” have very distinct

physical characteristics; e.g. graphite is soft and opaque while diamond is hard

and transparent. In string theory, the ground state is something much more

grand than a crystal configuration—it is the state of the universe as a whole in-

cluding its geometry, the types of matter and forces it contains and the values for

the constants of nature. There aren’t just two but a vast number of ground states

that the universe can settle into, each one having distinct physical characteris-

tics. Also, unlike the carbon example where external conditions (temperature

and pressure) uniquely determine which crystal configuration is formed, all of

these string theory vacua are at zero temperature and there are a large number

of them that are sufficiently stable to be possible configurations for our universe.

If it is even possible to detect strings directly at particle accelerators, it will most

likely require vastly higher energies than can be obtained today. Thus if we are

to have a reasonable hope of observationally verifying string theory we must

find ways to get a handle on this landscape of vacua.

Let us be more specific about what characterizes a string theory vacuum.

We want a four dimensional universe so the six extra dimensions must be com-

pact. The non-compact four dimensions must reproduce the geometry of the

observed universe. For late cosmological times they must form a (nearly) flat,

Minkowski space. The ten dimensional metric must take the form,

ds2 = e2A(y)ηµνdxµdxν + e−2A(y)gmndymdyn , (1.1)

in order to preserve the Lorentz symmetry of the four dimensional (external)

5



Figure 1.2: Crystal structure of graphite (top) and diamond (bottom).
Taken from [3].

space. In the above, the metric is factorized into two pieces (see figure 1.3);

the coordinates xµ, µ = 1, . . . , 4, parameterize the external space and the coor-

dinates ym, m = 5, . . . , 10, parameterize the internal six dimensions. The met-

Figure 1.3: The geometry of the ten-dimensional space must take the form
of a product of flat, four-dimensional Minkoski space and a
compact, six-dimensional Calabi-Yau.

ric ηµν of the external space is fixed by observation to be (approximately) the

6



Minkowski metric. It turns out that it is difficult to maintain mathematical con-

trol over the compactification unless the internal dimensions form the topology

of a “Calabi-Yau” space (see [4] for details on these spaces). The metric gmn on

the Calabi-Yau is required to have vanishing Ricci tensor. The warp factor e2A(y)

represents stretching and shrinking of the external space-time as one moves in

the internal space. This is illustrated in figure 1.6 for the example where the

internal space is a one-dimensional line segment. This provides a natural mech-

anism for generating hierarchies of scales between systems that are separated

along the internal directions.

There are many other fields predicted by string theory besides the space-

time metric. The additional bosonic fields (Lorentz invariance prohibits any of

the fermonic fields from being turned on) are the p-form fluxes. These are gen-

eralizations of the Maxwell field strength tensor of electromagnetism—a totally

antisymmetric two-tensor—to totally antisymmetric tensors with an arbitrary

number of indices, p. Each solution for these p-form fields may be characterized

by its integrals over p-dimensional closed surfaces (or cycles) in the Calabi-Yau

that are topologically nontrivial (i.e. they cannot be smoothly contracted to a

point due to some type of obstructing hole in the space). Specifying the magni-

tude of such integrals (the “flux quanta”) for all topologically distinct cycles in

the space uniquely fixes the solution. It turns out that these integrals may take

only a discrete set of values with an upper bound on their magnitude.

There is also the “dilaton” scalar field whose magnitude at any point in the

internal dimensions measures the strength of the interactions between strings

at that location. Finally, there are various localized objects in the theory, e.g. p-

dimensional branes (p < 10) which can be “wrapped” on nontrivial cylces. All

7



this is illustrated in figure 1.4.

Figure 1.4: Nontrivial cycles in the Calabi-Yau can support fluxes (green)
and branes (red). A p-form flux can thread a p-dimensional
cycle. Above, a one-form flux threads the circumference of a
“handle” which is a one-dimensional cycle. A p-dimensional
brane must wrap a (p − 3)-dimensional cycle, the remaining
dimensions of the brane filling the external space.

Without fluxes turned on, there is typically a vast family of Ricci flat metrics

on a given Calabi-Yau, parametrized by hundreds of scalar parameters. Each

of these parameters is a light scalar field in the external space-time and having

a large number of these produces inconsistencies with observation. In type IIB

string theory, a good fraction of these “moduli” (the ones that parametrize the

shape of the space) can be stabilized by turning on fluxes [5]. By stabilize, we

mean that the values of these parameters are fixed to be one or a few discrete

values by the equations of motion, thus effectively removing these degrees of

freedom as moduli. There are also mechanisms to stabilize the remaining mod-

uli (the ones parametrizing the size of the space) e.g. by adding nonperturbative

elements to the solution [6] or by including loop corrections to the supergravity

equations of motion [7].
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Once we have specified the Calabi-Yau, the flux quanta and the types and

positions of any localized objects in the space, the solutions for the remaining

fields are uniquely determined. We will thus take these degrees of freedom as

parameterizing the space of string vacua. It is not known whether or not the

number of six dimensional Calabi-Yau manifolds is finite. It is known that the

number is vast; tens of thousands of examples have been enumerated [4]. Even

if we fix the choice of Calabi-Yau, there are typically hundreds of integers that

need to be specified in order to fix the fluxes, and each of these integers can take

on hundreds of possible values. This leads to an exponentially large set of vacua

for the universe.

1.3 Local Model Building and Warped Throats

Although we can indirectly deduce a vast number of possible solutions for our

universe in string theory, it has thus far proven very difficult to fully and explic-

itly construct an example. This is due to the geometric complexity of compact

Calabi-Yau manifolds. While one can infer the existence of large numbers of

such spaces, explicit construction of such a compact Calabi-Yau and its Ricci flat

metric has only been achieved in very artificial examples. The key insight of

the local model building approach is that there are many non-compact Calabi-

Yau solutions (called “warped throats”) which are explicitly known. Since both

compact and non-compact Calabi-Yau manifolds locally satisfy the same equa-

tions of motion, it is possible to find compact Calabi-Yau manifolds that possess

regions that locally approximate the geometry of finite patches of non-compact

Calabi-Yau manifolds. If all relevant systems are constructed within this region,

one can make the approximation of using the warped throat geometry in place

9



of the region’s local geometry and calculations can be performed explicitly.

Let now describe these warped throat geometries in detail. We begin with

flat ten-dimensional Minkowski space,

ds2 = dxµdxµ +
(
dr2 + r2dΩ2

5

)
, (1.2)

where we have chosen to use Minkowski coordinates for the four-dimensional

external space-time and spherical coordinates for the six extra dimensions. We

have denoted the canonical metric on the five sphere by dΩ2
5. If we place a

stack of D3-branes (extend objects taking up three spatial dimensions) at r = 0,

oriented so that they fill the external space but are only a point in the extra six

dimensions, then we get a metric which resembles that of a black hole

ds2 =

(
1 +

L4

r4

)−1/2

dxµdxµ +

(
1 +

L4

r4

)+1/2 (
dr2 + r2dΩ2

5

)
, (1.3)

where L4 = 4πgsN l4
s , gs is the string coupling constant and N is the number

of stacked D3-branes which must be taken large for the above solution to be

valid. If we ignore the three dimensions along which the D3-branes extend,

the above solution is the Schwarzchild black hole in seven dimensions. With

the directions along the branes included however, we see that the singularity

is not a line (corresponding to a point source) but a four-dimensional hyper-

surface (corresponding to a planar source). Similarly, the horizon is not strictly

spherical as in the Schwarzchild solution. Rather, it runs parallel to the singular

surface in the external directions. Such a solution is called a “black brane.”

For large r, the metric (1.3) asymptotes to flat Minkowski space as we would

expect by locality. We are interested in the geometry near the horizon where

r → 0. Here the metric becomes

ds2 ≈

( ( r
L

)2
dxµ dxµ +

dr2

r2 L2
)

+ L2 dΩ2
5 . (1.4)
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The second term is the metric of a five-sphere whose size becomes constant for

small r as depicted in figure 1.5 which makes apparent why the geometry is

called a “throat.” The first term is the standard metric on five-dimensional Anti-

deSitter space (AdS) so that the total geometry is AdS5 × S 5.

Figure 1.5: Far from the stack of branes the geometry becomes flat but for
small r the geometry is tube-like.

Note that if we instead started with the space

ds2 = dxµdxµ +
(
dr2 + r2ds2

B5

)
, (1.5)

where B5 is any five-dimensional compact Einstein space, then by placing a

stack of D3-branes at r = 0 one would obtain the near horizon geometry

ds2 ≈

( ( r
L

)2
dxµ dxµ +

dr2

r2 L2
)

+ L2 ds2
B5
, (1.6)

which is AdS 5 ×B5. In the case B5 , S 5, the metric (1.5) has a conical singularity

at r = 0.

The occurrence of the AdS factor is of great significance, as we will see in

the next sections, and we should therefore review some of its noteworthy prop-

erties. First off, the isometries of AdS include the four dimensional Poincare

11



group on the coordinates xµ plus a scaling symmetry which takes xµ → λxµ and

r → λ−1r. This scaling symmetry corresponds with a physical distortion of scales

that occurs as one moves in the r direction; e.g. if one sends two light signals in

the positive r direction, initially starting at position ri and spaced a distance l

alone the xµ directions, then they will arrive at a position r f spaced a distance

ri
r f
· l. Indeed, we can think of AdS space as a family of copies of Minkowski

space, parametrized by r, whose relative size varies with r (see figure 1.6).

Figure 1.6: AdS is a family of copies of Minkowski space, parameterized
by r, which become more and more stretched as we move to
small r. Taken from [8].

Furthermore, the AdS space has a boundary at r = ∞. Although starting

from a finite r and moving out to r = ∞ while keeping the other coordinates

fixed corresponds to moving through an infinite proper distance, massless par-

ticles traveling on null geodesics can make it out to r = ∞ and back in a finite

time. This means that, unlike for Minkowski space, initial data in the interior of

the space (the bulk) is not sufficient to determine the future evolution; we must

also specify boundary conditions.

The AdS metric is ill defined as r → ∞. In order to define a metric on the
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boundary space, one must perform a conformal transformation ds2 → f 2(r) ds2

such that the resulting metric is finite as r → ∞. While this procedure produces

a Minkowski metric on the boundary, any f(r) that scales asymptotically as 1
r2

is an equally valid choice. This means that any metric on the boundary space

obtained by a rescaling is equally valid. Therefore the boundary space has a

conformal structure. Any physics on the boundary that maps to dynamics in

the bulk must be conformally invariant.

Actually, the throat solution we have obtained still requires some modifica-

tion. The horizon at r = 0 is an infinite proper distance away from any point

in the interior with r , 0. It would be preferable to have the throat terminate

smoothly at a small but nonzero value of r, rather than allowing it to extend

indefinitely downward. If we take B5 , S 5 in equation (1.6), the presence of

the conical singularity allows for the existence of an exotic type of brane called

a fractional D3-brane. Once a stack of these are added, the geometry is de-

formed as depicted in figure 1.7. For large r the geometry is asymptotically that

of equation (1.6). However, AdS is smoothly cut off at a small finite value of

r. The canonical example of this type of solution that we shall be using in this

work is the Klebanov-Strassler (KS) throat [9]. This is the case where B5 is taken

to be the homogeneous space T 1,1 = ( S U(2) × S U(2) ) /U(1).

It is easy to arrange for such a throat to be present in a compactification.

Conical singularities are generic in compact Calabi-Yau manifolds. If we place

the appropriate configuration of branes at such a singularity, the local geometry

will be that of a warped throat. For large r, the throat will taper into the original

compact space instead of extending indefinitely, as depicted in figure 1.8.
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Figure 1.7: The KS solution is like a cone with a rounded tip. The large
r regime approximates AdS but the space is smoothly cutoff
at small but finite r. The circular dimension indicated above
actually represents the five-dimensional angular space B5.

1.4 The Gauge / Gravity Duality

Besides providing an explicitly calculable local geometry for model building,

warped throats have the appealing feature of having dual descriptions in terms

of strongly coupled field theories. The simplest form of the so called gauge

/ gravity duality states that a theory of gravity on Anti-deSitter space is dual

to a conformal field theory (CFT) on its boundary space. More precisely, for

every field of the gravity theory φ there is a dual operator Oφ in the CFT. The

dimension of the operator is determined by the AdS mass of φ; e.g. if φ is a

scalar, then the dimension is given by ∆ (∆ − d) = m2L2, where d is the number

of dimensions of the AdS space. One can obtain correlation functions of the

14



Figure 1.8: Deep in the warped region the geometry is coincident with the
infinite throat. At larger distance the region tapers off into the
compact bulk.

operator Oφ from the gravity side using the prescription

〈
e−

∫
dx4 φ0(x)Oφ

〉
CFT

= ZQuantum Gravity on AdS

[
φ|r→∞ = r∆−4 φ0(x)

]
(1.7)

≈ e−S Gravity On−Shell(φ)
∣∣∣
φ|r→∞=r∆−4 φ0(x)

.

In the above, ZQuantum Gravity on AdS
[
φ|r→∞ = φ0(x)

]
is the partition function for the

quantum gravity theory on AdS. It is to be evaluated with the boundary con-

ditions that φ(r, x) has the asymptotic form r∆−4 φ0(x) for r → ∞. On the second

line we have assumed that the CFT is strongly coupled in which case the dual

gravity description becomes classical. A saddle point approximation can then

be applied by evaluating the gravity action, on-shell, for the given boundary

conditions. By taking functional derivatives with respect to φ0(x) one generates

the desired correlation functions.

The CFT has two dimensionless parameters: the Yang-Mills coupling gY M
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and the rank N of the gauge group (for simplicity we assume S U(N)). These are

given in terms of gravity parameters as

gY M N =
1

4π
L4

l4
s
, N =

L4

l4
p
. (1.8)

The isometry group of AdS is isomorphic to the conformal group. In fact the

AdS transformation xµ → λ xµ, r → λ−1 xµ maps to the scaling transformation of

the conformal theory. This implies that the radial coordinate r of AdS is dual

to the energy scale in the CFT; the radial dependence of a gravity solution for

a field gives the RG flow of the corresponding operator in the CFT. Large r

corresponds to the UV of the field theory and small r to the IR. This corresponds

with our description in figure 1.6 of AdS as a family of copies of Minkowski

spaces, related to each other by a rescaling.

The Klebanov-Strassler throat is also dual to a gauge theory. Since the KS

throat is only asymptotically AdS, the dual theory is only approximately con-

formal in the UV. The deformation of the tip of the KS solution corresponds to

the spontaneous breaking of the conformal symmetry by condensation and a

mass gap in the IR. Attaching the throat to a compact bulk also has a gauge

theory dual. This corresponds to cutting the field theory off at some UV scale

(corresponding the the value of r where the throat is glued into the bulk) and

coupling it to gravity and the bulk fields.

1.5 Corrections to the Local Throat Approximation

The central innovation of the local model building approach is to build physical

models deep in a warped throat region of a compactification where the geom-

etry looks like that of a noncompact throat as in figure 1.8. This amounts to a
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zeroth order approximation of replacing the warped throat region by a finite

segment of the noncompact throat as in figure 1.9. Gluing into a compact bulk

Figure 1.9: Our lowest order approximation is replacing the warped re-
gion of the compactification with a finite segment of the infinite
throat solution.

will generate corrections to this picture—in order to do so smoothly, the geom-

etry must be deformed in the UV and these deformations will propagate to the

IR (figure 1.10). It turns out that while many features of models are insensitive

to these corrections, there are key physical observables that are determined by

them, solely. For example, the warped throat solutions preserve supersymme-

try. Thus if a model of particle physics is being constructed, supersymmetry

must be broken by elements in the bulk. Then important quantities such as soft

breaking terms are determined solely by bulk corrections.

This might seem a big problem for the local model building program: the

original purpose was to remove the need to contend with the uncontrollable

bulk, but now we see that effects from the bulk are unavoidable. On the con-

trary, the remarkable geometric properties of warped throats make it so that

only a manageable set of simple and explicitly calculable corrections from the
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Figure 1.10: We can incorporate the effects of gluing into the bulk by con-
sidering arbitrary perturbations to the UV boundary condi-
tions.

bulk survive in the deep IR—all of the unmanageable parts of the information

from the bulk are still filtered out. The responsible “remarkable geometric prop-

erties” are the very same that allow the throat to have a gauge theory dual.

Actually the mechanism responsible for this in the gauge theory picture is

quite familiar: it is just the Wilsonian Renormalization Group (RG) flow. Let

us review Wilson’s approach to obtaining an effective low energy description

when the UV physics is unknown. We imagine that there is some energy cutoff

Λ beyond which the UV physics becomes important. This is modeled by having

a cutoff on our low energy CFT where it is coupled some new dynamics. If we

integrate these degrees of freedom out of the fundamental Lagrangian, then we

get some general deformations to the CFT at the scale Λ:

LUV = LCFT + δLUV . (1.9)

There is a vast number of possible operators that could be included in δLUV .

However, if we run this effective Lagrangian to the IR where we are interested
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in doing our physics, only the most relevant modes survive

LIR = LCFT +
∑
∆≤4

c∆O∆ . (1.10)

The above sum runs over all relevant operators O and the c∆ are undeter-

mined Wilson coefficients. The set of possible operators that can appear in the

sum is typically highly constrained by renormalizability and by symmetries. So

all though we do not know the UV physics that determines the Wilson coeffi-

cients, we only have a finite and rather manageable set of unknown numbers to

contend with. We can determine these by making a finite set of measurements.

After this is done, we have full predictivity for all other physical processes. Said

another way, this procedure has constrained the Lagrangian enough so that we

can make correlative predictions that are experimentally observable.

It would be nice if we could apply this type of analysis directly on the gauge

dual of our throat. Unfortunately, the gauge dual is strongly coupled and so

we cannot compute the running of operators. However it is straightforward to

perform the gravity dual of the Wilsonian procedure. The unknown UV physics

corresponds to the bulk of the compactification. Integrating it out corresponds

to replacing this bulk with arbitrary deformations of the UV boundary condi-

tions of the throat. We then propagate to the IR by solving the equations of

motion for the various supergravity fields. We will find that only a moderate

number of modes survive in the IR for each of the supergravity fields:

δφ(r,Ψ) ≈
∑
∆≤4

c∆ r∆−4 Y∆(Ψ) . (1.11)

In the above Ψ stands for the set of angular coordinates on B5. There is no xµ

dependence since the resulting solution must be Poincaré invariant. The Y∆(Ψ)

are angular harmonics on B5. Equation (1.11) then strongly constrains the form
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of the corrected supergravity fields in the IR of the throat. Moreover we can

estimate the orders of magnitude of the c∆ on physical grounds. Then, just as

we can make predictions for colliders in the absence of data on UV physics with

an effective field theory, we can sweepingly extract correlative predictions from

a sizable portion of the landscape without having any direct control over the

bulk Calabi-Yau manifolds in these vacua.

1.6 Outline

This program for treating corrections to the local geometry was initiated in [10,

11, 12]. The purpose of this work is to carry it out fully, so that we have a

complete and systematic procedure for dealing with such corrections, and also

to demonstrate how to apply the scheme effectively.

In chapter 2 we describe such an expansion procedure in full detail: in §2.2

we overview our scheme, and then expand the equations of motion of type IIB

supergravity. We then present our method: we show that upon obtaining the

homogeneous solutions for all supergravity fields, as well as all the associated

Green’s functions, it is straightforward to write down the inhomogeneous so-

lution for any field of interest, to any desired order. In §2.3 we summarize the

homogeneous solutions for each field, deferring details to Appendix B. In §2.4

we write down formal Green’s function solutions for arbitrary fields. In §2.5 we

obtain the radial scalings of the various contributions to the supergravity fields,

allowing efficient identification of the most important fields in a given problem.

We summarize in §2.6.

In chapter 3 we apply the scheme to the stabilization of the moduli associ-
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ated with an anti-D3-brane sitting at the tip of a KS throat: in §3.1 we set down

some preliminaries about the compactifications that we will consider and about

the anti-D3-brane potential. In §3.2 we derive the set of appreciable corrections

to the throat geometry that can be induced by compactification. In §3.3 we as-

semble all necessary information concerning the spectrum of Kaluza-Klein ex-

citations of T 1,1. We use these results in §3.4 we determine the size of the mass

term for the anti-D3-brane moduli that results from compactification effects. We

conclude in §3.5.

Appendix A presents the structure of the source terms in the equations of

motion, while Appendix B contains the details of the homogeneous solutions

and Green’s functions for the scalar, flux, and metric modes. In appendix C

we provide the spectroscopy of metric modes on the Klebanov-Strassler throat

which is used in the main text. The treatment in this appendix is pedagogical

with the aim of enabling the reader to generalize the derivation for the conifold

to an arbitrary cone over a homogeneous base space.
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CHAPTER 2

SYSTEMATIC PERTURBATION OF FLUX COMPACTIFICATIONS

2.1 Introduction

Flux compactifications of type IIB string theory provide a promising framework

for phenomenological and cosmological models in string theory, but the study

of general compact spaces remains difficult. Warped throat regions, which arise

naturally in this setting, are comparatively tractable: a throat region can be ap-

proximated by a portion of a noncompact warped cone, and explicit computa-

tions performed in the local model then serve to characterize the corresponding

sector of the four-dimensional effective theory.

A significant challenge in this context is that the best-understood warped

throat solutions, such as the Klebanov-Strassler throat [9], are noncompact

and supersymmetric, while realistic model-building with dynamical four-

dimensional gravity requires a finite throat region subject to supersymmetry

breaking. It is therefore important to understand finite, non-supersymmetric

warped throat regions of flux compactifications with stabilized moduli.

To first approximation, a finite warped throat can be replaced by a finite seg-

ment of a noncompact warped cone, terminating in the ultraviolet (UV) at some

finite value of the radial coordinate, r = rUV , where the throat is glued into a

compact space. We seek here to understand corrections to this approximation

generated by compactification. From the viewpoint of the supergravity fields

in the throat, the properties of the bulk space determine boundary conditions

on the gluing surface, or UV brane. For a given compact space, one could in
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principle pursue a solution for the throat fields with the corresponding bound-

ary conditions, in a perturbation expansion around the solution obtained in the

noncompact limit that decouples the bulk sources. A significant simplification

is that the solution in a region at radial location r? � rUV is accurately described

by the finite set of modes that diminish least rapidly towards the infrared (IR). In

the dual field theory, this is just the statement that in the deep IR, a description

in terms of the handful of most relevant operators is sufficient. However, even

after making use of this radial expansion, the equations of motion are coupled

in a complicated way, making an analytic solution impractical in general.

Our starting point is the observation that in an interesting class of compact-

ifications, an additional expansion is available. In the scenarios [6, 7, 13] for

Kähler moduli stabilization, the solution is nearly conformally Calabi-Yau, with

fluxes that are nearly imaginary self-dual (ISD). We can therefore formulate a

double perturbation expansion whose small parameters are r?/rUV , and the size

of the deviations on the UV brane from the ISD, conformally Calabi-Yau so-

lution. For brevity we will refer to these as the radial expansion and the ISD

expansion.

Upon expanding the equations of motion to any order n in the ISD expan-

sion, we find a very convenient structure that allows us to disentangle and solve

the equations for the various supergravity fields. To understand this structure,

consider the much simpler model of k scalar functions ϕA, A = 1, . . . k, of a sin-

gle variable r, obeying a general first-order system of equations. On general

grounds the equations of motion for n-th order perturbations ϕ(n)
A around some

chosen background ϕA = ϕ(0)
A (r) take the form

d
dr
ϕ(n)

A = N B
A ϕ

(n)
B + SA , (2.1)
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where the matrix N B
A depends on the fields ϕ(0)

C (r), and the source term SA de-

pends on the fields ϕ(m)
C (r), m < n, C = 1, . . . k. If the coefficient matrix N B

A were

constant, one could readily solve this system by standard techniques, whereas

for N B
A = N B

A (r) an analytic solution generally requires that N B
A has some special

structure.

In particular, if N B
A is triangular, i.e. if N B

A = 0 for A < B, then the equations

of motion can be solved iteratively, as we shall explain at length. For constant

N B
A , finding a basis in which equation is in triangular form is an easy exercise

in linear algebra, but the presence of the derivative operator makes this task

highly nontrivial when N B
A is nonconstant. In fact, the problem of finding a

basis in which a given N B
A (r) takes a triangular form involves solving a system

of coupled differential equations that is no easier, in general, than the original

system.

A key result in this chapter is a simple basis in which the supergravity equa-

tions of motion expanded to n-th order around an ISD background take a trian-

gular1 form, allowing us to construct an iterative Green’s function solution. In

contrast to the toy model above, the fields are not all scalars, and are governed

by second-order partial differential equations (i.e., the fields have nontrivial de-

pendence on the angular directions of the cone), but the nature of the simpli-

fication is identical. At each order n in perturbation theory, a privileged field

ϕ(n)
1 at the top of the triangle is sourced by no other fields at order n, so that a

Green’s function solution is straightforward. The next field ϕ(n)
2 is sourced only

by ϕ(n)
1 , while ϕ(n)

3 is sourced by ϕ(n)
1 and ϕ(n)

2 , etc. Thus, we can solve each succes-

sive equation by substituting the solutions from the preceding equations in the

1In fact, we find that the equations take a strictly triangular form, analogous to N B
A = 0 for A ≤

B.
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triangle. The same Green’s functions apply at every order, so that one need only

solve for a single set of Green’s functions, one for each field, and then the solu-

tions to the supergravity equations are readily obtained to any desired order in

a purely algebraic way. We stress that the triangular structure that plays a cen-

tral role in this work appears in the equations of motion expanded around any

ISD background, which need not be a warped Calabi-Yau cone (and need not be

supersymmetric). We focus on cones because the explicit metric and separable

structure of the cone permit direct solution of the equations of motion.

In this chapter we explain this approach in detail, then determine all nec-

essary Green’s functions, so that the enterprising reader can obtain the super-

gravity solution for a general warped Calabi-Yau cone attached to a flux com-

pactification, to any desired order. In practice, we give supergravity solutions

as functions of the angular harmonics on the Sasaki-Einstein base of the cone,

with radial scalings determined by the corresponding eigenvalues. For the case

of T 1,1, the necessary eigenvalues and eigenfunctions are available in the liter-

ature; to use our method for a more general cone, one would need to compute

the angular harmonics on the base.

A related approach was used in [11, 12] to study the inflationary model of

[14], which involves the attraction of a D3-brane toward an anti-D3-brane in a

warped throat. However, the works [11, 12] made extensive use of the facts that

a D3-brane couples only to a particular scalar combination of the supergravity

fields, denoted by Φ−, and that the dominant source for Φ− is imaginary anti-

self-dual (IASD) flux G−. Thus, it was possible to restrict attention to the fields

Φ− and G−, and to truncate at quadratic order. In this work we fully complete

this program for all supergravity fields, to all orders, permitting a much broader
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range of applications.

We remark that a similar structure in the equations of motion for global

symmetry singlet perturbations linearized around the Klebanov-Strassler back-

ground was identified in [15] and played a role e.g. in [16, 17]. In contrast to

those works, we establish and utilize a triangular structure to all orders, in

expansion around a general ISD background. Our explicit results and sepa-

rable solutions are not restricted to the singlet sector, but apply only in the

approximately-conformal region above the tip of a warped Calabi-Yau cone,

whereas the formulation of [15] applies throughout the deformed conifold.

Another useful result of this chapter is a simple formula for the radial scaling

(i.e., parametric dependence on r?/rUV) of a general n-th order correction. In a

canonical basis, the n-th order corrections at some point in the throat have the

same scalings as the n-th order products of the harmonic modes at that point.

In particular, this implies that the ‘running’ sizes of the harmonic modes are

faithful expansion parameters. We anticipate that our formula for the scaling

of a general perturbation will be of use in determining the parametric sizes of

physical effects mediated through warped geometries.

Although KKLT compactifications provide significant motivation for the ge-

ometries described herein, our approach applies more broadly, to type IIB com-

pactifications subject to controllably small violations of the ISD conditions. In

this connection, we remark that one might naively expect that all modes of the

supergravity fields have coefficients of order unity at r = rUV, where the throat

merges into the bulk. Then, for a sufficiently long throat, any relevant modes

will grow exponentially large, and the throat geometry will be destroyed in the

IR. We will find instead that, for a class of throats of broad interest, all relevant
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modes either violate the ISD conditions or violate the supersymmetry of the

background throat geometry. In particular, we will show that in the concrete

example of a Klebanov-Strassler throat in a KKLT compactification, all relevant

modes remain perturbatively small all the way to the tip of the throat. Extend-

ing this result to more general throats in more general nearly-ISD compactifica-

tions is an interesting direction for the future.

Although we give detailed results for perturbations induced by boundary

conditions on the UV brane, corresponding to sources such as D-branes, ori-

entifold planes, fluxes, and quantum effects in the bulk, our methods apply

equally well to the study of perturbations induced in the infrared.

2.2 Setup and Method

We begin by writing down the equations of motion and describing the ISD back-

ground around which we perturb. In §2.2.2 we expand the equations of motion,

and in §2.2.3 we show that in our chosen basis, the equations of motion for the

perturbations take on a triangular form at any order. Using this structure, we

develop an iterative, purely algebraic method for solving the perturbed equa-

tions to all orders.

2.2.1 Equations of motion and background solution

We consider type IIB compactifications of the form

ds2 = e2A(y)gµνdxµdxν + e−2A(y)gmndymdyn , (2.2)
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F̃5 = (1 + ?10) dα(y) ∧
√
− det gµν dx0 ∧ dx1 ∧ dx2 ∧ dx3 , (2.3)

Gmnl = Gmnl(y) , m, n, l = 4, . . . 9 , (2.4)

GµNL = 0 , µ = 0, . . . 3 , N, L = 0, . . . 9 , (2.5)

τ = τ(y) , (2.6)

where we are using the conventions and notation of [5], with the modification

that ghere
mn = g̃there

mn . We generalize the setup of [5] slightly by allowing for a maxi-

mally symmetric spacetime gµν. If we define the quantities

G± ≡ (?6 ± i)G3 , (2.7)

Φ± ≡ e4A ± α , (2.8)

Λ ≡ Φ+G− + Φ−G+ , (2.9)

then the equations of motion and Bianchi identities take the form

∇2Φ± =
(Φ+ + Φ−)2

96 Im τ
|G±|2 + R4 +

2
Φ+ + Φ−

|∇Φ±|
2 , (2.10)

dΛ +
i

2 Im τ
dτ ∧ (Λ + Λ̄) = 0 , (2.11)

d
(
G3 + τH3

)
= 0 , (2.12)

∇2τ =
∇τ · ∇τ

i Im(τ)
+

Φ+ + Φ−

48i
G+ ·G− , (2.13)

R6
mn =

∇(mτ∇n)τ̄

2 (Im τ)2 +
2

(Φ+ + Φ−)2∇(mΦ+∇n)Φ− − gmn
R4

2 (Φ+ + Φ−)
(2.14)

−
Φ+ + Φ−

32 Im τ

(
G pq

+ (m Ḡ− n) pq + G pq
− (m Ḡ+ n) pq

)
,

where R4 is the four-dimensional Ricci scalar of gµν, and covariant derivatives

∇m and contractions are constructed and performed using gmn. We have also

dropped all contributions from localized sources. We will make use of an equiv-

alent form for the Φ+ equation of motion:

− ∇2Φ−1
+ =

1
96 Im τ

(Φ+ + Φ−)2

Φ2
+

|G+|
2 +
R4

Φ2
+

+
2

Φ2
+

{ 1
(Φ+ + Φ−)

−
1

Φ+

}
(∇Φ+)2 . (2.15)
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In this work we will set R4 → 0, gµν = ηµν, which is appropriate for modeling

late-time physics. For an example of incorporating curvature corrections in the

context of inflation, see [12].

The background solution of equations (3.9)-(3.13) for our analysis will obey

the conditions

G− = 0 , (2.16)

Φ− = 0 , (2.17)

∇τ = 0 . (2.18)

In a slight abuse of language, we will refer to (3.16)-(2.18) as the ISD conditions,

and to the corresponding background as an ISD solution. (Properly speaking,

(2.18) can be violated in solutions usually described as ISD, e.g. in no-scale

F-theory compactifications.) As motivation for this starting point, we remark

that KKLT compactifications [6] based on conformally Calabi-Yau spaces in-

volve controllably small deviations from ISD backgrounds, as we will explain

in §2.2.2.

Furthermore, we will assume that the background solution contains a

warped throat region. Specifically, we consider a throat for which the internal

metric takes the form of a Calabi-Yau cone C6,

ds2
C6

= gmn(y)dymdyn = dr2 + r2ds2
B5
, m, n = 4, . . . 9 , (2.19)

over some Sasaki-Einstein base B5 with metric g̃i j,

ds2
B5

= g̃i j(Ψ) dΨidΨ j , i, j = 5, . . . 9 . (2.20)

(Throughout this paper, we use the letters i, j, k, l to represent angular values

for the indices and m, n, p, q for general internal indices.) We will further as-
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sume that the geometry is approximately AdS, so that the background warp

factor takes the form

e−4A =
C1 + C2 ln r

r4 , (2.21)

where the constants C1 and C2 are determined by the background fluxes F5, F3,

and H3.

In many solutions of interest, the throat terminates at a finite radial distance,

either smoothly, as in the Klebanov-Strassler solution [9], or through the appear-

ance of a horizon or singularity. In either case, the IR region of the throat, below

some position r = rIR, will necessarily deviate from the approximately AdS form

(2.19, 2.20, 2.21), and one will need to include corrections arising from the tip in

a systematic expansion as well. Our approach yields a reliable description of

the intermediate regime rIR � r � rUV that is far from the tip and far from the

UV brane.

2.2.2 Perturbative expansion of the field equations

Our strategy is to approximate a highly warped region of a flux compactification

in terms of a double expansion around an infinite throat geometry with ISD

fluxes. The system of actual interest deviates in two ways from this simple

background:

• The throat of interest has finite length: the UV region is glued into a com-

pact space, with corresponding deviations from the infinite throat solu-

tion.

• Effects in the bulk of a stabilized compactification typically violate the ISD
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conditions (3.16, 3.17).

Deviations of the first kind will be present even in compact models that every-

where satisfy the ISD conditions, e.g. in the warped compactifications of [5].

Moreover, where the throat is glued to the bulk, these deviations will generally

be of order unity, reflecting the transition from the throat to the bulk. However,

as one moves deeper and deeper into the throat, the bulk geometry has dimin-

ishing influence, and use of the infinite throat geometry should hold to better

and better approximation. Thus, we can perform an expansion that is valid at

some location r = r? � rUV far below the UV brane, with the infinite throat as

the starting point and r?/rUV controlling corrections.

Deviations of the second kind arise from sources in the bulk. Consider one

well-motivated example: to obtain stabilized de Sitter vacua in the scenario of

[6], one incorporates nonperturbative effects on four-cycles, and introduces one

or more anti-D3-branes in warped throat regions. These sources lead to con-

trollably small departures from the ISD conditions, and to controllably small

breaking of supersymmetry. The nonperturbative contributions are exponential

in the four-cycle volumes, while mass splittings due to a given anti-D3-brane

are suppressed by the hierarchy of scales in the corresponding throat, eAmin ≡ a0.

Thus, both sorts of corrections are naturally small. Moreover, the requirement

of a de Sitter vacuum links the scale of the nonperturbative effects and the in-

frared scale of the warped throat, so that all ISD-violating and supersymmetry-

violating effects are controlled by the same small parameter, a0. In summary,

one has a double expansion in terms of the parameters r?/rUV and a0.

In practice, we will find it most convenient to use the magnitudes of the

harmonic modes evaluated at r = r? as our expansion parameters. Specifically,
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let φ be any one of the bosonic supergravity fields Φ±, G±, τ, gmn. The solution

for field φ about the throat background will be given by a homogeneous piece

plus an inhomogeneous piece,

φ = φ(0) + φH + φIH , (2.22)

where φ(0) is the background value of the field. The homogeneous pieces obey

simple harmonic equations and have solutions of the form

φH =
∑

I

(
cI

0

( r
r?

)∆(I)−4
+ cI

1

( r
r?

)−∆(I)
)

Y I(Ψ) , (2.23)

where I is a multi-index encoding the angular quantum numbers. The Y I(Ψ)

are angular harmonics that are of order unity at a general point, while the cI
i ,

with i = 0, 1, are numerical coefficients determined by the boundary conditions.

The inhomogeneous piece of a given field then incorporates the effects of source

terms in that field’s equation of motion.

From (2.23), we see that the cI
i give the sizes of the harmonic modes at r = r?.

Provided that we work in a region where corrections to the background throat

geometry are small, the cI
i will likewise be small. In practice, we will use the cI

i as

our expansion parameters, i.e. we will develop solutions for the inhomogeneous

pieces of the fields in terms of a multiple expansion in the cI
i . Ultimately, the

parametric sizes of the cI
i can be expressed in terms of a0 and r?/rUV, so that

there are only two fundamental expansion parameters.

We now expand the fields around their values in the ISD background. For

each field φ, we expand as

φ = φ(0) + φ(1) + φ(2) + . . . = φ(0) + φH + φ(1)
IH

+ φ(2)
IH

+ . . . . (2.24)

where φ(0) is the background value for the field, φ(1) represents the sum of correc-

tions to the field linear in the cI , etc. It will also be convenient to use a notation
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where the homogeneous piece φH and the inhomogeneous piece φIH are split.

Clearly φH is linear in the cI . The φ(n)
IH

comprise the inhomogeneous piece of the

correction: φ(1)
IH

represents the sum of inhomogeneous corrections to the field

linear in the cI , φ(2)
IH

represents the sum of corrections quadratic in the cI , etc.

With these preliminaries, we can proceed to expand the supergravity equa-

tions (3.9-3.13) around the ISD background. We will examine the n-th order

equations of motion, focusing for the moment on terms that involve the n-th or-

der corrections, as opposed to products of lower order corrections. These terms

are universal, in the sense that at any order n they take exactly the same form:

since we are expanding to order n, whenever we take one of the fields in a term

of an equation to be at order n, all other factors in the term must be taken to be

at order zero.

The resulting equations for the n-th order perturbations around the ISD

background following from equations (3.9-3.13) are

∇2
(0) Φ

(n)
− = SourceΦ−(φ

(m<n)) , (2.25)

d
(
Φ

(0)
+ G(n)

−

)
= −d

(
Φ

(n)
− G(0)

+ + SourceG−, 1(φ(m<n))
)

+ SourceG−, 2(φ(m<n)) , (2.26)

(?(0)
6 + i) G(n)

− = SourceG−, 3(φ(m<n)) , (2.27)

∇2
(0)τ(n) =

Φ
(0)
+

48i
G(0)

+ ·G
(n)
− + Sourceτ(φ(m<n)) , (2.28)

−
1
2

∆
(0)
K g(n)

mn = −
Φ

(0)
+

32Im τ

(
G(0) pq

+ (m Ḡ(n)
− n) pq + G(n) pq

− (m Ḡ(0)
+ n) pq

)
(2.29)

+ 2(Φ−2
+ )(0) ∇(mΦ

(0)
+ ∇n)Φ

(n)
− + Sourceg(φ(m<n)) ,
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d
(
G(n)

+

)
= d

(
G(n)
− − 2i τ(n) H(0)

3 − SourceG+, 1(φ(m<n))
)
, (2.30)

(?(0)
6 − i) G(n)

+ = SourceG+, 2(φ(m<n)) , (2.31)

−∇2
(0)(Φ

−1
+ )(n) = ∇2

(n)(Φ
−1
+ )(0) −

g2
s

96
Im τ(n)|G(0)

+ |
2 (2.32)

+
gs

96

(
G(0)

+ · Ḡ
(n)
+ + G(n)

+ · Ḡ
(0)
+ + 3G(0)

+ m1n1l1
Ḡ(0)

+ m2n2l2
gm1m2

(0) gn1n2
(0) gl1l2

(n)

)
+

( gs

48
(Φ−1

+ )(0) |G+|
2
(0) − 2(Φ−4

+ )(0) (∇Φ+)2
(0)

)
Φ

(n)
− + SourceΦ+

(φ(m<n)) ,

where ∆K denotes the metric kinetic operator

∆Kg(n)
mn ≡ ∇

2 g(n)
mn + ∇m∇ng(n) − 2∇p∇(m g(n)

n)p , g(n) ≡ gpq
(0)g

(n)
pq . (2.33)

We have used the abbreviation “Sourceϕ(φ(m<n))” to stand for all of the source

terms in the equation for field ϕ involving the fields at previous orders m < n.

As an illustrative example, we perform the τ expansion fully in Appendix A,

giving the explicit form of Sourceτ(φ(m<n)).

2.2.3 Method for generating solutions

We will now outline our algorithmic procedure for generating the solutions to

equations (2.25-2.32) to an arbitrary order.

The order in which we arranged equations (2.25-2.32) is of critical signifi-

cance: it reveals the triangular structure of the n-th order equations that will

allow us to disentangle and solve the system. Let us emphasize that the equa-

tions of motion are triangular (in our chosen basis) whenever the background
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obeys the ISD conditions (3.16-2.18), i.e. whenever the background is confor-

mally Calabi-Yau. In expanding around a background that is not ISD, the per-

turbed equations of motion will in general be intractably entangled, making an

analytic solution impractical even at linear order.

Assuming that we have solved for the corrections at all orders before n, we

see that in solving equation (2.25) for Φ
(n)
− , SourceΦ−(φ

(m<n)) may be taken as given.

Thus we can solve via the scalar Green’s function, which we shall denote by Gs.

Having the solution for Φ
(n)
− , we substitute it into equation (2.26) for G(n)

− . Then

all sources appearing in equations (2.26, 2.27) are given and we can solve for G(n)
−

using the flux Green’s functionsGG. Continuing in this way, we can generate the

n-th order solutions for all of the fields.2 The result is an iterative procedure for

generating the solutions, where the results from a lower order are fed into the

next higher order. The seeds for this process are the harmonic modes, which

obey simple equations without mixing between fields:

∇2
(0) ΦH− = 0 , (2.34)

d(Φ(0)
+ GH− ) = 0 , (2.35)

(?(0)
6 + i) (Φ(0)

+ GH− ) = 0 , (2.36)

dGH3 = 0 , (2.37)

∇2
(0)τ

H = 0 , (2.38)

∆
(0)
K gHmn = 0 , (2.39)

∇2
(0)(Φ

−1
+ )H = 0 . (2.40)

Note that when one divides a system of coupled partial differential equations

into homogeneous and inhomogeneous pieces, the homogeneous equations are

2A similar method was used in [18] to find an all-orders local solution with dynamic SU(2)
structure. We thank B. Heidenreich for helpful discussions of this point.
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typically coupled. The fact that we can use the uncoupled system (2.34-2.40) is

another fortuitous consequence of the triangular structure.

Let us explain how this works in detail. At first order, all of the

Sourceφ(φ(m<n)) = 0. Then Φ
(1)
− simply obeys the harmonic equation (2.34), and

thus

Φ
(1)
− = ΦH− . (2.41)

Substituting these harmonic modes as sources in the G− equation (2.26), we find

that, schematically,

G(1)
− =

∫
GG · Φ

H
− + GH− . (2.42)

Because we are solving equations (2.26, 2.27) with all source terms pre-specified,

GH− is given by the uncoupled harmonic equations (2.35, 2.36). Working down

the triangle in the same fashion, one obtains the solutions for all of the fields as

functions of the harmonic solutions.

At order n > 1, the Sourceφ(φ(m<n)) , 0. One needs to carry out the expan-

sion of the equations of motion to order n to determine the form of these terms.

One next plugs in the solutions from previous orders for the Sourceφ(φ(m<n)), and

then proceeds down the triangle just as in the linear case. In this way the solu-

tions for the n-th order corrections are determined as functions of the harmonic

modes. Moreover, one can use the same set of Green’s functions at all orders,

since the structure of the terms involving n-th order fields in equations (2.25-

2.32) is the same for any n. Note that generally one would expect homogeneous

contributions to the solutions at all orders:

φ(n) = φ(n)
IH

+ φ(n)
H
. (2.43)

However, since we are using the coefficients of the harmonic modes themselves
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as expansion parameters in our scheme, we have

φ(n)
H
≡


φH for n = 1

0 for n > 1
, (2.44)

where φH is the all-orders resummation of the harmonic modes.

The two key ingredients for our solutions are the seeding harmonic modes

and the Green’s functions for equations (2.25-2.32). We present the harmonic

solutions in §2.3 and obtain the Green’s functions in §2.4, relegating detailed

derivations to Appendix B. Our results are presented in terms of the angular

harmonics and associated spectroscopy on the base space B5: we expand all

fields (and Green’s functions) in these harmonics, separate the equations of mo-

tion, and solve the resulting radial equations. Thus, our solutions require the

spectroscopy on B5 as input. For the case in which the base space is B5 = T 1,1

(i.e. the Klebanov-Strassler throat), all relevant eigenvalues and eigenfunctions

are known [19, 20, 12, 21]. Moreover, the techniques applied in these works to

T 1,1 can be extended to any homogeneous base space.

A primary goal of this paper is to characterize the effects of perturbations

sourced in the bulk, and we have therefore emphasized non-normalizable per-

turbations in the discussions below. A general finite warped throat would in-

volve normalizable perturbations sourced by effects in the IR (including, e.g.,

the deformation of the conifold, or a supersymmetry-breaking anti-D3-brane),

in addition to the non-normalizable perturbations described in the preceding

section. Moreover, boundary conditions at the tip will in general tie together

normalizable and non-normalizable modes. Incorporating normalizable pertur-

bations presents no technical challenge, and one can simply substitute normal-

izable modes along with non-normalizable modes when generating the Green’s
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function solutions outlined in §2.2.3. Nevertheless, for simplicity of presentation

we will restrict our attention to non-normalizable perturbations in this work.

Further details of our perturbative expansion are deferred to §2.5.

2.2.4 Matching solutions to boundary values

The method described so far takes solutions to the uncoupled homogeneous

equations (2.34-2.40) as input, with the sizes of the corresponding harmonic

modes serving as expansion parameters, and generates an inhomogeneous solu-

tion to any desired order. While this approach efficiently utilizes the triangular

structure of the perturbed equations of motion (2.25-2.32), it is not yet adapted

to solve a boundary value problem on the cone. We now remedy this.

Suppose that one would like to solve a boundary value problem in which

the fields and their derivatives are specified on some slice r = r?, on which

all corrections are small. To apply the method described above, one needs to

extract the values of the cI
i from the boundary data. We first expand the field

value and the first radial derivative at r = r?:

δφ(r?,Ψ) =
∑

I

aI Y I(Ψ) , (2.45)

∂rδφ(r?,Ψ) =
∑

I

bI

r?
Y I(Ψ) , (2.46)

with δφ = φ − φ(0), so that the aI , bI parameterize the boundary conditions. Ex-

panding φIH in harmonics as

φIH (r,Ψ) =
∑

I

φI
IH

(r) Y I(ψ) , (2.47)

38



and using equation (2.23), (2.45, 2.46) give

cI
0 + cI

1 + φI
IH

(r?) = aI , (2.48)

(∆(I) − 4) cI
0 − ∆(I) cI

1 + r? ∂rφ
I
IH

(r?) = bI . (2.49)

We will see in §2.5 that φI
IH

(r?) and r? ∂rφ
I
IH

(r?) are both given by power series

in the cI
i , with coefficients that are of order unity. Thus, we can obtain the cI

i ,

which parameterize the homogeneous solutions, as power series in the aI , bI

that parameterize the boundary conditions, by inverting the series (2.48, 2.49)

to the desired order.

As each of the fields φ can be expanded in an infinite set of modes, equa-

tions (2.48, 2.49) represent an infinite system of coupled equations at each or-

der. However, the triangular structure once again comes to our rescue, so that

solving the system is a matter of straightforward3 algebra, as we now explain.

Suppose for simplicity that all normalizable modes are absent, in which case

boundary condition (2.48) is by itself sufficient. Let us also suppose that there is

some small parameter ε controlling the size of the perturbations on the bound-

ary surface, so that we may expand

cI
φ = (cI

φ)
(1) + (cI

φ)
(2) + . . . (2.50)

aI
φ = (aI

φ)
(1) + (aI

φ)
(2) + . . . (2.51)

where (cI
φ)

(n) and (aI
φ)

(n) are the O(εn) parts of the nonnormalizable coefficient and

boundary value, respectively, for field φ.

Now begin at first order and at the top level of the triangle. At this order, Φ−

3No boundary value problem of interest will be specified in terms of an infinite number of
independent coefficients of harmonics, as such a problem could not even be posed in finite time.
Our approach is applicable when the harmonic expansion truncates, or when the coefficients
of higher multipoles are simply related to the coefficients of lower multipoles, e.g. by a closed-
form expression for the aI , bI for arbitrary I.
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is harmonic, so (2.48) becomes

(cI
Φ−

)(1) = (aI
Φ−

)(1) . (2.52)

Next, Φ− acts as a source for G−. When we expand the Green’s function solution

for this source in modes,(
GIH−

)(1)
(r,Ψ) =

∫
GG · Φ

H
− =

∑
I

(
GIH−

)(1)

I
(r) Y I(Ψ) , (2.53)

we will generically find(
GIH−

)(1)

I
(r = r?) =

∑
J

nJ
I (cJ

Φ−
)(1) =

∑
J

nJ
I (aJ

Φ−
)(1) , (2.54)

where the nJ
I are numerical coefficients of order unity obtained by evaluating

the Green’s function solutions of §2.4 on the boundary surface. In the final

equality we substituted the results from the previous level of the triangle. Equa-

tion (2.48) then gives

(cI
G−)

(1) = (aI
G−)

(1) −
∑

J

nJ
I (aJ

Φ−
)(1) . (2.55)

One can continue in this way down the triangle. Then, moving to higher

order poses no significant challenge. The contributions of the Sourceφ(φ(n<m))

terms to (2.48) are determined by substituting from the previous orders. For

instance, for Φ− at second order, we could expand(
ΦIH−

)(2)
(r,Ψ) =

∫
Gs · SourceΦ−(φ

(n<2)) =
∑

I

(
ΦIH−

)(2)

I
(r) Y I(Ψ) , (2.56)

and would generically find(
ΦIH−

)(2)

I
(r = r?) =

∑
J, J′, φ, φ′

ñJ J′
I (cJ

φ)
(1)(cJ′

φ′)
(1) . (2.57)

Equation (2.48) then gives for the second-order Φ−

(cI
Φ−

)(2) = (aI
Φ−

)(2) −
∑

J, J′, φ, φ′
ñJ J′

I (cJ
φ)

(1)(cJ′
φ′)

(1) . (2.58)
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The reader may inquire why we did not use the aI as the parameters of our

solution from the beginning. In this case the homogeneous piece of equation

(2.43) would no longer vanish at order n > 1. At each order one would have

to enforce boundary conditions tying the new harmonic modes to the inhomo-

geneous solutions, and the work done in imposing these boundary conditions

would effectively amount to the algebraic steps described above. We find the

above approach to be a more systematic way to organize the calculation.

2.3 Homogeneous Modes of the Supergravity Fields

The starting point of our expansion scheme is the set of homogeneous solu-

tions to equations (2.34-2.40). The homogeneous modes are then fed into equa-

tions (2.25-2.32), sourcing the inhomogeneous solutions. As seen from equa-

tions (2.34-2.40), there are three distinct types of homogeneous equations:

Scalar The homogeneous modes of the scalar fields Φ−,Φ
−1
+ and τ obey the

Laplace equation on the cone,

∇2ΦH = 0 , (2.59)

where ∇2 is constructed using the cone metric, equation (2.19).

Flux The homogeneous modes of the flux G± obey the system

d(Φ+ GH− ) = 0 , (2.60)

dGH3 = 0 , (2.61)

where Φ+ is given by its background form, equation (2.21).
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Metric The homogeneous modes of the metric perturbations obey

∆K gHmn = 0 . (2.62)

The solutions below are presented in terms of various harmonics on the an-

gular space B5. Details about these harmonics can be found in §B.1. Throughout

this section, contractions, covariant derivatives, etc. are carried out with respect

to the zeroth-order background metric, equations (2.19), (2.20). In §§2.1,2.2 we

denoted the background by g(0)
mn, but in this section we will drop the superscript

for simplicity of notation. In addition, a tilde above the indices and the deriva-

tives signifies contraction with and construction out of the angular metric g̃i j on

B5.

2.3.1 Homogeneous solutions for the scalars

Consider first the Laplace equation (2.59). Using the cone structure of the back-

ground, we can expand Φ in scalar harmonics Y Is(Ψ) on B5,

Φ(r,Ψ) =
∑

Is

ΦIs(r) Y Is(Ψ) , (2.63)

where the Y Is(Ψ) diagonalize the angular Laplacian

∇̃2 Y Is ≡
1
√

g̃
∂i

( √
g̃ g̃i j∂ jY Is

)
= −λIs Y Is . (2.64)

Now using that the Laplacian decomposes,

∇2 = ∂2
r +

5
r
∂r +

1
r2 ∇̃

2 , (2.65)

the Laplace equation reduces to the following radial equation:

∂2
r ΦIs +

5
r
∂rΦIs −

λIs

r2 ΦIs = 0 . (2.66)
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Thus, the homogeneous solutions for any of the fields ΦH− , (Φ
−1
+ )H , τH take the

form

ΦH (r,Ψ) =
∑

Is

(
Φ

Is
0 r∆(Is)−4 + Φ

Is
1 r−∆(Is)

)
Y Is(Ψ) , (2.67)

where Φ
Is
0 and Φ

Is
1 are constants determined by the boundary conditions, and

where we have defined

∆(Is) ≡ 2 +
√

4 + λIs . (2.68)

By comparison with the standard AdS form, equation (2.23), we see that for a

canonically normalized scalar field, ∆(Is) corresponds to the dimension of the

operator dual to that mode. For the zero mode, λIs = 0, we have ∆(Is) = 4, but

for modes other than the zero mode we have λIs ≥ 5 (cf. §B.1), so that generically

∆(Is) ≥ 5.

2.3.2 Homogeneous solutions for the fluxes

For the homogeneous perturbations of the three-form fluxes G±, we have the

system of equations (2.60), (2.61). The solution of this system is a slight general-

ization of that obtained in [12], now including logarithmic running of Φ+, equa-

tion (2.21). Here we briefly outline the solution, leaving the details to §B.2.1.

Because GH3 is closed by equation (2.61), it can be written locally in terms of a

two-form potential A2. We then expand the potential in terms of two-form har-

monics and solve equation (2.60) for the coefficients of the harmonic expansion.

The result is, cf. equation (B.60),

GH3 = dA2 , (2.69)

A2 =
∑

I2

(
AI2
− r−δ

I2
+ AI2

+

[
(4 − 2 δI2)(C1 + C2 ln r) + C2

]
rδ

I2−4
)

Y I2 , (2.70)
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where AI2
± are constants of integration and C1,2 are the coefficients of the run-

ning warp factor Φ+, cf. equation (2.21). The Y I2
[i j](Ψ) are the transverse two-form

harmonics on B5 that diagonalize the Laplace-Beltrami operator

?5dY I2 = i δI2Y I2 . (2.71)

The eigenvalues δI2 are real and are symmetric under δI2 → −δI2 . In order for

the radial scalings of the modes in equation (2.70) to take on the standard AdS

form, equation (2.23), we identify ∆(I2) = max(δI2 , 4 − δI2). In §B.2.2 we give

formulas expressing the resulting scaling dimensions of flux modes in terms of

the dimensions ∆(Is) of scalar modes.

2.3.3 Homogeneous solutions for the metric

The homogeneous part of the metric perturbation obeys (2.62). To fully utilize

the cone structure of C6 we decompose gHmn into irreducible pieces under general

coordinate transformations of the base space B5. Then gHrr transforms as a scalar,

gHir transforms as a vector, and the trace, g̃H ≡ g̃i jgHi j , and the traceless part,

gH
{i j} ≡ gHi j −

1
5 g̃i jg̃H , of gHi j transform as a scalar and a symmetric traceless two-

tensor, respectively.

In what follows, we will find it convenient to impose a transverse gauge, i.e.

we set

∇̃k̃gHk r = 0 , (2.72)

∇̃k̃gH
{k i} = 0 . (2.73)

After imposing the transverse gauge, some residual gauge freedom remains,

which we use to impose two additional conditions. First, we impose that the

44



constant mode of the trace, g̃H , vanishes. Second, we impose that the Killing

vector modes of gHir vanish (cf. §B.3 for more details).

Solving the homogeneous equation (2.62) is the subject of §B.3.1. There it is

found that in the transverse gauge specified above, equation (2.62) implies that

the only nonvanishing metric component is gH
{i j}, i.e.

gHrr = gHir = g̃H = 0 . (2.74)

Furthermore, when we expand gH
{i j} in transverse-traceless, two-tensor harmon-

ics, equation (2.62) is reduced to a radial equation for the coefficients with the

solution (cf. equation (B.147)),

gH
{i j} =

∑
It

(
gIt

0 r∆(It)−2 + gIt
1 r−∆(It)+2

)
Y It
{i j}(Ψ) , (2.75)

where gIt
0 and gIt

1 are integration constants determined by the boundary condi-

tions, and where we have defined

∆(It) ≡ 2 +
√
λIt − 4 . (2.76)

The Y It
{i j} are the transverse-traceless, symmetric, two-tensor harmonics on B5,

∇̃k̃Y It
{k j} = 0 , g̃i jY It

{i j} = 0 , (2.77)

that diagonalize the angular Lichnerowicz operator

∇̃2Y It
{i j} − 2∇̃k̃∇̃(iY

It
{ j)k} = −λItY It

{i j} . (2.78)

2.3.4 Summary: radial scalings of the homogeneous modes

In this subsection we summarize the radial scalings of all supergravity fields φ

and the dimensions ∆(φ) of the dual operators, as obtained in §§2.3.1, 2.3.2, 2.3.3.

The results are presented in Table 2.1, which we now explain.
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Homogeneous Scalings of the Non-Normalizable Modes

Field Scaling Dimension

r−4 ΦH− r∆(Φ−)−4 ∆(Φ−) = ∆(Is) − 4 , λIs , 0
GH− r∆(G−)−4 ∆(G−) = ∆(δI2 ≥ 2)
τH r∆(τ)−4 ∆(τ) = ∆(Is) , λIs , 0
r−2gH

{i j} r∆(g)−4 ∆(g) = ∆(It)

GH+ r∆(G+)−4 ∆(G+) = ∆(δI2 ≥ 2), ∆(δI2 ≤ −2)

r4(Φ−1
+ )H r∆(Φ−1

+ )−4 ∆(Φ−1
+ ) = ∆(Is) + 4

Homogeneous Scalings of the Normalizable Modes

Field Scaling Dimension

r−4 ΦH− r−∆(Φ−) ∆(Φ−) = ∆(Is) + 4
GH− r−∆(G−) ∆(G−) = ∆(δI2 ≤ −2), ∆(b2)
τH r−∆(τ) ∆(τ) = ∆(Is)
r−2gH

{i j} r−∆(g) ∆(g) = ∆(It)

GH+ r−∆(G+) ∆(G+) = ∆(δI2 ≥ 2), ∆(δI2 ≤ −2), ∆(b2)

r4(Φ−1
+ )H r−∆(Φ−1

+ ) ∆(Φ−1
+ ) = ∆(Is) − 4 , λIs , 0

Table 2.1: The radial scalings of the homogeneous modes of the supergrav-
ity fields. Here ∆(Is) = 2+

√
4 + λIs , where the λIs are the eigenval-

ues of the angular scalar Laplacian, cf. equation (2.64). Further-
more, ∆(It) = 2+

√
λIt − 4, where the λIt are the eigenvalues of the

angular Lichnerowicz operator, cf. equation (2.78). The expres-
sions ∆(δI2 ≥ 2), ∆(δI2 ≤ −2), and ∆(b2) appearing in the flux di-
mensions can be found in equations (B.63, B.64, B.65). Although
we have not explicitly displayed this in the tables, the modes of
G± can have additional logarithmic running of the form r∆G−4 ln r
and r−∆G ln r for the non-normalizable and normalizable modes,
respectively; cf. equations (B.51, B.52).

For canonically normalized fields φ, the radial scalings of the modes and the

dimensions of the operators of the dual field theory are related via the standard

AdS formula (2.23). To start with, the scalar field τ is canonically normalized, so

the dimension of the operator dual to τ is given by

∆(τ) = ∆(Is) = 2 +
√

4 + λIs . (2.79)
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The same is true for the potential A2, and the dimensions ∆(G±) can be read off

from (B.63, B.64, B.65), taking into account the discussion at the end of §B.2.2.

For the ISD flux G+ both A+ and A− modes can be turned on, so that all modes

are present except for non-normalizable Betti modes:

Non-normalizable: ∆(G+) = ∆(δI2 ≥ 2), ∆(δI2 ≤ −2) , (2.80)

Normalizable: ∆(G+) = ∆(δI2 ≥ 2), ∆(δI2 ≤ −2), ∆(b2) , (2.81)

while for the IASD flux G− only A+ can be turned on, and we have

Non-normalizable: ∆(G−) = ∆(δI2 ≥ 2) , (2.82)

Normalizable: ∆(G−) = ∆(δI2 ≤ −2), ∆(b2) , (2.83)

where the expressions for ∆(δI2 ≥ 2), ∆(δI2 ≤ −2), and ∆(b2) are given in equations

(B.63), (B.65), and (B.64), respectively.

Next, it is the warped internal metric e−2A g{i j} ∼ r−2 g{i j} that is the canonical

field [19, 20], corresponding to a dual operator with dimension

∆(g) = ∆(It) = 2 +
√
λIt − 4 , (2.84)

as anticipated by the notation. Finally, Φ− and Φ−1
+ are not canonical fields, but

as explained in [11], the combinations r−4Φ− and r4Φ−1
+ exhibit the same radial

scaling as do the corresponding canonical variables. Now comparing the non-

normalizable and normalizable modes of r−4Φ− with equation (2.23) one can

identify the operator dimensions

Non-normalizable: ∆(Φ−) = ∆(Is) − 4 , (2.85)

Normalizable: ∆(Φ−) = ∆(Is) + 4 . (2.86)
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Similarly, by comparing the non-normalizable and normalizable modes of r4Φ−1
+

with (2.23) one can identify the operator dimensions

Non-normalizable: ∆(Φ−1
+ ) = ∆(Is) + 4 , (2.87)

Normalizable: ∆(Φ−1
+ ) = ∆(Is) − 4 . (2.88)

Notice that ∆(Φ−) and ∆(Φ−1
+ ) exchange roles in going from the normalizable

modes to the non-normalizable modes.

In Table 2.1 we have excluded the zero modes of both τ and Φ− for the non-

normalizable modes (scaling like r0) while for the normalizable modes we have

excluded that of Φ−1
+ (scaling like r−4). For τ, the non-normalizable zero mode

corresponds to a constant shift of the axion Re τ ≡ C0 and the dilaton Im τ ≡

e−φ. A constant shift of the dilaton can be absorbed in the background value of

g−1
s ≡ Im τ(0), while the axion C0 is shift-symmetric. The non-normalizable zero

mode of Φ− can be gauged away using a constant shift of α, thus preserving the

background Φ
(0)
− = 0. The normalizable zero mode of Φ−1

+ corresponds to a shift

of the constant C1 in the warp factor (2.21), which we will also absorb into the

background value.

2.4 Inhomogeneous Modes: Green’s Function Solutions

The final ingredient of our expansion scheme is the set of inhomogeneous so-

lutions to equations (2.25-2.32). In this section we will write down the Green’s

function solutions for the inhomogeneous scalar, flux and metric modes, again

relegating detailed derivations to the appendix. As discussed in §2.2, the struc-

ture of the equations is the same at every order. Thus, we only need to write
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down one set of scalar, flux and metric Green’s functions, Gs, GG± , and Gg, which

are used at all orders.

The initial seeds for the inhomogeneous pieces are the homogeneous solu-

tions obtained in §2.3. The homogeneous modes are given by angular harmon-

ics multiplying radial powers rα (possibly including logarithmic running (ln r)m,

in the case of flux). Thus, the source terms are of a non-localized nature, and

the standard Green’s functions for localized sources give divergences at the ori-

gin and at infinity when convoluted with the non-localized sources. One could

introduce regulated Green’s function with cutoffs at rIR and rUV, but these intro-

duce large counterterms, and in what follows we will take a more direct route

by solving the equations explicitly.

2.4.1 Inhomogeneous solutions for the scalars

From equations (2.25, 2.28, 2.32) we see that n-th order perturbations of the

scalar fields Φ−,Φ
−1
+ and τ obey Poisson’s equation on the cone

∇2
(0)Φ

(n) = S
(n)
Φ
, (2.89)

where ∇2
(0) is constructed from the background metric of the cone, equation

(2.19). The source dependence on the fields at order n can be read off explic-

itly from equations (2.25, 2.28, 2.32), while the dependence on the fields at order
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m < n is left implicit:

S
(n)
Φ−

= SourceΦ−(φ
m<n) , (2.90)

S
(n)
Φ−1

+

=
gs

96

(
G(0)

+ · Ḡ
(n)
+ + G(n)

+ · Ḡ
(0)
+ + 3G(0)

+ m1n1l1
Ḡ(0)

+ m2n2l2
gm1m2

(0) gn1n2
(0) gl1l2

(n)

)
(2.91)

−
g2

s

96
Im τ(t)|G(0)

+ |
2 +

[ gs

48
(Φ−1

+ )(0) |G+|
2
(0) − 2(Φ−4

+ )(0) (∇Φ+)2
(0)

]
Φ

(n)
− + SourceΦ+

(φm<n) ,

S(n)
τ = Sourceτ(φm<n) − i Φ

(0)
+ G(0)

+ ·G
(n)
− . (2.92)

We start by expanding the fields and the sources in terms of angular har-

monics

Φ(n)(r,Ψ) =
∑

Is

Φ
(n)
Is

(r) Y Is(Ψ) , (2.93)

S
(n)
Φ

(r,Ψ) =
∑

Is

S
(n)
Is

(r) Y Is(Ψ) , (2.94)

so that Poisson’s equation (2.89) reduces to an equation for the radial coefficients(
∂2

r +
5
r
∂r −

λIs

r2

)
Φ

(n)
Is

(r) = S
(n)
Is

(r) . (2.95)

As discussed above, the source SIs will involve a sum of various radial scalings

due to the homogeneous modes

SIs(r) =
∑
α,m

S
(n)
Is

(α,m) rα (ln r)m , (2.96)

and the inhomogeneous solution to Poisson’s equation (2.89) is

Φ
(n)
IH

(r) =
∑

Is

∑
α,m

Φ
(n)
Is

(r;α,m) Y Is(Ψ) , (2.97)

where Φ
(n)
Is

(r;α,m) is given in equations (2.98, 2.100). The solution for Φ
(n)
Is

(r;α,m)

depends on the value of α:

Case: α + 2 , −2 ± (∆(Is) − 2). The solution to equation (2.95) is given by

Φ
(n)
Is

(r;α,m) = S
(n)
Is

(α,m) rα+2 (
a0 + a1 ln(r) + . . . + am (ln r)m)

, (2.98)
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where the coefficients ak are given by

ak = (−1)k+m+1 m!/k!
2 ∆(Is) − 4

[
(α + 2 + ∆(Is))k−1−m − (α + 2 − ∆(Is) + 4)k−1−m

]
. (2.99)

Case: α + 2 = −2 ± (∆(Is) − 2). The solution to equation (2.95) is given by

Φ
(n)
Is

(r;α,m) = S
(n)
Is

(α,m) rα+2 (
b0 + b1 ln(r) + . . . + bm+1 (ln r)m+1) , (2.100)

where the coefficients bk are given by

bk = (−1)k+m+1 m!
k!

(±2∆(Is) ∓ 4)k−2−m , α + 2 = −2 ± (∆(Is) − 2) . (2.101)

2.4.2 Inhomogeneous solutions for the fluxes

We now find the inhomogeneous modes for G± solving equations (2.26, 2.27,

2.30, 2.31). The equations of motion for the n-th order perturbation of G− take

the form

d
(
Φ

(0)
+ G(n)

− + S
(n)
G−,1

)
= S

(n)
G−,3

, (2.102)

(?(0)
6 + i) Φ

(0)
+ G(n)

− = S
(n)
G−,2

. (2.103)

Here the sources S(n)
G−,1

,S(n)
G−,2

are three-forms and S(n)
G−,3

is a four-form. The ex-

pressions for the sources in terms of the n-th order fields can be read off from

equations (2.26, 2.27), where again the dependence on the fields at lower order

is left implicit,

S
(n)
G−,1

= Φ
(n)
− G(0)

+ + SourceG−,1(φm<n) , (2.104)

S
(n)
G−,2

= SourceG−,2(φm<n) , (2.105)

S
(n)
G−,3

= SourceG−,3(φm<n) . (2.106)
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The equations of motion for the n-th order perturbation of G+ are similar to those

of G−:

d
(
G(n)

+ + S
(n)
G+,1

)
= 0 , (2.107)

(?(0)
6 − i) G(n)

+ = S
(n)
G+,2

, (2.108)

where the three-form sources S(n)
G+,1

,S(n)
G+,2

can be read off from equations (2.30,

2.31)

S
(n)
G+,1

= −G(n)
− + 2iτ(n) H(0)

3 + SourceG+,1(φm<n) , (2.109)

S
(n)
G+,2

= SourceG−,2(φm<n) . (2.110)

Both systems are of the form

d (Σ± + S1) = S3 , (2.111)

(?(0)
6 ∓ i) Σ± = S2 , (2.112)

with Σ− = Φ
(0)
+ G(n)

− and Σ+ = G(n)
+ . We first solve the two simpler systems

I :
d
(
Σ

(I)
± + S1

)
= 0

(?(0)
6 ∓ i) Σ

(I)
± = S2

, II :
dΣ

(II)
± = S3

(?(0)
6 ∓ i) Σ

(II)
± = 0

. (2.113)

By linearity the full solution is Σ± = Σ
(I)
± + Σ

(II)
± . The solving of I and II is the

subject of §B.2.3 and here we only present the results.

Flux Green’s function I: From the first equation we see that Σ
(I)
± + S1 is closed

and can locally be expressed as dχ± for some two-form χ±. The solution in terms

of this potential is

Σ
(I)
± = −S1 + dχ± , (2.114)

χ±(y) =

∫
C6

G
(I)
G (y, y′) ∧

(
S2 +

(
?(0)

6 ∓i
)
S1

)
(y′) , (2.115)
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where the explicit form of G(I) is given in equation (B.91). The indices of the

above equation should be interpreted in the following way: the Green’s function

(G(I))mn,p′q′s′ has two legs in the y coordinate system and three legs in the y′ coor-

dinate system. When we wedge G(I)
G with the three-form source S2 + (?(0)

6 ∓ i)S1

we produce a six-form in the y′ coordinates which is integrated over the whole

manifold C6, resulting in a two-form χ±(y) in the y coordinate system.

Flux Green’s function II: In a similar way the solution to system II is given by

Σ
(II)
± =

∫
C6

G
(II)
G (y, y′) ∧ S3(y′) , (2.116)

where the explicit form of G(II) is given in equation (B.106). Here S3 is a four-

form and (G(II))mnp,q′s′ is a (3 + 2′)-form producing a three-form Σ
(II)
± .

2.4.3 Inhomogeneous solutions for the metric

The n-th order perturbations of the metric gmn obey

∆
(0)
K g(n)

mn = (S(n)
g )mn , (2.117)

where the source can be read off from equation (2.29),

(S(n)
g )mn =

Φ
(0)
+

16Im τ

(
G(0) pq

+ (m Ḡ(n)
− n) pq + G(n) pq

− (m Ḡ(0)
+ n) pq

)
(2.118)

− 4
(
Φ

(0)
+

)−2
∇

(0)
(m Φ

(0)
+ ∇

(0)
n) Φ

(n)
− + Sourceg(φm<n) .

As in the homogeneous case, we utilize the cone structure and decompose

the metric perturbations into irreducible pieces under general coordinate trans-

formations of the base space. We continue to impose a transverse gauge on the
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irreducible vector and tensor at each order in perturbation theory, i.e. we set

∇̃k̃g(n)
k r = 0 , (2.119)

∇̃k̃g(n)
{k i} = 0 , (2.120)

together with the additional constraint on the constant mode and Killing vector

modes as discussed in §2.3.3. We end up with a Green’s function solution of the

form

(g(n)
mn)IH (y) =

∫
M′

d6y′
√

g′ (Gg) m′n′
mn (y, y′) (S(n)

g )m′n′(y′) . (2.121)

The Green’s function (Gg) m′n′
mn (y, y′) is valid only in the gauge specified above, cf.

equations (B.174-B.176) in §B.3.2. Note that all components not listed in (B.180-

B.184) vanish in this gauge.

2.5 Radial Scalings of Corrections

The results described above depend implicitly and explicitly on the angular har-

monics, and corresponding eigenvalues, associated with the scalar, flux, and

metric perturbations. Thus, although one can use our results to obtain an ex-

plicit solution to any desired order on a cone whose angular harmonics are

known (e.g., the conifold), this is little consolation when one is faced with com-

puting the eigenfunctions in a more general example. Fortunately, for many

questions of physical interest4 it suffices to determine how corrections scale with

r, obviating the full Green’s function solution. In this section we present results

adapted to extracting radial scalings without obtaining the full angular depen-

dence of the corresponding solutions.

4For example, one might want to estimate the scale of the mass term induced for some object,
such as an anti-D3-brane [10] or a D3-brane [12], or determine the soft masses in a toy visible
sector [22, 23, 24].
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The main result of this section is equation (3.28), which qualitatively states

that the n-th order correction φ(n) of a field φ scales like a sum of products of n

harmonic modes

φ̂(n) ∼
∑

i1,...,in

φ̂Hi1 · · · φ̂
H
in , (2.122)

where the sum runs over subsets of the fields {Φ̂+, Ĝ+, τ̂, ĝ{i j}, Ĝ−, Φ̂−1
+ }, and the

hatted variables are defined in equation (2.126). Throughout this section we will

use ∼ to signify that two objects have the same radial scaling, but may differ by

order-unity angular functions, e.g. we will write rαχ1(Ψ) ∼ rαχ2(Ψ), for angular

functions χ1,2(Ψ) that are of order unity at generic points.

One complication in equation (2.122) is that not every possible product of

harmonic modes contributes in the sum, and one must trace through the ex-

panded equations (2.25-2.32) to see which combinations appear for a given field.

For example, from equation (2.25) for Φ−, one sees that none of the harmonic

modes apart from Φ− itself contributes to the correction at first order. The re-

sults from the first and second order calculations are presented in Tables 2.2 and

2.3, respectively. We expect that at higher order in the expansion, all possible

products will contribute, as the number of ways a particular combination can

propagate through the equations of motion becomes large.

When checking which products of harmonics appear, we will not rule out

the possibility that contractions of indices or convolutions of angular harmonics

with Green’s functions result in a vanishing contribution. If a particular mode

is critical to an analysis, the associated product would need to be examined in

detail by tracing through the equations of motion.
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2.5.1 First-order and second-order scalings

We begin by determining the radial scalings of the inhomogeneous modes at

first order, in terms of the first-order homogeneous modes obtained in §2.3.4. To

make full use of the triangular structure of the equations of motion, we begin at

the top of the triangle, with the scalar field Φ
(1)
− , and work our way downward.

First level Φ
(1)
− : At first order, equation (2.25) for Φ

(1)
− reads ∇2

(0)Φ
(1)
− = 0, so that

Φ
(1)
− is solely determined by its harmonic mode,

Φ
(1)
− = ΦH− . (2.123)

Second level G(1)
− : From equation (2.26) we get at first order d(Φ(0)

+ G(1)
− ) =

−d(Φ(1)
− G(0)

+ ), so that G(1)
− is sourced by Φ

(1)
− . Using equation (2.123) for Φ

(1)
− to-

gether with the radial scalings of the background fields, Φ
(0)
+ ∼ r−4 and G(0)

+ ∼ r0,

we infer that

G(1)
− ∼ r−4ΦH− + GH− , (2.124)

where we also include the homogeneous contribution GH− in the first-order so-

lution.

Third level τ(1): Equation (2.28) for τ(1) reads at first order ∇2
(0)τ

(1) =

Φ
(0)
+ /(48i) G(0)

+ ·G
(1)
− . To find the radial scaling for τ(1) we substitute the radial scal-

ing for G(1)
− , equation (2.124), and the radial scalings for the background fields,

yielding

τ(1) ∼ r−4ΦH− + GH− + τH . (2.125)

Thus, τ(1) inherits a dependence on r−4ΦH− through the solution for G(1)
− .
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Higher levels g(1)
{i j},G

(1)
+ , (Φ−1

+ )(1): We continue in a similar manner, solving for

the radial scalings of all the fields. The result is most efficiently presented in

terms of new fields φ̂, which are defined such that they scale with r in the same

way as the corresponding canonical degrees of freedom:

Φ̂− ≡ r−4Φ− , Ĝ− ≡ G− , τ̂ ≡ τ , ĝmn ≡ r−2gmn , Ĝ+ ≡ G+ , Φ̂−1
+ ≡ r4Φ−1

+ .

(2.126)

Then, the radial scalings at linear order are very simple:

Φ̂
(1)
− ∼ Φ̂H− , (2.127)

Ĝ(1)
− ∼ Φ̂H− + ĜH− , (2.128)

τ̂(1) ∼ Φ̂H− + ĜH− + τ̂H , (2.129)

ĝ(1)
i j ∼ Φ̂H− + ĜH− + + ĝH

{i j} , (2.130)

Ĝ(1)
+ ∼ Φ̂H− + ĜH− + τ̂H + + ĜH+ , (2.131)

(Φ̂−1
+ )(1) ∼ Φ̂H− + ĜH− + τ̂H + ĝH

{i j}+ ĜH+ + (Φ̂−1
+ )H . (2.132)

Notice that in terms of the fields φ̂, the first-order perturbation takes the simple

form φ̂(1) ∼
∑

i φ̂
H
i . The content of equations (2.127-2.132) is also summarized in

Table 2.2.

It is now easy to obtain the radial scaling for the first-order fields, using

the results for the harmonic scalings obtained in §2.3.4. Restricting attention

henceforth to the non-normalizable modes, we find that the radial scalings and

the sizes of the modes at first order are

φ̂(1)(r,Ψ) =
∑
φ

∑
∆(φ)

c∆(φ)
0

(
r
r?

)∆(φ)−4

h∆(φ)
0 (Ψ) . (2.133)

where the first sum runs over contributing fields, and the explicit form of the

angular functions h∆(φ)
0 (Ψ) can be obtained from the full Green’s function analy-

sis.
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As an example, Table 2.2 together with equation (2.133) dictates that the so-

lution for the first-order perturbation Ĝ(1)
− (r,Ψ) takes the form

Ĝ(1)
− (r,Ψ) =

∑
∆(Φ−)

c∆(Φ−)
0

(
r
r?

)∆(Φ−)−4

h∆(Φ−)
0 (Ψ)

 +
∑

∆(G−)

c∆(G−)
0

(
r
r?

)∆(G−)−4

h∆(G−)
0 (Ψ)

 ,
for some order-unity angular functions h∆(Φ−)

0 (Ψ), h∆(G−)
0 (Ψ).

Radial Scalings at 1st Order

Φ− G− τ g G+ Φ−1
+

Φ
(1)
− X

G(1)
− X X

τ(1) X X X
g(1) X X X

G(1)
+ X X X X

(Φ−1
+ )(1) X X X X X X

Table 2.2: In this table we summarize the contents of equations (2.127-
2.132). The fields in the leftmost column label the first-order
modes in equations (2.127-2.132), while the fields in the shaded
top row label the homogeneous modes. A checkmark (X) indi-
cates that the first-order mode receives a contribution with the
corresponding homogeneous scaling, while an empty space in-
dicates that no such scaling is present.

One can perform a similar exercise for the second-order perturbations. We

omit the derivation and present the results in Table 2.3.

2.5.2 Higher-order scalings

We now go on to prove that the n-th order perturbation scales as a sum of prod-

ucts of n harmonic modes, as in (2.122). To see this, we introduce new coordi-

nates ŷm̂ = (r̂, Ψ̂i) related to the coordinates ym = (r,Ψi) through

r̂ = ln r , Ψ̂i = Ψi . (2.134)
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Radial Scalings at 2nd Order

Φ
(2)
− Φ− G− τ g G+ Φ−1

+ G(2)
− Φ− G− τ g G+ Φ−1

+

Φ− X X X Φ− X X X X X X

G− X X G− X X X X X X

τ τ X X

g X g X X

G+ G+ X X

Φ−1
+ Φ−1

+ X X

τ(2) Φ− G− τ g G+ Φ−1
+ g(2) Φ− G− τ g G+ Φ−1

+

Φ− X X X X X X Φ− X X X X X X

G− X X X X X X G− X X X X X X

τ X X X X τ X X X

g X X X g X X X

G+ X X G+ X X

Φ−1
+ X X Φ−1

+ X X

G(2)
+ Φ− G− τ g G+ Φ−1

+ (Φ−1
+ )(2) Φ− G− τ g G+ Φ−1

+

Φ− X X X X X X Φ− X X X X X X

G− X X X X X X G− X X X X X X

τ X X X X X τ X X X X X X

g X X X g X X X X X X

G+ X X X G+ X X X X X X

Φ−1
+ X X Φ−1

+ X X X X X X

Table 2.3: At second order, the perturbation φ̂(2) of a canonically normal-
ized field φ̂ has the radial scaling of a sum of products of
two canonically normalized homogeneous modes, i.e. φ̂(2) ∼∑

i j φ̂
H
i φ̂
H
j , where the range of i j is read off from the above ta-

ble. The shaded rows label φ̂i, the shaded columns label φ̂ j, and
the fields inside white spaces label φ̂. For intersections indicated
by a check mark (X), the corresponding term is present in the
sum, while for an empty space, no such term is present.

These coordinates are convenient because when taking derivatives with respect

to them we do not change the scaling with r, i.e. ∂m̂ φ ∼ φ. This is obvious

for angular derivatives, while for radial derivatives it follows from ∂
∂r̂ = r ∂

∂r .
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When a tensor is expressed in this basis, the radial components and the angular

components scale in the same way since dr̂ = dr
r , e.g. (Ĝ±)r̂ jk ∼ (Ĝ±)i jk ∼ Ĝ± .

Furthermore, we observe that for all non-zero background fields φ(0), the corre-

sponding hatted variables φ̂(0) are of order unity in the entire background throat

solution:

φ̂(0) ∼ r0 . (2.135)

The equations of motion (3.9-3.13) now take the form

r−4 (∇̂2 + 5 ĝr̂m̂ ∂m̂)(r4 Φ̂±) =
(Φ̂+ + Φ̂−)2

96 Im τ̂
|Ĝ±|2̂ +

2
(Φ̂+ + Φ̂−)

|∇̂Φ̂±|
2̂ , (2.136)

dΛ̂ +
i

2 Im τ̂
dτ̂ ∧ (Λ̂ + ¯̂Λ) = 0 , (2.137)

dĜ3 = −dτ̂ ∧ H3 , (2.138)

(∇̂2 + 5 ĝr̂m̂ ∂m̂) τ̂ =
∇̂τ̂ ·̂ ∇̂τ̂

iIm(τ̂)
+

Φ̂+ + Φ̂−

48i
Ĝ+ ·̂ Ĝ− , (2.139)

R̂6
m̂n̂ + Ξ̂m̂n̂ =

∇̂(m̂τ̂ ∇̂n̂) ¯̂τ
2 (Im τ̂)2 +

2
(Φ̂+ + Φ̂−)2

∇̂(m̂Φ̂+∇̂n̂)Φ̂− (2.140)

−
Φ̂+ + Φ̂−

32 Im τ̂

(
Ĝ p̂q̂

+ (m̂
¯̂G− n̂) p̂q̂ + Ĝ p̂q̂

− (m̂
¯̂G+ n̂) p̂q̂

)
.

In the above equations, a hat over a contraction, a modulus-squared, or a raised

index indicates use of the metric ĝm̂n̂. Moreover, the Ricci tensor R̂6
m̂n̂ and all

derivative operators ∇̂m̂ are constructed using the metric ĝm̂n̂. Furthermore,

Ξ̂m̂n̂ represents the term generated by performing the conformal transformation

from R6
mn to R̂6

m̂n̂, which involves derivatives of the coordinate r̂:

Ξ̂m̂n̂ ≡ −4 ∇̂m̂∇̂n̂ r̂ − ĝm̂n̂ ∇̂
2 r̂ + 4∇̂m̂∇̂n̂ r̂ − 4 ĝm̂n̂ ĝp̂q̂ ∇̂p̂ r̂∇̂q̂ r̂ (2.141)

= 4 Γ̂r̂
m̂n̂ + ĝm̂n̂ ĝp̂q̂ Γ̂r̂

p̂q̂ + 4 δr̂
m̂ δ

r̂
n̂ + 4 ĝm̂n̂ ĝr̂r̂ , (2.142)

where Γ̂
γ
m̂n̂ is the Christoffel connection constructed from ĝm̂n̂. Finally, we have

also defined

Λ̂ = Φ̂−Ĝ+ + Φ̂+Ĝ− . (2.143)
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From the form (2.136-2.140) of the supergravity equations in terms of the

hatted fields and coordinates, we can deduce the desired result (2.122). Because

all background fields φ̂(0) scale as r0, all derivatives ∇̂ are logarithmic, and no

coefficient in the equations depends on r, the n-th order perturbation φ̂(n) will

inherit its radial scaling exclusively from the other perturbations. That is, if one

were to expand any of the equations (2.136-2.140) to n-th order, then matching

the radial scalings on either side of the equation one would find a relation of the

form

φ̂(n) ∼
∑

i

φ̂(n)
i +

n∑
p=1

∑
i, j

φ̂
(p)
i φ̂

(n−p)
j +

n∑
p,q=1

∑
i, j,k

φ̂
(p)
i φ̂

(q)
j φ̂

(n−p−q)
j + . . . (2.144)

where the sums run over whichever fields appear in the equation under consid-

eration. We have seen that the scalings of all the fields at linear order are given

by the scalings of the homogeneous modes. Therefore, by iteratively applying

equation (2.144), we deduce that n-th order perturbations scale as

φ̂(n)(r,Ψ) =
∑

i1,...,in

c∆(i1)
0 · · · c∆(in)

0

(
r
r?

)∆(i1)+...+∆(in)−4n

× h∆(i1)...∆(in)(Ψ) , (2.145)

≡
∑

i1,...,in

φ̂∆(i1)
0 (r) · · · φ̂∆(in)

0 (r) × h∆(i1)...∆(in)(Ψ) ,

where the h∆(i1)...∆(in)(Ψ) are angular functions that are of order unity at generic

points in the angular space, and we have defined the running couplings

φ̂
∆(φ)
0 (r) ≡ c∆(φ)

0

( r
r?

)∆(φ)−4
. (2.146)

The formula (3.28) is one of our main results. It states that in the basis speci-

fied in (2.126), the size of the n-th order perturbation of any field φ̂ can be read off

in terms of the sizes c∆
0 of all the homogeneous modes at r = r?, and the dimen-

sions ∆ characterizing the spectrum of Kaluza-Klein masses. That corrections at

order n are proportional to degree n products of the perturbation parameters is
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of course not surprising. However, equation (3.28) says more than this: it shows

that in solving the equations of motion, no addition radial scaling is introduced

that would affect the sizes of the corrections: the sizes of the n-th order inho-

mogeneous corrections at some point in the throat are immediately determined

by n-th order products of harmonic modes at that point. It follows that throat

perturbation theory is naturally organized as an expansion in the running sizes

of the harmonic modes, and the expansion is convergent as long as the seeding

harmonic modes are small.

2.5.3 Conditions for consistency

We now turn to explaining why our perturbative expansion can consistently

describe a warped throat, despite the presence of relevant perturbations. On

general grounds, one might expect the boundary conditions on the UV brane

to activate all possible modes, with coefficients that are not much smaller than

unity. In particular, any relevant modes will grow toward the infrared, and,

given enough range of renormalization group evolution, would ultimately be-

come large and destroy the IR region of the throat. This is a critical issue not just

for our perturbation scheme, but for the existence of metastable vacua in which

antibranes break supersymmetry. If effects in the bulk induce corrections to the

throat geometry that grow precipitously large in the IR, then the vacuum energy

of an antibrane at the tip of the throat is poorly approximated by the antibrane

action in the uncorrected background,

V (0)
D3

= T3 Φ
(0)
+ , (2.147)

and the vacuum energy will in general not remain small in string units, so that

the compactification will be destabilized. This fundamental requirement that
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effects in the bulk do not destabilize the throat, and with it the entire compact-

ification, therefore implies the existence of a perturbative expansion around a

background throat geometry. Our task is to assess whether this requirement

can be met without undue fine tuning.

In a finite warped throat, the hierarchy of scales is finite, so that if every

relevant mode has a sufficiently small coefficient in the UV, all perturbations will

remain small throughout the throat. If effects in the bulk source some relevant

mode

φH = c∆
UV

(
r?

rUV

)∆−4

(2.148)

with ∆ < 4, then this mode will become dangerously large at the tip of the throat,

r = rIR, if

c∆
UV

(
rIR

rUV

)∆−4

& 1 . (2.149)

Thus, using rIR
rUV
∼ eAmin ≡ a0, we see that the size of the mode in the UV must be

c∆
UV . a4−∆

0 (2.150)

in order for the entire throat to be stable against corrections from this mode.

Let us now discuss the circumstances in which (2.150) can hold for all rele-

vant modes. One obviously sufficient condition arises when there are no rele-

vant modes (i.e. modes with ∆ < 4) that are sourced in the bulk. This can occur

if an unbroken symmetry, such as supersymmetry, forbids all relevant modes.5

In fact, a Klebanov-Strassler throat attached to a supersymmetric, ISD flux com-

pactification is stable against compactification effects, because every relevant

mode either violates the ISD conditions or violates the supersymmetry6 of the
5See [25] for a construction utilizing discrete symmetries to protect a non-supersymmetric

throat.
6To be precise, there are relevant perturbations that are consistent with four-dimensional

N = 1 supersymmetry, but the supercharges preserved are different from those preserved by
the background.
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background throat geometry. Thus, in a supersymmetric, ISD compactification,

the existence of a Klebanov-Strassler throat does not require any unnatural fine-

tuning of relevant perturbations.

However, in the same example there exist relevant modes that are incompat-

ible with the supersymmetry of the background throat, but could be sourced by

supersymmetry-breaking effects, e.g. by distant antibranes, fluxes, or nonper-

turbative effects. Thus, one should ask whether supersymmetry breaking in the

compact space tends to induce perturbations that destroy the IR region of the

throat.

Before proceeding, we emphasize that, by construction, in any stabilized

vacuum in which an anti-D3-brane in a warped throat makes a dominant con-

tribution to supersymmetry breaking, the scale of the moduli potential and of

any bulk sources of supersymmetry breaking must obey

Vbulk . 2 a4
0 T3 (2.151)

lest the supersymmetry-breaking energy drive decompactification. Crucially,

this relationship links the scale of supersymmetry-breaking bulk perturbations

to the IR scale of the throat. Arranging this near-equality between disparate

contributions – e.g., anti-D3-brane supersymmetry breaking and gaugino con-

densation on D7-branes – obviously requires a degree of fine-tuning. We are

asking whether further fine-tuning is required to subdue instabilities associated

with relevant perturbations of the throat that are sourced in the bulk.7

If the scale of bulk supersymmetry breaking obeys (2.151), then every

7To differentiate these issues, imagine two warped throat backgrounds A, B with identical
IR scales, with A admitting a large number of relevant modes, and B having no relevant modes
whatsoever. Arranging for (2.151) to hold requires fine-tuning in either case, but throat A is
vulnerable to large corrections from relevant modes sourced in the bulk, while B is not.
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supersymmetry-breaking perturbation has a small coefficient, which by (2.151)

can be expressed in terms of the IR scale a0 of the throat. The particular power

of a0 multiplying a given mode,

φ ∝ aQ
0 (2.152)

can be obtained by a spurion analysis, as in [12].

The dangerous modes in a general throat can be extracted by examining the

homogeneous solutions presented in §2.3 (cf. Table 2.1). We easily see that the

fields Φ−, G3, and g{i j} can all possess relevant (i.e. ∆ ≤ 4) modes, while all modes

of the remaining supergravity fields are irrelevant. Evidently, a throat is robust

if

Q > 4 − ∆ (2.153)

for all modes of Φ−, G3, and g{i j}.

Let us now verify that the Klebanov-Strassler throat obeys (2.153), using the

spectroscopic data for T 1,1 obtained in [19, 20, 12, 21]. First, as explained in

[12], the harmonic modes of Φ− have Q = 4, while G3 perturbations that are

not purely ISD have Q = 2, corresponding to double and single insertions,

respectively, of the supersymmetry-breaking spurion FX ∝ a2
0. As the lowest-

dimension mode of flux has ∆ = 5/2 > 2, perturbations of Φ− and G3 are harm-

less. Finally, the two relevant modes of g{i j} with ∆ = 2, 3 are the bottom compo-

nents of supermultiplets, and hence have Q = 4, completing the proof. Extend-

ing this argument to more general throats would be straightforward given the

necessary spectroscopic data, but is beyond the scope of this work.

The arguments above refer only to harmonic modes. One might have wor-

ried that even if all harmonic modes remain small down to the tip, the solutions

for the inhomogeneous modes could have scalings that are even more relevant
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than those of the harmonic modes. In fact, this is not a problem: our result (3.28)

makes it evident that whenever the harmonic modes are small, the expansion is

convergent. As we have just presented a spurion argument that shows that the

harmonic modes remain small in a Klebanov-Strassler throat attached to a com-

pactification with weakly broken supersymmetry, it follows that a consistent

perturbation expansion exists in such a throat.

2.5.4 Truncation of the expansion: a worked example

The preceding sections have provided a perturbative solution near some loca-

tion of interest, r?, in a double expansion in terms of a0 and r?/rUV . (In particular,

the parametric sizes of the c∆
I can be expressed in terms of a0 and r?/rUV .) To

make use of such a solution, we must consistently truncate the double expan-

sion to some desired accuracy. The simplest way to accomplish this is to specify

the relative sizes of the two expansion parameters,

r?
rUV
∼ aP

0 , (2.154)

for some P ∈ (0, 1], so that in practice there is a single expansion parameter,

taken to be a0 in the above. Then, if the size of some mode in the UV is

φUV ∼ aQi
0 , (2.155)

the size of the mode at r = r? is

c∆
0 ≡ φ(r?) ∼ aQi

0

(
r?

rUV

)∆−4

∼ aQi+(∆−4)·P
0 . (2.156)

Truncation is then straightforward.

We will illustrate the necessary steps in the concrete example of the region
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near the tip of a Klebanov-Strassler throat, where r?
rUV
∼ a0, so that P = 1.8 Sup-

pose that we are interested in going up to an accuracy ∼ a1.5
0 . The most relevant

scalings of each field are [19, 20, 12, 21]

Φ− : ∆Φ− = 1.5, . . . (2.157)

G− : ∆G− = 2.5, 3, 3.5, . . . (2.158)

τ : ∆τ = 4 + ∆Φ− (2.159)

gmn : ∆g = 2, 3, 5.29, . . . (2.160)

G+ : ∆G+
= ∆G− , . . . (2.161)

Φ−1
+ : ∆Φ+

= 8, . . . (2.162)

Now we need the sizes of the modes in the UV. We have already seen that

Φ− scales as a4
0 in the UV, while G− scales as a2

0. The relevant modes of G+ come

paired with modes of G− and thus inherit the a2
0 scaling. We have already shown

that the two relevant modes of the metric scale like a4
0 in the UV. The ∆g = 5.29

mode of the metric, the leading mode of τ, and the ∆Φ+
= 8 mode of Φ+ are all

allowed by supersymmetry and the ISD conditions, and are therefore of order

unity in the UV.

With the above data, we can estimate the sizes of the modes at the tip in

terms of a0. We find that the leading homogeneous modes of each field have

scalings9

Φ̂− ∼ a1.5
0 , (2.163)

Ĝ− ∼ a0.5
0 , a1.0

0 , a1.5
0 , (2.164)

8For simplicity we will neglect perturbations generated in the IR, even when studying the
tip region. This is consistent, for example, if we are investigating the potential along a direction
corresponding to an isometry preserved by the deformation of the tip, as in [10].

9One must be careful to compare the scaling of the hatted fields, as these modes are the
proper perturbation variables.
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τ̂ ∼ a1.5
0 , (2.165)

ĝmn ∼ a1.29
0 , (2.166)

Ĝ+ ∼ a0.5
0 , a1.0

0 , a1.5
0 , (2.167)

Φ̂−1
+ ∼ a8

0 . (2.168)

Notice that there is a hierarchy between the various modes and therefore it

would be inconsistent to truncate at the same order in each. To reach the de-

sired accuracy of a1.5
0 , one considers combinations of the above modes whose

net size is at least a1.5
0 , taking into account the restrictions presented in Tables 2.2

and 2.3. For example, the mode of Ĝ− scaling as a0.5
0 and the mode of Ĝ+ scaling

as a1.0
0 present a possible contribution. Consulting Table 2.3, we find that this

combination of homogeneous modes can source second-order perturbations of

all fields except Φ−.

2.6 Chapter Summary

We have developed a method that yields local solutions of type IIB supergrav-

ity to any desired order in an expansion around a warped Calabi-Yau cone. Our

approach relies on the observation that the equations of motion expanded to

any order in perturbations around a background with ISD fluxes are easily dis-

entangled. Specifically, we identified a basis of fields in which the equations for

the n-th order perturbations take a triangular form. As a result, one can write

down a Green’s function solution to any desired order in a purely algebraic way.

This is a striking simplification, as in expansion around a general background

the equations of motion are typically intractably coupled.
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Next, we obtained all necessary Green’s functions, as functions of the angu-

lar harmonics on the Sasaki-Einstein base of the cone. For cones with known

harmonics, such as the conifold, it is straightforward to obtain explicit solutions

using the tools presented herein. We also presented a simple expression for the

radial scaling of a general n-th order perturbation, so that the size of any de-

sired perturbation is readily estimated. Our result demonstrates that the sizes

of the harmonic modes at a given point in the throat serve as faithful expansion

parameters. For the case of a Klebanov-Strassler throat attached to a KKLT com-

pactification, we showed that our expansion is convergent above the tip, and we

provided a spectroscopic criterion for assessing convergence in a more general

throat.

We anticipate that our results will have applications to local model-building

in flux compactifications of type IIB string theory. Our tools simplify the task

of characterizing the effective action of a sector of fields localized on D-branes

in a throat region, which is a common problem in the study of local models of

particle physics and of inflation. In addition, the methods presented here could

be useful in the study of the long-distance supergravity solutions induced by

supersymmetry breaking on anti-D3-branes. Previous attempts in each direc-

tion have required considerable ingenuity in the choice of ansatz and the basis

of fields, and in most cases it has not been evident whether one could in practice

proceed to higher order. Our purely algebraic approach yields a solution to any

desired order in terms of a single set of Green’s functions.

A second application is to the construction of non-supersymmetric

AdS/CFT dual pairs. Taking a supersymmetric warped Calabi-Yau cone as the

background, one can construct families of non-supersymmetric solutions to any
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desired order in the supersymmetry breaking parameter, as functions of the har-

monics on the base. This provides the prospect of exploring new aspects of non-

supersymmetric, strongly coupled, approximately conformal field theories.10

The principal limitation of our approach is that the Green’s functions and

separable solutions that we have provided apply only in the approximately-

AdS region of a warped Calabi-Yau cone. The triangular structure of the equa-

tions of motion, however, is far more general, applying in expansion around

any conformally Calabi-Yau flux compactification. Extending our methods to

more general supergravity backgrounds is a very interesting question for the

future.

10Solutions making use of the expansion in r?/rUV would be dual to effective conformal field
theories, in the spirit of [26].
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CHAPTER 3

STABILIZING ANTIBRANE PSEUDOMODULI

Supersymmetry breaking by antibranes is a key element in many attempts to

construct de Sitter vacua in string theory. In the type IIB compactifications pro-

posed by KKLT [6], an anti-D3-brane at the tip of a Klebanov-Strassler throat

region [9] provides controllably small supersymmetry breaking [27]. The an-

gular coordinates of such an anti-D3-brane correspond to light moduli in the

effective theory, and could have important phenomenological consequences. In

this work we determine the leading contributions to the masses of these open

string moduli.

The angular coordinates of an anti-D3-brane on the S 3 at the tip of a noncom-

pact Klebanov-Strassler geometry are massless moduli: the noncompact throat

enjoys exact isometries that translate the anti-D3-brane. These isometries are

necessarily broken when the throat is glued into a compact bulk, so that the

angular position moduli of the anti-D3-brane receive mass from what we may

term ‘compactification effects’. Aharony, Antebi and Berkooz (AAB) [10] ar-

gued that the resulting mass could be computed by determining the lightest

Kaluza-Klein modes of T 1,1, corresponding to the most relevant perturbations

of the dual CFT Lagrangian, and identifying the subset of perturbations that

lift the anti-D3-brane moduli space. The lowest Kaluza-Klein mass (or equiva-

lently, lowest operator dimension) could then provide a parametric estimate of

the mass of the anti-D3-brane moduli.

In the analysis of AAB, perturbations lifting the moduli space of a probe D3-

brane were forbidden. We will argue that this restriction, while appropriate for

a no-scale flux compactification along the lines of [5], should not be imposed in
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a KKLT compactification. Moreover, we will find that relaxing this restriction,

i.e. allowing perturbations that produce a force on a probe D3-brane, introduces

a new contribution to the anti-D3-brane potential that is parametrically larger

than the leading contribution obtained in prior work.

In the no-scale compactifications of [5], a D3-brane feels no force at tree level,

and is free to explore the entire compactification without energy cost. How-

ever, the inclusion of an anti-D3-brane in a no-scale compactification leads to

runaway decompactification. Therefore, any discussion of a metastable state

involving anti-D3-branes must be in the context of a compactification with sta-

bilized Kähler moduli, not a no-scale compactification.

The effective action for D3-branes in compactifications whose Kähler moduli

are stabilized by nonperturbative effects is by now well understood [28, 29, 11,

12]. Notably, when nonperturbative effects stabilize the Kähler moduli, the D3-

brane moduli space is lifted by these same effects. Thus, when studying the

effective action of an anti-D3-brane in a stabilized compactification, one should

not forbid perturbations to the supergravity solution on the sole ground that

these perturbations lift the D3-brane moduli space: such lifting is generic in

nonperturbatively-stabilized compactifications.

In this chapter, we obtain the potential for a probe1 anti-D3-brane in a sys-

tematic expansion around a Klebanov-Strassler background. We allow arbitrary

perturbations that lift the moduli space of a probe D3-brane, but we perform a

spurion analysis that reflects the controllably small differences between a no-

scale compactification and a KKLT compactification, at the level of the ten-

dimensional solution. Our analysis is nonlinear in the perturbations sourced

1For advances in understanding the backreaction of an anti-D3-brane, see [30, 31, 32].
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in the bulk of the compactification, and we find important contributions at

quadratic order in perturbations.

We find that the dominant contributions to the anti-D3-brane potential are

mediated by three-form flux, and arise from terms that are absent in the no-

scale limit. The mass induced by fluxes is parametrically larger than the mass

allowed in the no-scale limit. Nevertheless, the central qualitative conclusion

of AAB is unchanged: the anti-D3-brane mass is small compared to the natural

scale at the tip of the warped throat. We conclude that fluxes sourced in the bulk

make the dominant contribution to the potential for angular motion, but there

are light open string moduli in the four-dimensional theory.

In the course of our analysis, we obtain a technical result that could be of

independent interest: we compute the spectrum of Kaluza-Klein excitations of

the metric on T 1,1. In contrast to the ‘method of exhaustion’ used in the seminal

works [19, 20], in which the spectrum of metric perturbations was inferred from

the spectrum of more readily computed modes using superconformal symme-

try, we directly compute the spectrum of the Lichnerowicz operator acting on

symmetric two-tensors. Our results are consistent with small corrections to the

results of [19, 20], for certain modes of the metric and three-form flux, pointed

out in [12].

3.1 Preliminaries

We begin by describing the class of flux compactifications of interest, and then

present the anti-D3-brane potential that will be our primary focus.
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3.1.1 Equations of motion

Following [5],2 we study field configurations of the form

ds2 = e2A(y)ηµνdxµdxν + e−2A(y)gmndymdyn , (3.1)

F̃5 = (1 + ?10)dα(y) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 , (3.2)

Gmnl = Gmnl(y) , m, n, l = 4, . . . 9 , (3.3)

Gµνσ = 0 , µ, ν, σ = 0, . . . 3 , (3.4)

τ = τ(y) . (3.5)

It is convenient to define the quantities

G± ≡ (?6 ± i)G3 , (3.6)

Φ± ≡ e4A ± α , (3.7)

Λ ≡ Φ+G− + Φ−G+ , (3.8)

where we will refer to G+ and G− as imaginary self-dual (ISD) flux and imag-

inary anti-self-dual (IASD) flux, respectively. The equations of motion and

Bianchi identities are

∇2Φ± =
(Φ+ + Φ−)2

96Im τ
|G±|2 +

2
Φ+ + Φ−

|∇Φ±|
2 , (3.9)

dΛ = −
i

2Im τ
dτ ∧ (Λ + Λ̄) , (3.10)

d
(
G3

)
= −d

(
τH3

)
, (3.11)

∇2τ =
∇τ · ∇τ

iIm(τ)
+

Φ+ + Φ−

48i
G+ ·G− , (3.12)

R6
mn =

∇(mτ∇n)τ̄

2(Im τ)2 +
2

(Φ+ + Φ−)2∇(mΦ+∇n)Φ− (3.13)

−
Φ+ + Φ−

32Im τ

(
G pq

+ (m Ḡ− n) pq + G pq
− (m Ḡ+ n) pq

)
,

where ∇2 is constructed from gmn, and we have omitted all contributions from

localized sources.
2Our notation matches that of [5], except that ghere

mn = g̃there
mn .
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3.1.2 Background solution and perturbations

Our goal is to study an anti-D3-brane at the tip of a Klebanov-Strassler throat3

region in a compactification of type IIB string theory with stabilized closed

string moduli. Such a configuration is accurately modeled by an anti-D3-brane

at the tip of a finite region of a noncompact Klebanov-Strassler geometry, sub-

ject to appropriate boundary conditions in the ultraviolet that encode the effects

of sources in the compact bulk [10, 12, 33]. These boundary conditions induce

perturbations of the supergravity fields within the throat.

Approximations for a finite throat

Concretely, we will study a finite segment of the infinite throat solution, sub-

ject to arbitrary non-normalizable4 deformations. A striking simplification in

this approach is that solutions that are completely general in the ultraviolet are

well-approximated in the infrared by the handful of modes that diminish least

rapidly for small values of the radial coordinate. (In the dual field theory, only

the most relevant operators are important in the extreme infrared.) After dis-

carding subleading modes, one is left with solutions parameterized by a finite

set of coefficients. The precise values of these coefficients of course depend on

the details of the entire compactification. However, one can make parametric

estimates of these coefficients, leading to an estimate for the mass scale of the

antibrane moduli.

The fact that we are only interested in the order of magnitude of the cor-

3The analysis presented in this paper could be extended to other types of throats given suf-
ficient knowledge of the spectroscopy of the Sasaki-Einstein base of the corresponding cone.

4One could easily incorporate normalizable perturbations, corresponding to effects gener-
ated in the infrared (see [33]), but this is not of interest for the present work.
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rections at the tip of the throat — concretely, we keep track only of powers of

the warp factor — greatly simplifies matters. Most notably, we can approxi-

mate the Klebanov-Strassler geometry by a simpler warped solution. For the

vast majority of the range of scales over which the corrections are to be run, the

Klebanov-Strassler solution is well-approximated by the Klebanov-Tseytlin so-

lution [34]. We may therefore study a Klebanov-Tseytlin throat that is cut off at

a finite minimal value of the radial coordinate rIR ∼ a0. Moreover, logarithms

make negligible corrections to our scaling estimates, and may be neglected. This

leads to an even simpler model: the warped conifold solution,

ds2
6 = e−2A(y)gmndymdyn = r4

(
dr2 + r2 g̃i jdΨidΨ j

)
, (3.14)

truncated in the infrared at rIR ∼ a0. We have denoted by a0 the minimum value

of the warp factor, a0 ≡ eAmin . Denoting by rUV the radial location at which the

throat is glued into the bulk, the tip is located at rIR ∼ a0 rUV. For simplicity, we

choose our units in this work such that rUV = 1, so that rIR ∼ a0. fix me

Here g̃i j is the metric on T 1,1, we use Ψi to denote the angular coordinates,

and we use letters i, j, k to refer to indices running over the angular directions.

It is important to note that although we use the AdS 5 × T 1,1 form for the metric

(3.14), we must still retain the nonzero ISD flux,

Gi jk ∝ r0, Gri j ∝ r−1, (3.15)

that occurs in the Klebanov-Tseytlin solution.

We now turn to perturbations of this background solution. It is useful to

classify these perturbations according to whether they are allowed or forbidden

in the no-scale compactifications of [5].
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ISD perturbations

In the no-scale solutions of [5], the background fields satisfy the ISD conditions

G− = 0 , (3.16)

Φ− = 0 . (3.17)

The Klebanov-Strassler geometry is itself an ISD solution.

Consider a finite Klebanov-Strassler throat attached to a no-scale compact-

ification, as constructed in [5]. At the ultraviolet end of the throat where the

throat is glued into the compact bulk, the metric deviates significantly from that

of the noncompact warped deformed conifold, as do other supergravity modes

including Φ+ and G+. However, as the entire compactification is ISD, the con-

ditions (3.16, 3.17) are exactly satisfied both within the throat and in the gluing

region. The deviations of the fields in the throat region from their profiles in the

noncompact warped deformed conifold may be termed ISD perturbations.

The ISD perturbations in such a throat encode breaking of the continuous

isometries of the noncompact throat by attachment to the compact bulk. Corre-

spondingly, the ISD perturbations generically lift the flat directions for angular

motion of a probe anti-D3-brane at the tip. However, ISD perturbations are not

the most general isometry-breaking perturbations found in a metastable com-

pactification containing anti-D3-branes, nor — as we shall see in §3.4 — are they

the most important source of mass for the anti-D3-brane moduli.

77



Non-ISD perturbations

We first remark that compact solutions obeying the ISD conditions are incom-

patible with the presence of anti-D3-branes. An anti-D3-brane is a localized

source for Φ−, and moreover the inclusion of an anti-D3-brane introduces pos-

itive energy density and a decompactification instability: from the DBI and

Chern-Simons actions one finds the anti-D3-brane potential

VD3 = T3

∫
√

g d4x Φ+ . (3.18)

where T3 is the D3-brane tension.

We will instead study an anti-D3-brane in a KKLT compactification [6].5 In a

KKLT compactification, the ISD conditions (3.16, 3.17) are not satisfied. The non-

perturbative effects that stabilize the Kähler moduli — either gaugino conden-

sation on D7-branes, or Euclidean D3-branes — have been shown to source the

IASD fields6 G− and Φ− [12]. However, the departures from the conditions (3.16,

3.17) originate in nonperturbative effects, and will therefore be small in any con-

trolled regime. In summary, a throat in a KKLT compactification is generically

subject to non-ISD perturbations, but the sizes of these perturbations in the ul-

traviolet region are controlled by the smallness of the effects breaking no-scale

symmetry. We will make this statement precise via a spurion analysis in §3.2.2.

5The general methods presented here would be applicable in any similar type IIB flux com-
pactification in which nonperturbative and/or perturbative effects stabilize the Kähler moduli,
such as the Large Volume Scenario [7], but for definiteness we will restrict to KKLT compactifi-
cations henceforth.

6See [35] for original results concerning the backreaction of nonperturbative effects on the
metric, and [36] for a discussion of backreaction on fluxes.
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3.1.3 The anti-D3-brane potential

In view of (3.18), the anti-D3-brane moduli masses are governed by the scalar

Φ+. In the noncompact background solution,

Φ+ = Φ
(0)
+ (r) = 2 e4A(0)

(r) , (3.19)

with no dependence on the angular directions. (The superscripts denote the

unperturbed background profile.)

At this level of approximation, the moduli corresponding to translations of

the antibrane around the three-sphere at the tip of the throat receive no poten-

tial. This is not surprising, as the angular coordinates of an anti-D3-brane at the

tip of a noncompact Klebanov-Strassler throat are the Goldstone bosons of the

spontaneously broken rotational isometry. However, a compact Calabi-Yau pos-

sesses no exact continuous isometries, and so deviations from the infinite throat

approximation—coming from gluing the throat into a compact bulk, as well as

from fluxes, localized sources, and nonperturbative effects in that bulk—should

generically lift these moduli.

We therefore consider small perturbations to the zeroth-order background,

Φ+ = Φ
(0)
+ + δΦ+ , (3.20)

where δΦ+ is the deviation from the infinite throat approximation generated by

compactification effects. Suppose that the anti-D3-brane sits at a stable point of

the fully corrected potential, and let Xi be canonically normalized coordinates

parameterizing small displacements from this point in the angular directions.

We wish to determine the mass term for the fields Xi. For this purpose it is

convenient to expand the deviation δΦ+ evaluated at the tip of the throat,

δΦ+(r ∼ a0, Xi) = c0 + c2 gi jXiX j + . . . (3.21)
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The ellipses represent higher terms in the Taylor series that do not contribute to

the mass. Substituting into (3.18), we find a mass term

δV = T3

∫
√

g d4x
{
c2 gi jXiX j + . . .

}
. (3.22)

If we act on (3.21) with the Laplacian constructed from the background metric,

∇2
0 ≡ gi j

0∇i∇ j, we find

∇2
0δΦ+

∣∣∣
Xi=0
∼ c2 . (3.23)

Our strategy is to estimate the sizes of the corrections to the various super-

gravity fields at the tip of the throat and then use equation (3.9) to determine

the size of c2. At the tip, where r ∼ a0, the sizes of the various modes can be ex-

pressed as powers of a0. It will be convenient to parameterize the contribution

of a particular mode to the Laplacian as

∇2
0δΦ+

∣∣∣
Xi=0
∼ a∆−2

0 , (3.24)

so that the induced mass (in units of the ultraviolet scale r−1
UV, which we have set

to unity) is

m2 ∼ a∆−2
0 , (3.25)

by equation (3.22). With this parameterization the leading contribution found

by Aharony, Antebi and Berkooz (AAB) [10] was ∆ = 5.29. We wish to find any

possible larger contributions to the mass not identified in that analysis. Our task

is then to enumerate all possible ∆ < 5.29.

3.2 Perturbations to the Supergravity Fields

We now determine the leading contributions to Φ+, and correspondingly to the

anti-D3-brane potential, in a stabilized compactification. A systematic approach
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to computing perturbations of a warped throat background was developed in

[33]. In §3.2.1 we briefly summarize this method, referring the reader to [33] for

further details. Then, in §3.2.2, we characterize the effective boundary condi-

tions in the ultraviolet region of the throat that are induced by compactification.

3.2.1 Systematic perturbation of warped throats

In [33] we laid out a method for calculating perturbations of the supergravity

fields on a Calabi-Yau cone. One begins with the harmonic modes for each field,

which are the solutions to the equations obtained by ignoring the right-hand

sides of equations (3.9-3.13) and setting the operators on the left-hand sides to

zero. One assumes that these modes are turned on with perturbatively small

coefficients in the ultraviolet. Then one generates solutions to the full equations

of motion (3.9-3.13), to any order n in those small coefficients, by convolving

products of n of the harmonic modes with Green’s functions that are provided

in [33].

We will not need the full machinery of this procedure here. Of present use is

a simple formula obtained in [33] that provides the radial scaling of an arbitrary

correction. The harmonic modes have simple power-law7 dependences on the

radial coordinate of the throat:

δφHarmonic =
∑
∆(φ)

c∆(φ)

(
r

rUV

)∆(φ)+λ(φ)−4

h∆(φ)(Ψ) , (3.26)

where δφ represents a perturbation to any of the supergravity fields, rUV is the

scale at which the throat is attached to the bulk, the ∆(φ) represent the scaling

7In fact, the modes of flux introduce some logarithmic dependence, but these logarithms
yield small corrections to the anti-D3-brane mass, and we ignore them throughout this work.
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dimensions of the corresponding operators in the gauge theory, and the h∆(Ψ)

are order-unity angular harmonics on the base space. The offsets in the expo-

nents, λ(φ), come from rescalings necessary for canonical normalization. The

unperturbed profile φ0 of each field takes the form

φ0 = α

(
r

rUV

)λ(φ)

, (3.27)

where α is independent of r. In [33] we demonstrated that the general n-th order

correction has the form

δφ(n)(r,Ψ) =
∑

∆1,...,∆n

c∆1 · · · c∆n

(
r

rUV

)∆1+...+∆n+λ(φ)−4n

× h∆1...∆n(Ψ) , (3.28)

where the sum runs over products of n harmonic modes with dimensions ∆i,

and the h∆1...∆n(Ψ) are order-unity angular functions that are determined via the

Green’s function solution. We will abbreviate the above relationship as

δφ(n)(r,Ψ) ∼ c∆1 · · · c∆n

(
r

rUV

)∆1+...+∆n+λ(φ)−4n

, (3.29)

to signify that the left-hand side has a dependence on r as given by the right-

hand side. This result allows us to determine the radial scaling of corrections

given the values of ∆ for the harmonic modes.

3.2.2 Sizes of perturbations in the ultraviolet

The next step is to estimate the sizes of the Wilson coefficients c∆. The coeffi-

cients of supersymmetric, ISD modes are of order unity: these modes are un-

suppressed in the region where the throat is glued into the bulk [10].

Non-ISD modes are not strictly forbidden, but their coefficients in the ultra-

violet will not be of order unity: a KKLT compactification is a small perturbation
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of a no-scale compactification. Similarly, non-supersymmetric perturbations are

not forbidden, but their coefficients must reflect the controllably small breaking

of supersymmetry in the compactification. We conclude that modes violating ei-

ther supersymmetry or the ISD conditions should have suppressed coefficients.

An efficient way to organize the suppressed Wilson coefficients is via a spurion

analysis, with the c∆ expressed as powers of small parameters εs and εnp that

measure the weak breaking of the supersymmetry and the no-scale symmetry,

respectively, of the noncompact throat:

c∆ ∼ ε
Qs(∆)
s ε

Qnp(∆)
np . (3.30)

The powers Qs(∆) and Qnp(∆) are integers representing the number of spurion

insertions required to obtain the corresponding perturbation in the field theory.

We now turn to relating εs and εnp to the warp factor a0, and then to stating the

rules for determining Qs(∆) and Qnp(∆) for a given operator.

Recalling that the warp factor at the tip of the throat is eAtip ≡ a0, the antibrane

contributes an amount

VD3 = 2T3a4
0 ,

to the four-dimensional vacuum energy, where T3 is the D3-brane tension. Thus,

the scale of supersymmetry breaking is of order a4
0, and it is convenient to use

conventions for Qs(∆) in which εs ∼ a2
0.

Next, we consider the parameter εnp measuring the breaking of no-scale sym-

metry. The ISD conditions are obeyed in the no-scale background of [5], so

violations of the ISD conditions are controlled by the leading effect breaking

no-scale symmetry: namely, by the nonperturbative superpotential Wnp for the

Kähler moduli.8 In turn, Wnp can be related to a0. For simplicity we will assume

8This can be made very precise, as shown in [12]: gaugino condensation on D7-branes leads
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that the positive energy from the anti-D3-brane is the dominant source of su-

persymmetry breaking in the compactification, so that in particular there are no

antibranes in other throats with higher infrared scales ã0 > a0. The total config-

uration will then be a metastable de Sitter vacuum, with vacuum energy that is

small in string units, provided that the antibrane energy VD3 approximately can-

cels the negative energy density from the nonperturbatively-generated moduli

potential. The key consequence of this relationship is that the nonperturbative

superpotential Wnp for the Kähler moduli obeys

|Wnp| ∼ a2
0 ,

because the moduli potential, and equivalently the potential for a probe D3-

brane, scales as |Wnp|
2. In summary, the fine-tuning needed to obtain a

metastable vacuum in the KKLT scenario links the scale of violation of the ISD

conditions to the infrared scale a0 of the throat. Correspondingly, the departures

from the ISD conditions (3.16, 3.17) are proportional to powers of the minimum

warp factor a0, and it is convenient to take εnp = a2
0.

As εs = εnp ∼ a2
0, we arrive at the simple relationship

c∆ ∼ a2Qs(∆)+2Qnp(∆)
0 ≡ a2Q(∆)

0 , (3.31)

with Q = Qs + Qnp. We now turn to determining Q for each class of modes.

Non-ISD perturbations, i.e. perturbations of Φ− and G−, were extensively

discussed in [12]. Based on the arguments above, the potential for a probe D3-

brane, while nonvanishing, can at most be of order a4
0. Correspondingly, any

supergravity modes that contribute at linear order to the D3-brane potential, as

to a nonperturbative superpotential in the four-dimensional theory, but manifests in ten dimen-
sions as a localized source for IASD flux G−, so that perturbations of G− are directly dictated by
Wnp.
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Φ− does, must have Q ≥ 2, while modes that contribute at quadratic order, as G−

does, have Q ≥ 1. See [12] for more details, and for a demonstration that modes

of Φ− in fact have Q = 2, while modes of G− have Q = 1.

As noted above, perturbations that are ISD and supersymmetric have Q = 0,

as they are allowed in the background solution. The only remaining cases are

ISD perturbations that break the supersymmetry of the background solution.

In our analysis of low-dimension operators, this question arises only for modes

of the metric: the low-lying modes of Φ+, G+, and τ are supersymmetric. The

supersymmetry-breaking spurion analysis for operators dual to metric modes

is standard: for a chiral spurion superfield X, we may take εs = FX ∼ a2
0, so

that Q(∆) counts the required number of insertions of X. A perturbation to the

field theory Lagrangian by the bottom component of a chiral superfield then has

Qs = 1, while the bottom component of a non-chiral superfield has Qs = 2.

3.2.3 Scaling of the anti-D3-brane mass

Using the fact that at the tip rtip

rUV
∼ a0, along with the result (3.31) in equation

(3.26), we see that the general harmonic mode scales as

δφHarmonic ∼ c∆(φ)

(
rtip

rUV

)∆(φ)+λ(φ)−4

∼ a∆(φ)+2 Q(∆)+λ(φ)−4
0 ≡ a∆̂(φ)+λ(φ)−4

0 , (3.32)

where we have defined the effective dimension ∆̂(φ) = ∆(φ) + 2 Q(∆). Similarly,

from equation (3.28) one sees that the inhomogeneous piece of the solutions can

be decomposed into a sum of terms, each scaling as a power of a0:

δφ(n) ∼ a∆1+...+∆n+2 Q(∆1)+...+2 Q(∆n)+λ(φ)−4n
0 ≡ a∆̂(φ)+λ(φ)−4

0 , (3.33)

where now ∆̂(φ) = ∆1 + . . . + ∆n + 2 Q(∆1) + . . . + 2 Q(∆n) − 4(n − 1).
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We now make the substitution

φ = φ0 + δφ ∼ aλ(φ)
0

(
1 + a∆̂(φ)−4

0

)
(3.34)

in the equation of motion (3.9) and linearize in a∆̂(φ)−4
0 . For the left-hand side we

find

δ
(
∇2Φ+

)
= ∇2

0 δΦ+ + δ∇2 (Φ+)0 . (3.35)

From the expression ∇2φ = − 1
√

g∂m

(√
g gmn ∂nφ

)
we see that there will be an over-

all factor of aλ(Φ)−λ(g)
0 in δ∇2 (Φ+)0 along with a factor of equation changed

a∆̂(g)−4
0 coming from the single variation of the metric δgmn. For the first term on

the right-hand side of equation (3.9),

(Φ+ + Φ−)2

96Im τ
|G+|

2 =
(Φ+ + Φ−)2

96Im τ
gmm′gnn′gkk′ (G+)mnk

(
G∗+

)
m′n′k′ (3.36)

∼ a(2λ(Φ)+2λ(G)−3λ(g)−λ(τ))
0 ×

(
1 + a∆̂(Φ+)−4

0 + a∆̂(Φ−)−4
0

)2 (
1 + a∆̂(G+)−4

0

)2

×

(
1 + a∆̂(g)−4

0

)−3 (
1 + a∆̂(τ)−4

0

)−1
.

Linearizing, this gives

δ

(
(Φ+ + Φ−)2

96Im τ
|G+|

2
)
∼ a(2λ(Φ)+2λ(G)−3λ(g)−λ(τ))

0 ×

(
a∆̂(Φ+)−4

0 + a∆̂(Φ−)−4
0 (3.37)

+a∆̂(G+)−4
0 + a∆̂(g)−4

0 + a∆̂(τ)−4
0

)
.

A similar analysis applies to the second term, and we ultimately find

∇2
0 δΦ++aλ(Φ)−λ(g)

0 a∆̂(Φ+)−4
0 (3.38)

∼ a(2λ(Φ)+2λ(G)−3λ(g)−λ(τ))
0 ×

(
a∆̂(Φ+)−4

0 + a∆̂(Φ−)−4
0 + a∆̂(G+)−4

0 + a∆̂(g)−4
0 + a∆̂(τ)−4

0

)
+ aλ(Φ)−λ(g)

0 ×

(
a∆̂(Φ+)−4

0 + a∆̂(Φ−)−4
0 + a∆̂(g)−4

0

)
. (3.39)

Next, by examining the background profiles for each field, we determine

that λ(Φ) − λ(g) = 2λ(Φ) + 2λ(G) − 3λ(g) − λ(τ) = 2. We can therefore simplify
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(3.38) to read

∇2
0 δΦ+ ∼ a∆−2

0 ∼

(
a∆̂(Φ+)−2

0 + a∆̂(Φ−)−2
0 + a∆̂(G+)−2

0 + a∆̂(g)−2
0 + a∆̂(τ)−2

0

)
. (3.40)

near the tip of the throat. This tells us that the set of values that ∆ can take

is given by all possible effective dimensions ∆̂ from any mode (harmonic or

inhomogeneous) coming from any of the fields Φ±,G+, τ, g.

In order to proceed further, we need to understand the spectrum of Kaluza-

Klein modes of the throat, specifically the values of ∆̂ for the most relevant

modes. We therefore turn to a study of the spectroscopy of T 1,1.

3.3 Spectroscopy of T 1,1

The spectrum of Kaluza-Klein excitations of T 1,1 was obtained in the pioneer-

ing works [19, 20]. In principle one could approach the problem directly by

computing the eigenvalues of the Laplace, the Lichnerowicz, and the Laplace-

Beltrami operators acting on scalar, symmetric two-tensor, and two-form har-

monics, respectively: from these spectroscopic data the dimensions ∆(φ) of the

corresponding fields are readily obtained. The authors of [19, 20] instead em-

ployed a clever ‘method of exhaustion’ in which they partially filled supergrav-

ity multiplets with the modes of highest spin, and then used the superconformal

algebra to predict the scaling dimensions for all vacant positions in the multi-

plets. From this they indirectly inferred all the eigenvalues without needing to

compute the spectrum of the Lichnerowicz operator acting on symmetric two-

tensors.

However, in the later work [12] it was found — through direct computation
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of the spectrum of the Laplace-Beltrami operator acting on two-forms — that

certain eigenvalues occurring in the tables of supergravity multiplets in [19, 20]

were assigned to modes of the metric, whereas they properly belong to modes

of the two-form potential. A plausible reason for this disparity, explained to

us by A. Dymarsky, is that a sign error in the spectrum of the Laplace-Beltrami

operator in [19, 20] propagated through the exhaustion procedure and led to

incorrect assignments of some of the modes of the metric.

As our present analysis crucially relies on the spectrum of low-lying opera-

tors, we need to perform an independent, explicit calculation of the spectrum of

metric9 modes. In the appendix we therefore obtain the spectrum of the Lich-

nerowicz operator on symmetric two-tensors. The changes to the metric spec-

trum required to accommodate the findings of [12] do indeed occur in our new

results, providing a nontrivial check of our computation.

3.3.1 Lowest-dimension harmonic modes on T 1,1

In table 3.1 we have compiled the most relevant harmonic modes of the super-

gravity fields, which we now discuss in turn.

Scalar and two-form modes

Perturbations of Φ+ are permitted in a supersymmetric ISD solution, and so

have Q = 0. Even so, ∆(Φ+) ≥ 8, so that harmonic modes of Φ+ provide negligi-

9The spectrum of the scalar Laplacian on T 1,1 was calculated in [37, 19, 20], while the spec-
trum of the Laplace-Beltrami operator acting on two-forms was first obtained in [19, 20], and
was recomputed in [12], leading to minor corrections.
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Modes of Φ−

j1 j2 R Multiplet Type Operator λ Q ∆ ∆̂ = ∆ + 2Q
1
2

1
2 1 V.I chiral [ Tr (AB) ]b 4 2 3

2
11
2

0 1 0 V.I semi-long
[
Tr (AeV Āe−V)

]
b

4 2 2 6

1 0 0 V.I semi-long
[
Tr (BeV B̄e−V)

]
b

4 2 2 6

1 1 2 V.I chiral
[

Tr (AB)2
]

b
4 2 3 7

Modes of G3 (ISD + IASD)

j1 j2 R Multiplet Type Operator λ Q ∆ ∆̂ = ∆ + 2Q
1
2

1
2 -1 V.I chiral [ Tr (AB) ]θ2 0 1 5

2
9
2

0 0 2 V.IV chiral
[
Tr

(
W2

1 +W2
2

) ]
b

0 1 3 5
1
2

1
2 1 G.I chiral

[
Tr

(
Wα

+ (AB)
) ]

θα
0 1 7

2
11
2

Modes of G3 (Pure ISD)

j1 j2 R Multiplet Type Operator λ Q ∆ ∆̂ = ∆ + 2Q

1
2

1
2 -1 V.III long

[
Tr

(
eVW

2
+e−V AB

) ]
θ2θ̄2

0 0 13
2

13
2

Modes of τ

j1 j2 R Multiplet Type Operator λ Q ∆ ∆̂ = ∆ + 2Q

0 0 0 V.IV chiral
[

Tr
(
W2

+

) ]
θ2

0 0 4 4
1
2

1
2 1 V.IV chiral

[
Tr

(
W2

+AB
) ]

θ2
0 0 11

2
11
2

Modes of Φ+

j1 j2 R Multiplet Type Operator λ Q ∆ ∆̂ = ∆ + 2Q

0 0 0 V.II long
[

Tr
(
W2

+eVW
2
+e−V

) ]
θ2θ̄2

4 0 8 8

1
2

1
2 1 V.II long

[
Tr

(
W2

+eVW
2
+e−V AB

) ]
θ2θ̄2

4 0 19
2

19
2

Modes of gmn

j1 j2 R Multiplet Type Operator λ Q ∆ ∆̂ = ∆ + 2Q

0 0 0 V.I semi-conserved
[

Tr
(
AeV Āe−V − BeV B̄e−V

) ]
b

2 2 2 6

0 0 2 V.III chiral
[
Tr

(
W2
−

) ]
b

2 2 3 7

1 1 0 V.I long
[
Tr( f )

]
θ2 θ̄2 2 0 5.29 5.29

Table 3.1: Summary of the leading harmonic modes of each field.
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bly small corrections to the anti-D3-brane potential. Of course, the potential is

dictated by the full Φ+ solution, but in the infrared, the dominant terms in this

solution are inhomogeneous terms sourced by the background profiles of other

supergravity fields, via (3.9).

The perturbations of Φ− were extensively explored in [12], where it was

shown that two spurion insertions are necessary, i.e. Q = 2. The most rele-

vant perturbation has a rather small dimension, ∆ = 3/2, but the ‘effective’ di-

mension, which encodes the smallness of the perturbation in the ultraviolet, is

∆̂ = 11/2.

Harmonic modes of the dilaton τ are allowed in the supersymmetric ISD

background, so that Q = 0. The nontrivial modes have ∆(τ) ≥ 5.5, while the

marginal mode with ∆(τ) = 4 simply corresponds to a shift in the string cou-

pling, and can be absorbed into the background value.

Note that the flux G3 possesses two types of modes, those with both ISD and

IASD components (G±), and those that are purely ISD (G+). The data presented

below for G± is taken from [12]. For the purely ISD modes G+, it was shown in

[33] that ∆(G3) ≥ 6.5, and so these modes make small corrections to the potential.

As explained in [12], modes of G± have Q = 1.

Evidently, the leading perturbations to the potential from harmonic modes

of scalars come from the ∆̂ = 11/2 modes of τ and Φ−, but both are subleading

in comparison to the contribution from the ∆̂ = 9/2 mode of G±.

90



Metric modes

Next, the dimensions ∆(g) of modes of the metric are related to the eigenvalues

λIt of the Lichnerowicz operator acting on traceless, symmetric two-tensors via

∆(g) = 2 +
√
λIt − 4 .

In the appendix, we obtain the eigenvalues λIt . Using these results one finds

that the three leading modes of the metric have ∆(g) = 2, 3, and 5.29.

One can see from the functional form of the ∆(g) = 2 mode presented in the

appendix that it corresponds to the resolution of the tip of the conifold. It is

known that the resolution of the conifold is associated with the bottom compo-

nent of the baryon current multiplet [JB ]b ≡
[

Tr
(
AĀ − BB̄

) ]
b

of the Klebanov-

Witten gauge theory [38]. Correspondingly, Q = 2 for this mode. Moreover, it

is a singlet under all the angular isometries, and does not lift the anti-D3-brane

moduli space in any case.

The ∆(g) = 3 mode has quantum numbers matching the bottom component

of the chiral multiplet
[

Tr(W2
1 −W

2
2)

]
b

of the gauge theory, where Wi is the

chiral field strength superfield of the S U(N)i gauge factor. Thus, Q = 1 for this

mode. One can see from the functional form of the ∆(g) = 3 mode presented in

the appendix that it corresponds to the deformation of the tip of the conifold. As

this mode is a singlet under the non-abelian symmetries that remain unbroken

at the tip of the Klebanov-Strassler solution, it does not lift the anti-D3-brane

moduli space.

Finally, the dual of the ∆(g) = 5.29 mode can be identified as a top compo-

nent of Vector Multiplet I of [19, 20] in its unshortened form, corresponding to

an operator of the form
[
Tr( f )

]
θ2θ̄2 , where f ≡ f

(
A, B, Ā, B̄

)
is a harmonic (but
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not holomorphic) function of the chiral superfields A, B. As this mode is super-

symmetric and allowed in the ISD background, it has Q = 0.

Lowest-dimension modes

Let us now summarize the most relevant operators, ranked according to the

effective dimension ∆̂ of the corresponding harmonic mode. All these operators

have nontrivial quantum numbers10 under the angular isometries, and hence

generically lift the flat directions for angular displacements of the anti-D3-brane.

Most important is the ∆̂ = 9/2 mode of G±, corresponding to the superpoten-

tial perturbation [ Tr AB ]θ2 in the gauge theory. This perturbation is inconsistent

with no-scale symmetry: it lifts the moduli space of a probe D3-brane. How-

ever, as explained in [12], this perturbation is generically present in a Klebanov-

Strassler throat region of a stabilized compactification, with a small coefficient

in the ultraviolet that we have encoded in the spurion exponent Q = 1.

Next in importance is the ∆̂ = 5.29 mode of the metric, which is dual to[
Tr( f )

]
θ2θ̄2 as explained above. This metric perturbation is the leading mode

that is allowed by no-scale symmetry (Q = 0), and correspondingly made the

leading contribution in the analysis of AAB [10].

Of slightly lesser importance are the ∆̂ = 11/2 modes of τ and Φ−.

10There are two nontrivial modes with ∆̂ = 5: the mode of G± dual to
[
Tr

(
W2

+

) ]
b
, and the

mode of the metric dual to
[
Tr

(
W2
−

) ]
b
. However, both modes are singlets under the non-abelian

symmetries, and so neither contributes to lifting the moduli space of angular displacements of
the anti-D3-brane.
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3.4 The Scale of the Anti-D3-brane Potential

Equipped with the above results, it is now straightforward to determine the

leading contributions to the anti-D3-brane potential.

The dominant contribution arises from a linear-order perturbation by the

∆̂ = 9/2 mode of G±. This introduces a single insertion of a G+ perturbation

in (3.36); the remaining factor of G+ is then a background flux. The result is a

contribution to m2
D3

of size ∆ = 4.5.

It might come as a surprise that the first subleading correction to the poten-

tial arises from the second-order contribution of the ∆̂ = 9/2 mode of G±, i.e. from

two insertions of a G+ perturbation in (3.36), rather than from a linear perturba-

tion by some other mode. Consulting equation (3.33), we see that the effective

dimension for a mode at second order is ∆ = 2∆̂(φ)− 4, so that the ∆̂ = 9/2 mode

of G± makes a second-order contribution ∆ = 5 to m2
D3

.

The next correction to the potential comes from a linear perturbation by the

∆ = 5.29 mode of the metric, as discussed in [10]. Further contributions arise at

∆ = 11/2 and beyond.

In summary, and taking into account the factor of a0 appearing in the canon-

ical normalization for the angular fields, the anti-D3-brane potential takes the

form

VD3 =
∑

i

ci fi(Ψ)a∆i
0 , (3.41)

where the ci are coefficients of order unity, fi(Ψ) is a generic function of

canonically-normalized angles on the S 3, and the leading dimensions ∆i are

∆ = 2.5, 3, 3.29, 3.5, . . . (3.42)
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The leading mass term found in this work, m2 ∼ a2.5
0 , is parametrically larger, by

a factor of a−0.79
0 � 1, than the largest contribution m2 ∼ a3.29

0 consistent with no-

scale symmetry [10]. Nevertheless, the scale of the angle-independent terms in

the anti-D3-brane potential is VD3 ∼ a4
0, and the natural scale for a mass-squared

at the tip of the throat is m2 ∼ a2
0 � a2.5

0 . We conclude that the mass terms of the

angular displacement moduli of an anti-D3-brane are parametrically smaller

than the infrared scale, by a factor of a0.5
0 � 1. Thus, the qualitative finding of

[10] is unchanged: there are light open string moduli with masses that are small

compared to the infrared scale.

We now ask the question of whether sufficient stabilization of the antibrane

moduli can in principle be achieved without severe fine-tuning. In the previous

section we assumed a strict KKLT scenario when obtaining the scalings for the

c∆. That is, we assumed that moduli stabilization was accomplished by non-

perturbative effects wrapping four-cycles in the bulk, that the primary uplifting

source is the antibrane under question and that metastability is achieved by near

equality of the bulk supersymmetry breaking and IR scale.

One could very well find other mechanisms to naturally stabilize the com-

pactification, resulting in different values for the Q(∆)’s. For example in the

Large Volume Scenario [7] the relation we quoted between the spurion scale

and the IR scale of the throat no longer holds. We should explore whether other

scenarios can result in a naturally large mass scale for the antibrane moduli.

This is easily addressed by referring to equation (3.25). The typical scale of

physics at the tip is m2
IR ∼ a2

0. Thus the anti-D3-brane is free of light moduli if

m2
D3
& a2

0 =⇒ ∆ ≤ 4. (3.43)

Then, just as the moduli mass is reaching the IR scale, modes are becoming
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effectively marginal and therefore order one at the tip. Thus corrections are be-

coming nonperturbative and the tip geometry is destroyed. More alarmingly,

we see from equation (3.9) that all modes generate corrections to the antibrane

potential Φ+ and that, therefore, violent corrections at the tip will cause the an-

tibrane tension to diverge and drive decompactification unless once again se-

vere fine tuning of bulk effects is applied. We conclude that bulk effects cannot

produce sufficient stabilization of the antibrane in practice.

3.5 Chapter Summary

We have seen that broadening the analysis of [10] to include, in particular, per-

turbations violating the ISD condition yields a mass for the anti-D3-brane mod-

uli that can be parametrically larger than what was previously found. Under

broad circumstances, these perturbations generate the dominant corrections to

the antibrane effective action, despite the fact that they are nonperturbatively

suppressed in the UV, since they are mediated by relevant operators that grow

in the IR.

On the other hand, we have given conclusive evidence that sufficient sta-

bilization of the anti-D3-brane moduli cannot be achieved by relying on bulk

corrections. For the case of a KS throat in a strict KKLT scenario, the bulk in-

duced anti-D3-brane mass is exponentially suppressed m2
D3
∼ a1/2

0 m2
IR compared

to the typical scale of IR physics. More generally, achieving m2
D3
∼ m2

IR for an-

tibranes at the tip of a warped throat will necessarily require severe fine tuning.

We conclude that new elements must be introduced in the IR of the throat to

stabilize the moduli.
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APPENDIX A

STRUCTURE OF THE SOURCE TERMS

In §2.2.2 we left the source terms in the equations of motion implicit. In

this appendix we will work out the source term for the dilaton as an example.

Expanding the kinetic term, we find

(∇2 τ)(n) =

n∑
l=0

∇2
(l) τ(n−l) = ∇2

(0) τ(n) +

n−1∑
l=1

∇2
(l) τ(n−l) . (A.1)

For the first term on the right-hand side of equation (3.12) we have(
∇τ · ∇τ

iIm(τ)

)
(n)

=

n−2∑
l=0

l−1∑
q=1

(−)l l! gs

i
Im τ(l) ∂mτ(q) ∂

mτ(n−l−q), (A.2)

using the fact that ∂m τ(0) = 0. For the second term on the right-hand side we get(
Φ+ + Φ−

48i
G+ ·G−

)
(n)

= −2i e4A(0) G(0)
+ ·G

(n)
− −2i

n−1∑
l=0

l−1∑
q=0

(Φ(l)
− +Φ

(l)
+ ) G(q)

+ ·G
(n−l−q)
− , (A.3)

using the fact that G(0)
− = 0. The n-th order equation of motion for τ is then

∇2
(0)τ(n) =

Φ
(0)
+

48i
G(0)

+ ·G
(n)
− −

n−1∑
l=1

∇2
(l) τ(n−l) +

n−2∑
l=0

l−1∑
q=1

(−)l l! gs

i
Im τ(l) ∂mτ(q) ∂

mτ(n−l−q)

(A.4)

− 2i
n−1∑
l=0

l−1∑
q=0

(Φ(l)
− + Φ

(l)
+ ) G(q)

+ ·G
(n−l−q)
− .

This is then of the form (2.28), with

Sourceτ(φ(m<n)) = −

n−1∑
l=1

∇2
(l) τ(n−l) +

n−2∑
l=0

l−1∑
q=1

(−)l l! gs

i
Im τ(l) ∂mτ(q) ∂

mτ(n−l−q) (A.5)

− 2i
n−1∑
l=0

l−1∑
q=0

(Φ(l)
− + Φ

(l)
+ ) G(q)

+ ·G
(n−l−q)
− .

The remaining Sourceϕ(φ(m<n)) can be obtained in like fashion.
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APPENDIX B

HARMONIC SOLUTIONS AND GREEN’S FUNCTIONS

In this appendix we derive the harmonic solutions and Green’s functions

that are needed in the main text. We separate the equations of motion for

scalar, flux and metric perturbations on a Calabi-Yau cone into radial and an-

gular equations, and then solve the resulting radial equations. This yields the

homogeneous solutions and Green’s functions on the cone, given the harmon-

ics on the Sasaki-Einstein base as well as the associated spectrum of Hodge-de

Rham eigenvalues (see [39, 40] for seminal related work). In the case that the

base is T 1,1, the spectroscopy is well understood [20, 19] (see also [41, 12]), and

is conveniently presented in [21].

In the main body of the text we have considered a six-dimensional cone,

but many of the results of this appendix hold for any (n + 1)-dimensional cone.

However, in our treatment of fluxes in §B.2, we specialize to n = 5.

B.1 Angular harmonics on an Einstein manifold

We will begin by defining the angular harmonics and establishing their relevant

properties. Some of the properties below are specific to n = 5, and we indicate

this where applicable.

Consider a general (n + 1)-dimensional Calabi-Yau cone Cn+1:

ds2
Cn+1

= gmndymdyn = dr2 + r2ds2
Bn

(B.1)

= dr2 + r2g̃i jdΨidΨ j , (B.2)

where we use i, j, k, l for indices which lie in the angular space only, and m, n, p, q

97



for indices which run over both r and the angular directions. Here g̃i j is the

metric on the base space Bn, which must be a Sasaki-Einstein manifold, with

R̃i j = (n − 1)g̃i j , (B.3)

where R̃i j is the Ricci tensor built from g̃i j. In the following, we will use a tilde

above indices (derivative operators) to denote contraction with (construction

from) the metric g̃i j.

We now discuss the various tensor harmonics on the angular space Bn. A

complete basis for scalar functions on Bn are the scalar harmonics

Y Is(Ψ) . (B.4)

A complete basis for one-forms on Bn are the transverse and longitudinal har-

monics

Y Iv
i (Ψ) , ∇̃iY Is(Ψ) . (B.5)

A complete basis for two-forms on Bn are the transverse and longitudinal har-

monics

Y I2
[i j](Ψ) , ∇̃[iY

Iv
j] (Ψ) , (B.6)

where square brackets denote antisymmetrization. A complete basis for sym-

metric, two-index tensors on Bn are the transverse and longitudinal harmonics

Y It
{i j}(Ψ) , ∇̃{iY

Iv
j} (Ψ) , ∇̃{i∇̃ j}Y Is(Ψ) , g̃i jY Is(Ψ) , (B.7)

where curly brackets around indices denote the symmetric traceless part:

A{i j} =
1
2

(
Ai j + A ji

)
−

g̃i j

n
Ak̃

k . (B.8)

The transverse harmonics obey

∇̃k̃Y Iv
k = 0 , (B.9)
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∇̃k̃Y I2
[ki] = 0 , (B.10)

∇̃k̃Y It
{ki} = 0 . (B.11)

B.1.1 Eigenvalue properties

The zero-, one- and two-form harmonics Y Is , Y Iv
i and Y I2

[i j] are eigenfunctions of

the Hodge-de Rham operator ∆̃ = δ̃d+dδ̃, where d denotes the exterior derivative

and δ̃ = (−1)n(k+1)+1?̃nd?̃n denotes its adjoint acting on k-forms on Bn. The sym-

metric two-index tensor harmonic Y It
{i j} is an eigenfunction of the Lichnerowicz

operator ∆̃L (cf. e.g. [42]). These equations are efficiently expressed as

∆̃0Y Is = λIsY Is , (B.12)

∆̃1Y Iv
i = λIvY Iv

i , (B.13)

∆̃2Y I2
i j = λI2Y I2

i j , (B.14)

∆̃LY It
i j = λItY It

i j . (B.15)

Using the relationships

δ̃dY Is = −∇2Y Is , (B.16)

(δ̃dY Iv)i = −2∇k∇[kY
Iv
i] , (B.17)

(δ̃dY I2)i j = −3∇k∇[iY
I2
jk] , (B.18)

together with

δ̃Y Is = 0 , (B.19)

δ̃Y Iv = −∇̃k̃Y Iv
k , (B.20)

(δ̃Y I2) j = −∇̃k̃Y I2
k j , (B.21)
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one can derive the explicit form of the Hodge-de Rham and Lichnerowicz oper-

ators:

∆̃0Y Is = −∇̃2Y Is , (B.22)

∆̃1Y Iv
i = −∇̃2̃Y Iv

i + R̃ j̃
i Y Iv

j , (B.23)

∆̃2Y I2
i j = −∇̃2Y I2

i j + 2R̃k̃ l̃
i j Y I2

kl − 2R̃ k̃
[i Y I2

j]k , (B.24)

∆̃LY It
i j = −∇̃2̃Y It

i j + 2R̃k̃ l̃
i j Y It

kl + 2R̃ k̃
(i Y It

j)k . (B.25)

Notice that the transversality of the one- and two-form harmonics Y Iv and Y I2 is

simply the statement that they are co-closed, δ̃Y Iv = δ̃Y I2 = 0. Using the transver-

sality of the harmonics, the above eigenvalue equations can also be written as

∇̃2Y Is = −λIsY Is , (B.26)

2∇̃k̃∇̃[kY
Iv
i] = −λIvY Iv

i , (B.27)

3∇̃k̃∇̃[iY
I2
jk] = −λI2Y I2

[i j] , (B.28)

∇̃2Y It
{i j} − 2∇̃k̃∇̃(iY

It
{ j)k} = −λItY It

{i j} . (B.29)

We also note that when n is odd, the Hodge-de Rham operator for a tranverse(
n−1

2

)
-form can be expressed in terms of the square of the first-order operator ?̃nd.

In the case of interest for us, n = 5, the two-form Y I2
[i j] is an eigenfunction of ?5d,

?5 dY I2 = i δI2 Y I2 , δI2 ∈ R (B.30)

such that δ̃dY I2 = −(?5d)2Y I2 = +(δI2)2Y I2 , i.e.

∆̃2 Y I2 = λI2 Y I2 , λI2 ≡ (δI2)2. (B.31)
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B.1.2 Orthogonality properties

We normalize the harmonics such that∫
dnΨ

√
g̃ ȲIs Y I′s = δ

I′s
Is
, (B.32)∫

dnΨ
√

g̃ Ȳ k̃
Iv

Y I′v
k = δ

I′v
Iv
, (B.33)∫

dnΨ
√

g̃ Ȳ [k̃l̃]
I2

Y I′2
[kl] = δ

I′2
I2
, (B.34)∫

dnΨ
√

g̃ Ȳ {ĩ j̃}
It

Y I′t
{i j} = δ

I′t
It
. (B.35)

Here we use a bar to denote complex conjugation, Ȳ ≡ Y∗. From the above

orthonormality properties and equation (B.3) one can derive the remaining set

of orthonormality conditions:∫
dnΨ

√
g̃ ∇̃k̃ȲIs ∇̃kY I′s = λIs δIs

I′s
, (B.36)∫

dnΨ
√

g̃ (g̃k̃l̃ȲIs) (g̃klY I′s) = n δI′s
Is
, (B.37)∫

dnΨ
√

g̃ ∇̃[k̃Ȳ l̃]
Iv
∇̃[kY

I′v
l] =

1
2
λIv δ

I′v
Iv
, (B.38)∫

dnΨ
√

g̃ ∇̃{k̃Ȳ l̃}
Iv
∇̃{kY

I′v
l} =

1
2

(
λIv − 2(n − 1)

)
δ

I′v
Iv
, (B.39)∫

dnΨ
√

g̃ ∇̃{k̃∇̃l̃}Ȳ Is ∇̃{k∇̃l}Y I′s =
(n − 1)

n
λIs(λIs − n) δI′s

Is
. (B.40)

All remaining inner products—those between transverse and longitudinal

harmonics, or between longitudinal harmonics with different numbers of

derivatives—vanish.

One can learn much from equations (B.36–B.40). Since the inner products

must be positive definite, we see from equation (B.36) that ∇̃iY Is vanishes if and

only if λIs = 0. It is known (see [42]) that compact Einstein spaces always sup-

port exactly one zero mode—the constant mode Y Is(Ψ) = const. From equations

(B.39) and (B.40) one deduces that λIs ≥ n or λIs = 0, while λIv ≥ 2(n − 1). Both
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of these conditions are known to hold for an Einstein space (with scaling as in

equation (B.3)), see [42]. The value λIs = n occurs only for the trivial case of the

sphere, Bn = Sn [43]. This corresponds to the (n + 1)-dimensional “cone” being

merely flat Euclidean space. Next, the condition ∇̃{iY Iv
j} = 0 is just the condition

that Y Iv
i is a Killing vector, and so there is one harmonic with λIv = 2(n − 1) for

each continuous isometry of Bn.

For the two-form harmonics there is no lower bound on the eigenvalues δI2 .

Indeed, by conjugation of equation (B.30) one sees that the spectrum is sym-

metric under δI2 → −δI2 . Modes with δI2 = 0 have a special significance: when

δI2 = 0, dY I2 = 0. Combining this with the transversality condition (B.10), we see

that such a Y I2 must be harmonic, and is therefore a Betti form. We will denote

these Betti two-forms as

ωi
2, i = 1, 2, . . . b2 , (B.41)

where b2 is the second Betti number of B5.

B.2 Flux solutions and Green’s functions

The harmonic three-form flux solutions were obtained in [12]. In §B.2.1 we

present a slight generalization of those solutions that allows for logarithmic run-

ning of the warp factor. Then, in §B.2.3 we derive the Green’s functions for the

three-form flux. In this section we specialize to the case of n = 5.
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B.2.1 Homogeneous flux solutions

We wish to obtain the solution to the system of differential equations (2.35, 2.37),

where the IASD part of the flux is given by G− = (?6 − i)G3, and the expression

for Φ
(0)
+ in an ISD background is given in terms of the warp factor (cf. equation

(2.21)),
2

Φ
(0)
+

= e−4A(0)
=

C1 + C2 ln r
r4 . (B.42)

Because G3 is closed, it can be written locally in terms of a two-form potential

A2 as G3 = dA2. Generically, A2 will have a harmonic expansion

A2 =
∑

I2

aI2(r) Y I2(Ψ) +
∑

Iv

aIv(r) d Y Iv(Ψ) (B.43)

+
∑

Iv

bIv(r)
dr
r
∧ Y Iv(Ψ) +

∑
Is

bIs(r)
dr
r
∧ d Y Is(Ψ) .

We have the obvious gauge symmetry A2 → A2 + dχ1, for a one-form gauge

parameter χ1, and by expanding χ1 in harmonics, we can set bIv = bIs = 0:

A2 =
∑

I2

aI2(r) Y I2(Ψ) +
∑

Iv

aIv(r) d Y Iv(Ψ), gauge fixed . (B.44)

Now we insert this form of A2 into equation (2.35). Since the equations are linear

we can consider a single mode at a time, and we have two cases: non-exact and

exact modes.

Non-exact modes: Consider the non-exact mode

A2 = AI2(r) Y I2(Ψ) . (B.45)

Using the identities

?6

(
dr
r
∧Ω2

)
= ?5Ω2 , (B.46)
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?6 Ω3 = −

(
dr
r
∧ ?5Ω3

)
, (B.47)

for arbitrary two- and three-forms Ω2 and Ω3 on B5, together with ?5dY I2 =

iδI2Y I2 , we get for the flux

G± = ±i
(
r∂rAI2 ∓ δI2 AI2

) (dr
r
∧ Y I2 ∓ i ?5 Y I2

)
. (B.48)

Inserting the above expression for G− into equation (2.35) yields

r∂r f I2(r) − δI2 f I2(r) = 0 , (B.49)

where f I2(r) ≡ Φ
(0)
+ (r)

(
r∂rAI2(r) + δI2 AI2(r)

)
. Solving the above equation we find

AI2(r) = AI2
− r−δ

I2
+ AI2

+ rδ
I2−4

[
(4 − 2δI2)(C1 + C2 log r) + C2

]
, (B.50)

where AI2
± are integration constants. The IASD/ISD components of this solution

are

G− = +i (2δI2 − 4)2 AI2
+ rδ

I2−4 (C1 + C2 ln r)
(
dr
r
∧ Y I2 + i ?5 Y I2

)
, (B.51)

G+ = −i
(
2δI2 AI2

− r−δ
I2

+ 2AI2
+ rδ

I2−4
[
(8 − 4δI2) (C1 + C2 ln r) + δI2C2

]) (dr
r
∧ Y I2 − i ?5 Y I2

)
.

(B.52)

Notice that the mode AI2
− does not contribute to G−.

For the Betti modes with δI2 = 0 the above solutions reduce to

AI2(r) = AI2
− + AI2

+ r−4
(
4(C1 + C2 log r) + C2

)
, (B.53)

with IASD/ISD flux components

G± = ∓ 32 i
AI2

+

Φ
(0)
+

(
dr
r
∧ Y I2 ∓ i ?5 Y I2

)
. (B.54)
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Exact modes: Consider the exact mode

A2 = AIv(r) dY Iv . (B.55)

The flux is

G± = ±ir∂rAIv

(
dr
r
∧ dY Iv ∓ i ?5 dY Iv

)
. (B.56)

Plugging this expression into equation (2.35) and using ?5d ?5 dY Iv = δ̃dY Iv =

λIvY Iv , we get

d
(
Φ

(0)
+ G−

)
= r∂r

(
Φ

(0)
+ r∂rAIv

) dr
r
∧ ?5dY Iv + λIv

(
Φ

(0)
+ r∂rAIv

)
?5 Y Iv = 0. (B.57)

From the discussion in §B.1.2, we know that λIv ≥ 8, so the second term on the

right in equation (B.57) can only vanish if AIv(r) = const. Thus, for this mode the

flux vanishes:

G3 ∝ d
(
dY Iv

)
= 0 . (B.58)

Moreover, the mode is topologically trivial. Thus, the exact modes are unphysi-

cal.

Total solution: To summarize, our solution is

G3 = dA2 (B.59)

A2 =
∑

I2

{
AI2
− r−δ

I2
+ AI2

+ rδ
I2−4

[
(4 − 2δI2)(C1 + C2 ln r) + C2

]}
Y I2 , (B.60)

where the sum over I2 runs over all non-exact modes, including the Betti modes

with δI2 = 0.

B.2.2 Scaling dimensions for modes of flux

In [12] explicit expressions for all possible closed IASD three-forms on a cone

were given in terms of the scalar harmonic functions of the cone, the Kähler
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potential k, the Kähler form J, and the holomorphic three-form Ω. This in par-

ticular allows one to determine the set of radial scalings of flux modes in terms

of the radial scalings of the scalar modes. One finds that the allowed Laplace-

Beltrami eigenvalues are

δI2 = ±



−1 + ∆(Is)

−2 + ∆(Is) , λIs , 0

−3 + ∆(Is) , λIs , 0

0 , b2 , 0

, (B.61)

Now, since −3 + ∆(Is) ≥ 2 for λIs , 0 (see paragraph below equation (2.68)), we

find that |δI2 | ≥ 2, apart from the Betti modes, that is

δI2 ≥ 2, or δI2 = 0, or δI2 ≤ −2 . (B.62)

In order for the radial scalings of the modes in equation (2.70) to take on

the standard AdS form, equation (2.23), we identify ∆(I2) = max(δI2 , 4 − δI2).

Thus, the operator dimensions corresponding to modes with δI2 ≥ 2 are given

by ∆(δI2 ≥ 2) = |δIs |, i.e.

∆(δI2 ≥ 2) =


−1 + ∆(Is)

−2 + ∆(Is) , λIs , 0

−3 + ∆(Is) , λIs , 0

, (B.63)

The dimensions of the Betti modes with δI2 = 0 are given by

∆(b2) = 4 , (B.64)

while the modes with δI2 ≤ −2 have ∆(δI2 ≤ −2) = 4 + |δIs |, i.e.

∆(δI2 ≤ −2) = 4 +


−1 + ∆(Is)

−2 + ∆(Is) , λIs , 0

−3 + ∆(Is) , λIs , 0

. (B.65)
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The ISD/IASD parts GH± of the flux solutions are presented in equations

(B.52, B.51) and in equation (B.54) for the Betti modes. From these expressions

one can see that GH− always vanishes for the AI2
− mode, which scales like r−δ

I2 .

Whether this mode corresponds to the normalizable mode r−∆(I2) or the non-

normalizable mode r∆(I2)−4 depends on the value of δI2 . For δI2 ≥ 2 we have

r−δ
I2 = r−∆(I2) and this is the normalizable mode. For δI2 < 2 we have r−δ

I2 = r∆(I2)−4

and this is the non-normalizable mode. For the Betti modes we see from equa-

tion (B.54) that both G+ and G− vanish for the non-normalizable mode, scaling

like r0. These modes are still physical, and they correspond to nontrivial topo-

logical configurations. So, to summarize,

• For δI2 ≥ 2, the IASD flux G− vanishes in the normalizable mode.

• For δI2 ≤ −2, the IASD flux G− vanishes in the non-normalizable mode.

• For δI2 = 0, the total flux vanishes in the non-normalizable mode.

B.2.3 Flux Green’s functions

We want to solve the system of equations

d (Σ± + S1) = S3 , (B.66)

(?6 ∓ i) Σ± = S2 , (B.67)

for two three-form sources S1 and S2 and a four-form source S3. We will do so

in two steps.

System I: First, we will solve the system of equations with S3 = 0,

d
(
Σ

(I)
± + S1

)
= 0 , (B.68)
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(?6 ∓ i) Σ
(I)
± = S2 , (B.69)

System II: Second, we will solve the system of equations with S1,S2 = 0,

dΣ
(II)
± = S3 , (B.70)

(?6 ∓ i) Σ
(II)
± = 0 . (B.71)

The solution to the original system (B.66), (B.67) is then obtained by adding the

two solutions above,

Σ± = Σ
(I)
± + Σ

(II)
± . (B.72)

Solution to system I: We first note that equation (B.68) implies that the com-

bination Θ± ≡ Σ
(I)
± + S1 is closed, so that we can locally solve equation (B.68) in

terms of a two-form potential

Θ± = dχ± , (B.73)

where χ± is defined only in one coordinate patch. In terms of Θ±, equation (B.69)

becomes

(?6 ∓ i) Θ± = S2 + (?6 ∓ i)S1 ≡ S± , (B.74)

where we defined the three-form S± in the last line. To solve this equation we

expand χ± and S± in harmonics and then equate the coefficients of the inde-

pendent modes. Note that a three-form on B5 can always be dualized to give a

two-form on B5. Thus we have

S± = dr ∧ T± + ?5T̃±, (B.75)

for T± and T̃± two-forms on B5. Now from the definition of S±, equation (B.74),

we find that

(?6 ± i)S± = 0 , (B.76)
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which gives T̃± = ± irT±, so that we get

S± = dr ∧ T ± i r ?5 T±. (B.77)

Thus, S± has the harmonic expansion

S± =
∑

I2

rSI2
±

(
dr
r
∧ Y I2 ± i ?5 Y I2

)
+

∑
Iv

rSIv
±

(
dr
r
∧ dY Iv ± i ?5 dY Iv

)
. (B.78)

Just as for the potential A2 of the previous subsection, we can choose a gauge in

which χ± has an expansion

χ± =
∑

I2

χI2
± (r) Y I2 +

∑
Iv

χIv
± (r) dY Iv . (B.79)

Therefore

(?6 ∓ i)dχ± = ∓i
{∑

I2

(r∂rχ
I2
± ± λ

I2χI2
± )

(
dr
r
∧ Y I2 ± i ?5 Y I2

)
+

∑
Iv

r∂rχ
Iv
±

(
dr
r
∧ dY Iv ± i ?5 dY Iv

) }
. (B.80)

Inserting this into equation (B.74) we find the differential equations

∂rχ
I2
± ±

λI2

r
χI2
± = ± iSI2

± , (B.81)

∂rχ
Iv
± = ± iSIv

± , (B.82)

with solutions

χI2
± (r) = ±i

∫ ∞

0
dr′ ϑ(r − r′)

( r
r′

)±λI2

S
I2
± (r′) , (B.83)

χIv
± (r) = ±i

∫ ∞

0
dr′ ϑ(r − r′)SIv

± (r′) . (B.84)

In writing down the above solutions we have introduced a modified step func-

tion ϑ suitable for non-localized sources S that takes care of the boundary be-

havior of the integrand in the IR and the UV:

ϑ(r − r′) =


θ(r − r′) for integrands that go to zero at zero,

−θ(r′ − r) for integrands that go to zero at infinity.
(B.85)
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The orthonormality relations of §B.1.2 imply

± iSI2
± dr =

∫
B5

dr
r
∧ 2 ȲI2 ∧ S± , (B.86)

± iSIv
± dr =

∫
B5

dr
r
∧ λ−1

Iv
dȲIv ∧ S± . (B.87)

Using this together with the solutions (B.83) and (B.84), we can write down the

Green’s function solution for Σ
(I)
± in terms of the sources S1 and S2:

Σ
(I)
± = dχ± − S1 , (B.88)

χ±(y) =

∫
C6

G
(I)
± (y, y′) ∧ S±(y′) , (B.89)

S± = S2 + (?6 ∓ i)S1 , (B.90)

G
(I)
± (y, y′) =

∑
I2

Y I2(Ψ)

ϑ(r − r′)
(
r′

r

)±λI2
dr′

r′
∧ 2 Ȳ I2(Ψ′)


+

∑
Iv

dY Iv(Ψ)
[
ϑ(r − r′)

dr′

r′
∧ λ−1

Iv
dȲ Iv(Ψ′)

]
. (B.91)

The index structures of the above equations are as follows:

(χ±(y))i j =
1
3!

∫
d6y′

√
g′

(
G

(I)
± (y, y′)

) mnp
i j

(
?−1

6 S±(y
′)
)

mnp
, (B.92)

(
G

(I)
± (y, y′)

)
i j,rkl =

∑
I2

Y I2
i j (Ψ)ϑ(r − r′)

(
r′

r

)±λI2
1
r′

2 Ȳ I2
kl (Ψ

′)

+
∑

Iv

2∇̃[iY
Iv
j] (Ψ)ϑ(r − r′)

1
r′
λ−1

Iv
2∇̃[kȲ

Iv
l] (Ψ′) , (B.93)

where the full metric gmn is used to raise and lower the indices, and the modified

theta function ϑ was introduced in equation (B.85).

Solution to system II: We now solve the system (B.70), (B.71). Equation (B.71)

tells us that

(?6 ∓ i)Σ(I)
± = 0 . (B.94)
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The general solution to this equation is of the form of S ∓ in equation (B.78), i.e.

Σ
(I)
± =

∑
I2

σI2
± (r)

(
dr
r
∧ Y I2 ∓ i ?5 Y I2

)
+

∑
Iv

σIv
± (r)

(
dr
r
∧ dY Iv ∓ i ?5 dY Iv

)
. (B.95)

A general four-form S3 can be expanded

S3 =
∑

I2

S
I2
3 (r) dr ∧ ?5Y I2 +

∑
I2

S
Iv
3 (r)dr ∧ ?5dY Iv (B.96)

+
∑

Iv

S̃
Iv
3 (r) ?5 Y Iv +

∑
Is

S
Is
3 (r) ?5 dY Is .

Equation (B.70) implies that S3 is closed. Upon imposing this, we find the con-

straints

S
Is
3 = 0 , (B.97)

S
Iv
3 =

1
λIv

∂rS̃
Iv
3 . (B.98)

Substituting these expansions into equation (B.70) and collecting the coeffi-

cients of the independent harmonics, we find the radial equations

∂rσ
I2
± ±

λI2

r
σI2
± = ± iSI2

3 , (B.99)

λIvσIv
± = ± iS̃Iv

3 , (B.100)

with solutions

σI2
± (r) = ±i

∫ ∞

0
dr′ϑ(r − r′)

( r
r′

)±λI2

S
I2
3 (r′) , (B.101)

σIv
± (r) = ±i

∫ ∞

0
dr′δ(r − r′) λ−1

Iv
S̃

Iv
3 (r′) . (B.102)

Using the orthonormality properties in §B.1.2,∫
B5

2 ȲI2 ∧ S3 = S
I2
3 dr , (B.103)∫

B5

dr ∧ ȲIv ∧ S3 = S̃
Iv
3 dr . (B.104)
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We can now use the solutions (B.101) and (B.102) to write down the Green’s

function solution for Σ
(II)
± in terms of the source S3:

Σ
(II)
± (y) =

∫
C6

G
(II)
± (y, y′) ∧ S3(y′) , (B.105)

G
(II)
± (y, y′) =

∑
I2

(
dr
r
∓ i?5

)
∧ Y I2(Ψ)

±iϑ(r − r′)
(
r′

r

)±λI2

2 ȲI2(Ψ
′)


+

∑
Iv

(
dr
r
∓ i?5

)
∧ dY Iv(Ψ)

[
±iλ−1

Iv
δ(r − r′) dr′ ∧ ȲIv(Ψ

′)
]
. (B.106)

Total Solution: The total solution to the system (B.66, B.67) is just the sum of

the pieces from each of the two steps:

Σ± = Σ
(I)
± + Σ

(II)
± = dχ± − S1 +

∫
C6

G
(II)
± ∧ S3 , (B.107)

χ±(y) =

∫
C6

G
(I)
± (y, y′) ∧ S±(y′) , (B.108)

S± = (?6 ∓ i)S1 + S2 , (B.109)

where the Green’s functions G(I)
± (y, y′), G(I)

± (y, y′) are given in equations (B.91) and

(B.106), respectively.

B.3 Metric solutions and Green’s functions

Now we wish to solve the equations of motion for the metric perturbations

δgmn ≡ hmn on a general (n + 1)-dimensional Calabi-Yau cone Cn+1. The linearized

Einstein equations take the form

∆Khmn = Smn, (B.110)

where Smn denotes source terms, and the kinetic operator ∆K defined in (2.33)

is constructed using the background metric gmn. The general solution takes the
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form

hmn(y) = hHmn(y) +

∫
d6y′
√

g (Gg) m′n′
mn (y, y′)Sm′n′(y′), (B.111)

where hHmn is a homogenous solution (i.e., ∆KhHmn = 0), and where (Gg) m′n′
mn (y, y′)

denotes the metric Green’s function. In §B.3.1 we will solve for the homoge-

neous perturbations in terms of angular harmonics on Bn. In §B.3.2 we obtain

the metric Green’s function. To this end we separate the radial and angular

variables in the operator ∆K :

∆Khi j =

(
∂2

r +
n − 4

r
∂r +

4
r2

)
hi j +

1
r2

(
∇̃2hi j − 2∇̃k̃∇̃(ih j)k

)
− 2

(
∂r −

2 − n
r

)
∇̃(ih j)r −

2
r

g̃i j∇̃
k̃hkr

+

[
1
r2 ∇̃i∇̃ j + g̃i j

1
r

(
∂r −

2
r

)]
hk̃

k +

[
∇̃i∇̃ j − g̃i jr

(
∂r −

2 − 2n
r

)]
hrr , (B.112)

∆Khir =
2n − 2

r2 hir +
1
r2

(
∇̃2hir − ∇̃

k̃∇̃ihkr

)
−

1
r2

(
∂r −

2
r

)
∇̃k̃hik +

1
r2

(
∂r −

2
r

)
∇̃ihk̃

k +
1 − n

r
∇̃ihrr , (B.113)

∆Khrr =
1
r2

(
∂2

r −
2
r
∂r +

2
r2

)
hk̃

k −

(
n
r
∂r −

1
r2 ∇̃

2
)

hrr −
2
r2∂r∇̃

k̃hkr . (B.114)

Throughout this work we impose a transverse gauge on the metric perturba-

tions:

∇̃k̃h{ik} = 0 , (B.115)

∇̃k̃hkr = 0 . (B.116)

This gauge condition projects out the longitudinal harmonics ∇̃{i∇̃ j}Y Is , ∇̃{iY Iv
j} ,

and ∇̃iY Is , and we get the following harmonic expansions

h{i j} =
∑

It

φIt(r)Y It
{i j}(Ψ) , (B.117)
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hir =
∑

Iv

bIv(r)Y Iv
i (Ψ) , (B.118)

hk̃
k =

∑
Is

πIs(r)Y Is(Ψ) , (B.119)

hrr =
∑

Is

rIs(r)Y Is(Ψ) . (B.120)

By expanding the gauge parameter ξm in angular harmonics, one can easily

show that there always exists ξm such that the gauge (B.115, B.116) is attainable

via

hmn −→ hmn + 2∇(mξn) . (B.121)

There is, however, a residual gauge freedom. The gauge conditions (B.115,

B.116) are preserved under (B.121) if

∇̃k̃∇{kξi} = 0 , (B.122)

∇̃k̃∇(kξr) = 0 . (B.123)

The most general form for ξ is then

ξi =
∑
Kv

ΛKv(r) YKv
i (Ψ) , (B.124)

ξr = ε(r) , (B.125)

where the YKv
i (Ψ) are the Killing vectors on Bn with λKv = 2(n − 1). The radial

fields then transform as

φIt −→ φIt , (B.126)

bKv −→ bKv +

(
∂r −

2
r

)
ΛKv , (B.127)

π0 −→ π0 + nrε , (B.128)

r0 −→ r0 + ∂rε , (B.129)

where π0, r0 are zero modes, i.e. correspond to harmonics with λIs = 0. We will

find it convenient to use the residual gauge symmetry to impose π0 = 0 and
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bKv = 0, i.e. we set ∫
dnΨ

√
g̃ Ȳ k̃

Kv
(Ψ) hkr(r,Ψ) = 0 , (B.130)∫

dnΨ
√

g̃ hk̃
k(r,Ψ) = 0 . (B.131)

B.3.1 Homogeneous metric perturbations

Using the expansions (B.117–B.120) and the separation (B.112), and then collect-

ing the coefficients of independent harmonics, the homogeneous equation

∆Khi j = 0 (B.132)

gives the radial equations(
∂2

r +
n − 4

r
∂r +

4 − λIt

r2

)
φIt Y It

{i j} = 0 , (B.133)

−2
(
∂r +

2 − n
r

)
bIv ∇̃{iY

Iv
j} = 0 , λIv , λKv (B.134)

(
1
r2

n − 2
n

πIs + rIs

)
∇̃{i∇̃ j}Y Is = 0 , λIs , 0, n (B.135)

[
1
n

(
∂2

r +
2n − 4

r
∂r −

2n − 4
r2 −

λIs

r2

2n − 2
n

)
πIs −

(
r∂r − (2 − 2n) +

λIs

n

)
rIs

]
g̃i jY Is

= 0 . (B.136)

Note that equations (B.134) and (B.135) should not be applied for values of the

quantum numbers Iv and Is, respectively, for which the corresponding harmon-

ics vanish identically, hence the restrictions listed. In a similar way,

∆Khir = 0 (B.137)
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gives

1
r2

(
2(n − 1) − λIv

)
bIv Y Iv

i = 0 , λIv , λKv = 2(n − 1) , (B.138)(
1
r2

(
∂r −

2
r

)
πIs +

1 − n
r

rIs

)
∇̃iY Is = 0 , λIs , 0 , (B.139)

and

∆Khrr = 0 (B.140)

gives (
1
r2

(
∂2

r −
2
r
∂r +

2
r2

)
πIs −

1
r

(
n∂r +

λIs

r

)
rIs

)
Y Is = 0 . (B.141)

Solutions for π, r :

λIs , 0 : In this case we have four (three if λ = n) independent equations

(B.135, B.136, B.139, B.141) for the two unknowns, πIs , rIs . Thus the only solutions

are
πIs(r) = 0

rIs(r) = 0

 if λIs , 0 . (B.142)

λIs = 0 : Now we have only two equations — (B.136) and (B.141). We can

nevertheless use the residual gauge freedom to set π0 = 0. Equations (B.136) and

(B.141) then give r0 = 0:

π0(r) = 0

r0(r) = 0

 gauge choice . (B.143)

Solutions for bIv :
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λIv , λKv : Equation (B.138) immediately gives

bIv(r) = 0, λIv , λKv . (B.144)

λIv = λKv : We can use the residual gauge symmetry to eliminate the Killing

modes

bKv(r) = 0, gauge choice . (B.145)

Solution for φIt : The only nontrivial degrees of freedom in the homogeneous

case are then the φIt , obeying equation (B.133). The two independent solutions

are

φIt
±(r) = ra±(It) , a±(It) =

1
2

(
(5 − n) ±

√
4λIt + (n − 1)(n − 9)

)
. (B.146)

To summarize, the homogeneous solution is given by

hH
{i j}(y) =

∑
It

(
hIt

+ ra+(It) + hIt
− ra−(It)

)
Y It
{i j}(Ψ) , (B.147)

with all other components vanishing, where hIt
± are constants of integration and

the a±(It) are given by

a±(It) =
1
2

(
(5 − n) ±

√
4λIt + (n − 1)(n − 9)

)
. (B.148)

B.3.2 Metric Green’s function

Now we wish to solve

∆Khmn = Smn . (B.149)

We continue to impose the same gauge conditions as in the previous subsection,

i.e. the transverse conditions (B.115, B.116) as well as the conditions π0 = 0 and
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bKv = 0. The symmetric tensor S mn can in general be expanded as

S{i j} =
∑

It

S
It
t (r) Y It

{i j}(Ψ) +
∑

Iv

S
Iv
t (r) ∇̃{iY

Iv
j} (Ψ) +

∑
Is

S
Is
t (r) ∇̃{i∇̃ j}Y Is(Ψ) , (B.150)

Sir =
∑

Iv

SIv
v (r) Y Iv

i (Ψ) +
∑

Is

SIs
v (r) ∇̃iY Is(Ψ) , (B.151)

Sk̃
k =

∑
Is

S
Is
tr (r)Y Is(Ψ) , (B.152)

Srr =
∑

Is

SIs
s (r)Y Is(Ψ) . (B.153)

In the above, the subscripts t, v, tr, s are used merely to distinguish the various

radial functions and should not be interpreted as indices.

We will proceed similarly to the previous section. We will substitute the ex-

pansions for hmn (B.117–B.120) and the expansions for Smn (B.150–B.153) into the

metric equation of motion (B.149) and make use of the decomposition of the op-

erator ∆K given in (B.112–B.114). We pick out the coefficient of each independent

harmonic to obtain a set of radial equations.1

From the equation ∆Khi j = Si j one obtains the radial equations(
∂2

r +
n − 4

r
∂r +

4 − λIt

r2

)
φIt Y It

{i j} = S
It
t Y It
{i j} , (B.154)

−2
(
∂r −

2 − n
r

)
bIv ∇̃{iY

Iv
j} = S

Iv
t ∇̃{iY

Iv
j} , λIv , λKv (B.155)

(
1
r2

n − 2
n

πIs + rIs

)
∇̃{i∇̃ j}Y Is = S

Is
t ∇̃{i∇̃ j}Y Is , λIs , 0, n (B.156)

[
1
n

(
∂2

r +
2n − 4

r
∂r −

2n − 4
r2 −

λIs

r2

2n − 2
n

)
πIs −

(
r∂r − (2 − 2n) +

λIs

n

)
rIs

]
g̃i jY Is

1A subset of these radial equations represent constraints on the source Smn. These constraints
must be satisfied in order for the solution derived below to be valid, but we will not present the
explicit form of the constraints here: we assume that the constraints are automatically obeyed
when the stress tensor is well-behaved.
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=
1
n
S

Is
tr g̃i jY Is . (B.157)

From the equation ∆Khir = Sir we get

1
r2

(
2(n − 1) − λIv

)
bIv Y Iv

i = SIv
v Y Iv

i , λIv , λKv = 2(n − 1) , (B.158)(
1
r2

(
∂r −

2
r

)
πIs +

1 − n
r

rIs

)
∇̃iY Is = SIs

v ∇̃iY Is , λIs , 0 (B.159)

and from ∆Khrr = Srr we get(
1
r2

(
∂2

r −
2
r
∂r +

2
r2

)
πIs −

1
r

(
n∂r +

λIs

r

)
rIs

)
Y Is = SIs

s Y Is . (B.160)

Solutions for π, r :

λIs = 0 : Since we have fixed to a gauge where π0 = 0, equations (B.157,

B.160) give

r0 =
r2 S0

s − S
0
tr

2n(n − 1)
. (B.161)

λIs , 0 : Equations (B.156, B.159) give(
∂r +

1
r

n2 − 5n + 2
n

)
πIs = r2 SIs

v + (n − 1)rSIs
t . (B.162)

The regular solution to this equation is given by

πI
s =

∫ ∞

0
dr′ϑ(r − r′)

(r′

r

) n2−5n+2
n

(
r′2 SIs

v (r′) + (n − 1)r′SIs
t (r′)

)
, (B.163)

where ϑ was introduced in equation (B.85). Equation (B.156) then gives the

solution for rIs ,

rIs = S
Is
t −

1
r2

n − 2
n

πIs . (B.164)

Solution for bIv :
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λIv , λKv = 2(n − 1) : Equation (B.158) gives

bIv =
r2

2(n − 1) − λIv
SIv

v . (B.165)

λIv = λKv : We take bKv = 0 by gauge choice.

Solution for φIt : Solving (B.154) is practically identical to solving the scalar

Poisson equation (2.89). Thus we start by considering sources of the form

S
It
t (r) = S

It
t (α,m) rα (ln r)m , (B.166)

with SIt
t (α,m) = const., and then generalize to a collection of such sources. For

sources with α , −2 + a±, the solution to equation (B.154) is

φIt(r;α,m) = S
It
t (α,m) rα+2 (

c0 + c1 ln r + . . . + cm(ln r)m)
, (B.167)

where the coefficients ck are given by

ck = (−1)m−k m!/k!
a+ − a−

[
(α + 2 − a+)k−1−m − (α + 2 − a−)k−1−m

]
, α , −2+a± , (B.168)

while for sources with α = −2 + a± the solution reads

φIt(r;α,m) = S
It
t (α,m) rα+2 (

d0 + d1 ln r + . . . + dm+1(ln r)m+1) , (B.169)

where the coefficients dk are given by

dk = (−1)m−k−1 m!
k!

(±a+ ∓ a−)k−1−m , α = −2 + a± . (B.170)

For the general case

S
It
t (r)

∑
α,m

S
It
t (r;α,m) rα (ln r)m (B.171)

we get a solution

φIt(r) =
∑
α,m

φIt(r;α,m) . (B.172)
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In this way φIt becomes a function of the source SIt
t , and we write the solution

formally in terms of a Green’s function GIt which we define by

φIt[SIt
t ](r) =

∑
α,m

φIt[SIt
t ](r;α,m) ≡

∫ ∞

0
dr′GIt(r, r′)SIt

t (r) . (B.173)

Summary: In the gauge given by

∇̃k̃h{ik} = ∇̃k̃hkr = 0 , (B.174)∫
dnΨ

√
g̃ Ȳ i

Kv
(Ψ) hir(r,Ψ) = 0 , (B.175)∫

dnΨ
√

g̃ hk̃
k(r,Ψ) = 0 , (B.176)

the general solution to (B.149) is

hi j(y) = hHi j (y) +

∫
dn+1y′

√
g

(
(Gg) i′ j′

i j (y, y′) S i′ j′(y′) + 2(Gg) i′r(y, y′) S i′r(y′)
)
,

(B.177)

hir(y) =

∫
dn+1y′

√
g 2(Gg) i′r

ir (y, y′) S i′r(y′) , (B.178)

hrr(y) =

∫
dn+1y′

√
g
(
(Gg) rr

rr (y, y′) S rr(y′) + 2(Gg) i′r
rr (y; y′) S i′r(y′)

+ (Gg) i′ j′
rr (y, y′) S i′ j′(y′)

)
. (B.179)

The nonzero components of the metric Green’s function (Gg) m′n′
mn (y; y′) are

given by

(Gg) i′ j′

i j (y, y′) = (r′)−n ×

[∑
It

GIt(r; r′) Y It
{i j}(Ψ) Ȳ {i

′ j′}
It

(Ψ′) +
∑
λIs>n

ϑ(r − r′)
(
r′

r

) n2−5n+2
n

× r′
(
λIs

n
(λIs − n)

)−1 (
1
n

g̃i j(Ψ)Y Is(Ψ)
)
∇̃{i

′

∇̃ j′}Ȳ Is(Ψ′)
]
, (B.180)

2(Gg) i′r
i j (y, y′) = (r′)2−n ×

[ ∑
λIs>n

ϑ(r − r′)
(
r′

r

) n2−5n+2
n (

λIs
)−1

(
1
n

g̃i j(Ψ)Y Is(Ψ)
)
∇̃i′Ȳ Is(Ψ′)

]
,

(B.181)
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2(Gg) i′r
ir (y, y′) = (r′)−n ×

∑
λIv>2(n−1)

δ(r − r′) ×
r′2

2(n − 1) − λIv
× Y Iv

i (Ψ) Ȳ i′
Iv

(Ψ′) , (B.182)

(Gg) i′ j′
rr (y, y′) = (r′)−n ×

[ ∑
λIs>n

δ(r − r′) + ϑ(r − r′)
(
r′

r

) n2−5n+2
n

× (n − 1)r′
(
−

1
r

n − 2
n

)
×

(
n − 1

n
λIs(λIs − n)

)−1

Y Is(Ψ) ∇̃{i
′

∇̃ j′}Ȳ Is(Ψ′)

+ δ(r − r′) ×
−1

2n(n − 1)
× YλIs =0(Ψ) g̃i′ j′(Ψ′)ȲλIs =0(Ψ′)

]
, (B.183)

(Gg) rr
rr (y, y′) = (r′)−n × δ(r − r′) ×

r′2

2n(n − 1)
× YλIs =0(Ψ) ȲλIs =0(Ψ′) . (B.184)
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APPENDIX C

SPECTROSCOPY ON T 1,1

The scalar, spinor, vector and two-form harmonics on T 1,1 were derived in

[19, 20]. In this appendix we add to the spectroscopic data the spectrum of the

Lichnerowicz operator ∆L acting on symmetric two-tensors. The result is pre-

sented in equation (C.69). Along the way, we have independently reproduced

the scalar, spinor and vector harmonics of [19, 20] with complete agreement.

C.1 Geometry of T 1,1

The manifold T 1,1 is defined as a coset space [44]

T 1,1 = (S U(2)1 × S U(2)2) /U(1)H . (C.1)

The two S U(2)1,2 factors are generated by two independent sets of operators

T (1,2)
A , A = 1, 2, 3, with commutation relations

[T (1)
A ,T (1)

B ] = ε C
AB T (1)

C , [T (2)
A ,T (2)

B ] = ε C
AB T (2)

C , [T (1)
A ,T (2)

B ] = 0 , (C.2)

where ε 3
12 = 1, and the U(1)H and the orthogonal U(1)5 are generated by1

TH ≡ T (1)
3 − T (2)

3 , T5 ≡ T (1)
3 + T (2)

3 . (C.3)

The standard commutation relations [JA, JB] = iε C
AB JC for S U(2) are obtained by

identifying JA ≡ iTA.

1Notice that we have interchanged TH ↔ T5 compared to [19]. In our conventions the two
S U(2)1,2 factors are treated more symmetrically. We further differ from [19] in that we use an
all plus sign metric, thus raising and lowering tangent space indices using the Kronecker delta
instead of minus the Kronecker delta as in [19].
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A general group element of S U(2)1 × S U(2)2 can be parametrized in terms of

Euler angles,

D(ϕ1, θ1, ψ1, ϕ2, θ2, ψ2) = eϕ1T (1)
3 eθ1T (1)

2 eψ1T (1)
3 eϕ2T (2)

3 eθ2T (2)
2 eψ2T (2)

3 . (C.4)

For coset elements in T 1,1 we simply replace ψ1 and ψ2 with (ψ1 + ψ2)/2. Indeed,

if we define ψH ≡ (ψ1−ψ2)/2 and ψ5 ≡ (ψ1 +ψ2)/2 we have that, up to U(1)H right

transformations,

eψ1T (1)
3 eψ2T (2)

3 = eψ5T5eψHTH � eψ5T5 = eψ5T (1)
3 eψ5T (2)

3 . (C.5)

Thus, coset elements in T 1,1 can be parametrized in terms of five angles Ψα =

(ϕ1, θ1, ϕ2, θ2, ψ5) in the following way

D(ϕ1, θ1, ϕ2, θ2, ψ5) = eϕ1T (1)
3 eθ1T (1)

2 eψ5T (1)
3 eϕ2T (2)

3 eθ2T (2)
2 eψ5T (2)

3 . (C.6)

C.1.1 Metric

We can construct a metric that is invariant under both S U(2)1 × S U(2)2 left

translations and U(1)5 right translations2, using the Maurer-Cartan one-forms

ea = dΨα e a
α , a = 1, . . . , 5, defined through

D−1dD ≡ eaTa + eHTH = eA
(1)T

(1)
A + eA

(2)T
(2)
A . (C.7)

Here we have grouped the generators into Ta = (T (1)
i ,T (2)

r ,T5) and the one-forms

into ea = (ei
(1), e

r
(2), e

5), where we have split the indices up into A(1) = (i, 3) and

A(2) = (r, 3) with i, r = 1, 2. Explicitly the one-forms of the two S U(2) factors are

given by

e1
(1) = − sin θ1 cosψ5 dϕ1 + sinψ5 dθ1 , e1

(2) = − sin θ2 cosψ5 dϕ2 + sinψ5 dθ2 ,

2Other right translations are ill-defined in the coset space since they do not commute with
U(1)H .
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e2
(1) = + sin θ1 sinψ5 dϕ1 + cosψ5 dθ1 , e2

(2) = + sin θ2 sinψ5 dϕ2 + cosψ5 dθ2 ,

e3
(1) = cos θ1 dϕ1 + dψ5 , e3

(2) = cos θ2 dϕ2 + dψ5 , (C.8)

and the one-forms eH ≡ (e3
(1) − e3

(2))/2 and e5 ≡ (e3
(1) + e3

(2))/2, dual to TH and T5, are

explicitly given by

eH =
1
2

(cos θ1 dϕ1 − cos θ2 dϕ2) , e5 =
1
2

(cos θ1 dϕ1 + cos θ2 dϕ2 + 2 dψ5) . (C.9)

Consistent with the isometries of T 1,1 we are free to rescale the one-forms, defin-

ing new one-forms Va = dΨαV a
α , in the following way

V i = a−1 ei
(1) , Vr = b−1 er

(2) , V5 = c−1 e5 . (C.10)

Using these as vielbeins the metric ds2 = δabVaVb = δabV a
α V b

β dΨαdΨβ takes the

form

ds2 =
1
a2

(
dθ2

1 + sin2 θ1dϕ2
1

)
+

1
b2

(
dθ2

2 + sin2 θ2dϕ2
2

)
+

1
4c2

(cos θ1dϕ1 + cos θ2dϕ2 + 2dψ5)2 .

(C.11)

With the choice a2 = b2 = 6 and c = 9/4 the metric becomes Einstein Rb
a = 4δb

a,

and together with the identification ψ ≡ 2ψ5 the metric takes the standard form

[44]

ds2 =
1
6

(
dθ2

1 + sin2 θ1dϕ2
1

)
+

1
6

(
dθ2

2 + sin2 θ2dϕ2
2

)
+

1
9

(cos θ1dϕ1 + cos θ2dϕ2 + dψ)2 .

(C.12)

C.2 Harmonics

The construction of tensor harmonics on group spaces, and more generally on

coset spaces, is straightforward, see for example [45, 46, 47]. The Peter-Weyl
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theorem states that the collection of irreducible representations of the group ele-

ments forms a complete basis of functions on the space. For example, a function

f on the group space S U(2) can be expanded in terms of the matrix representa-

tions D ( j)
nm, i.e.

f (ϕ, θ, ψ) =
∑
j,n,m

f ( j)
nm D ( j)

nm(D(ϕ, θ, ψ)) , (C.13)

where the f ( j)
nm are constants and the D ( j)

nm are the familiar Wigner D-matrices

defined as

D ( j)
nm(D(ϕ, θ, ψ)) ≡ 〈 j, n|D(ϕ, θ, ψ)| j,m〉 = 〈 j, n|eϕT3eθT2eψT3 | j,m〉 . (C.14)

Here | j,m〉 denotes a state in an S U(2) representation with J2
A| j,m〉 = j( j + 1)| j,m〉

and J3| j,m〉 = m| j,m〉, where JA = iTA.

In the case of T 1,1 we label the irreducible representations using their charges

under the isometry group S U(2)1 × S U(2)2 × U(1)5 and the charge under the

U(1)H. The representations of S U(2)1×S U(2)2 are labelled by the spin J = ( j1, j2)

and magnetic quantum numbers M = (m1,m2), while the representations of

U(1)5 and U(1)H are labeled by R ≡ n1 + n2 and Q ≡ n1 − n2. Thus we define

irreducible harmonics Y (J,M,R)
(Q) on T 1,1

Y (J,M,R)
(Q) (ϕ1, θ1, ϕ2, θ2, ψ5) ≡ D ( j1)

R+Q
2 m1

(D−1
1 (ϕ1, θ1, ψ5)) D ( j2)

R−Q
2 m2

(D−1
2 (ϕ2, θ2, ψ5)) . (C.15)

We choose to work with inverse representations D−1(ϕ, θ, ψ) = D(−ψ,−θ,−ϕ) for

convenience. Explicitly we have that

Y (J,M,R)
(Q) (ϕ1, θ1, ϕ2, θ2, ψ5) = eiRψ5eim1ϕ1eim2ϕ2 d( j1)

m1
R+Q

2
(θ1) d( j2)

m2
R−Q

2
(θ2) , (C.16)

where d( j)
nm(θ) ≡ 〈 j, n|eθT3 | j,m〉 denotes the little Wigner d-matrix which is orthog-

onal d( j)
nm(−θ) = (d−1)( j)

nm(θ) = d( j)
mn(θ).
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C.2.1 Scalar Harmonics

The scalar harmonics and the Laplacian eigenvalues can be determined with-

out too much machinery. The scalar harmonics are given by Y (J,M,R)
(Q) in equation

(C.16) with Q = 0, i.e.

Y (J,M,R)
(0) (ϕ1, θ1, ϕ2, θ2, ψ5) = D ( j1)

R
2 m1

(D−1
1 (ϕ1, θ1, ψ5)) D ( j2)

R
2 m2

(D−1
2 (ϕ2, θ2, ψ5))

= ei R
2 2ψ5eim1ϕ1eim2ϕ2 d( j1)

m1
R
2
(θ1) d( j2)

m2
R
2
(θ2) . (C.17)

Starting from equation (C.12) for the line element of T 1,1 the scalar Laplacian can

be expressed in terms of Killing fields KA1 = (KA1)
α1∂α1 and KA2 = (KA2)

α2∂α2 on

the two S U(2)1,2 spaces together with the Killing field K5 ≡ ∂/∂ψ5

∇2 =
1
√

g
∂α(
√

ggαβ∂β) = 6
[
(K (1)

1 )2 + (K (1)
2 )2

]
+ 6

[
(K (2)

1 )2 + (K (2)
2 )2

]
+

9
4

(K5)2 . (C.18)

The Killing fields KA = K α
A ∂α on each of the two S U(2)’s are defined by the

relation

KAD−1(ϕ, θ, ψ) = −TAD−1(ϕ, θ, ψ) , (C.19)

such that [KA,KB] = ε C
AB KC. From the defining relation (C.19) it follows that the

Killing vectors are given by the vielbein inverses K α
A =

[
(D−1∂αD)A

]−1
, so that

K1 = −
cosψ
sin θ

∂

∂ϕ
+ sinψ

∂

∂θ
+ cosψ cot θ

∂

∂ψ
,

K2 = +
sinψ
sin θ

∂

∂ϕ
+ cosψ

∂

∂θ
− sinψ cot θ

∂

∂ψ
,

K3 =
∂

∂ψ
. (C.20)

In equation (C.18) we substitute into expression (C.20) ϕ → ϕσ, θ → θσ and

ψ→ 2ψ5 for the two S U(2)σ copies, σ = 1, 2, and explicitly

(K (σ)
1 )2 + (K (σ)

2 )2 =
1

sin θσ

∂

∂θσ

(
sin θσ

∂

∂θσ

)
+

1
sin2 θσ

(
∂

∂ϕσ
− cos θσ

∂

∂(2ψ5)

)2

. (C.21)
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Now using (K (σ)
1 )2 + (K (σ)

2 )2 = (K (σ)
A )2 − ∂2/∂(2ψ5)2, and that when acting on the

representations matrices (K (σ)
A )2 = (T (σ)

A )2 = −(J(σ)
A )2 = − jσ( jσ + 1), we get

−∇2Y (J,M,R)
(0) =

(
6
[
j1( j1 + 1) − (R/2)2

]
+ 6

[
j2( j2 + 1) − (R/2)2

]
+ 9R2/4

)
Y (J,M,R)

(0) .

(C.22)

Thus we conclude, in agreement with [19], that

∇2Y (J,M,R)
(0) = −H0( j1, j2,R)Y (J,M,R)

(0) , (C.23)

where

H0( j1, j2,R) = 6
(

j2( j2 + 1) + j2( j2 + 1) − R2/8
)
. (C.24)

C.2.2 Tensor Harmonics

The goal of this appendix is to calculate the spectrum of the Lichnerowicz oper-

ator acting on symmetric two-tensors,

∆LYab = −D2Yab + 2Rc d
ab Ycd + 2R c

(a Yb)c , (C.25)

where R d
abc and Rab denote the tangent-space Riemann and Ricci tensor respec-

tively, and Dα denotes the tangent-space covariant derivative. The tangent-

space covariant derivative is related to the standard world-tensor covariant

derivative ∇α in such a way that it commutes with conversion of tangent-to-

world-space indices, e.g. for a vector ∇αYβ = ∇α(V b
β Yb) = V b

β DαYb. The tangent-

space covariant derivative D = dΨαDα can be written in the following useful

form

D = d +
1
2
ωabΣab . (C.26)

Here Σab are the generators of tangent space-rotations with [Σab,Σcd] = gcbΣad −

gcaΣbd + gdbΣca − gdaΣcb. The generators carry appropriate tensor indices, e.g.
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acting on a vector the generators (Σab)cd = 2δc
[aδ

d
b] carry vector indices. The

tangent-space connection one-forms ωa
b = dΨα (ωa

b)α are related to the ordinary

Christoffel connections Γαβγ through (ωa
b)α = V a

γ ∇αV γ
b (which guarantees that

∇αYβ = V b
β DαYb). Using the torsion-free condition for the Christoffel connection

Γαβγ = Γαγβ this relation gives the defining equation for the connection one-forms

dVa + ωa
b ∧ Vb = 0 . (C.27)

Furthermore, using the connection we can determine the Riemann tensor R d
abc ,

from which we obtain the components of the Riemann two-form,

Ra
b ≡ dωa

b + ωa
c ∧ ω

c
b ≡

1
2

Ra
bcdVc ∧ Vc . (C.28)

Connections We now calculate the connection and Riemann tensor on T 1,1.

Consider the Maurer-Cartan equations for the two S U(2) copies

deA
(σ) +

1
2
ε A

BC eB
(σ) ∧ eC

(σ) = 0 , σ = 1, 2 . (C.29)

In terms of the vielbeins Va obtained from the ea by the rescalings ei
(1) = aV i,

er
(2) = bVr, e5 = cV5 these equations reduce to

dV i − ε i
j(cV5 + eH) ∧ V j = 0 , (C.30)

dVr − εr
s(cV5 − eH) ∧ V s = 0 , (C.31)

dV5 +
a2

4c
εi jV i ∧ V j +

b2

4c
εrsVr ∧ V s = 0 , (C.32)

deH +
a2

4
εi jV i ∧ V j −

b2

4
εrsVr ∧ V s = 0 , (C.33)

where εi j = ε
3

i j and indices are raised and lowered using the unit matrix. We can

now compare these equations to equation (C.27) for the connection one-forms

ωa
b and we can identify

ω5
i = −

a2

4c
εi jV j , ωi

j = −ε i
j

[
+eH +

(
c −

a2

4c

)
V5

]
, (C.34)
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ω5
r = −

b2

4c
εrsV s , ωr

s = −εr
s

[
−eH +

(
c −

b2

4c

)
V5

]
. (C.35)

Notice that the connections ωab contain both the vielbeins Va and eH. In what

follows it will be useful to split the the two kinds of contributions

ωab ≡ Mab + Ωab ≡ Mab
c Vc + Ωab

H eH . (C.36)

From equations (C.34-C.35) it follows that

Mi j
5 = −ε i j

(
c −

a2

4c

)
, Mrs

5 = −εrs

(
c −

b2

4c

)
, (C.37)

M5i
j = −

a2

4c
ε i

j , M5r
s = −

b2

4c
εr

s , (C.38)

Ω
i j
H = −ε i j , Ωrs

H = +εrs . (C.39)

These results can also be derived using the general considerations of [48].

Starting from the Maurer-Cartan equations for the Maurer-Cartan one-forms

eΣ = (ea, eH), Σ = 1, 2, 3, 4, 5,H,

deΣ +
1
2

C Σ
ΛΠ eΛ ∧ eΠ = 0 , (C.40)

where C Σ
ΛΠ

are the structure constants of the algebra [TΛ,TΠ] = C Σ
ΛΠ

TΣ for the

generators TΣ = (Ta,TH), one can derive

Ωab
H = −C ab

H , Mab
c =

1
2

(
rcrb

ra
C ba

c −
rcra

rb
C ab

c −
rbra

rc
Cba

c

)
. (C.41)

Here ra denotes the rescaling parameters used in defining the vielbeins VΣ =

(r−1
a ea, eH), which in our case are given by ri = a, rr = b and r5 = c. Starting from

equation (C.41) we reproduce equations (C.37-C.39).

Riemann tensor Using equation (C.28) it is now straightforward to go on and

determine the components of the Riemann tensor R d
abc :

Ri jkl =

(
a2 −

3a4

16c2

)
εi jεkl , Rrsuv =

(
b2 −

3b4

16c2

)
εrsεuv , (C.42)
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Ri jrs = −
a2b2

8c2 εi jεrs , Rir js = −
a2b2

16c2 εi jεrs, (C.43)

Ri
5 j5 =

a4

16c2 δ
i
j , Rr

5s5 =
b4

16c2 δ
r
s , (C.44)

and the Ricci tensor Rac = R b
abc

Ri
j =

(
a2 −

a4

8c2

)
δi

j , Rr
s =

(
b2 −

b4

8c2

)
δr

s , R5
5 =

a4 + b4

8c2 . (C.45)

For the choice a = b =
√

6 and c = 3/2 the metric becomes Einstein: Ra
b = 4δa

b.

Covariant derivative Using that the connection splits as ωab = eHΩab
H + VcMab

c

we can write the covariant derivative D = d + 1
2ω

abΣab as D = DH + 1
2VcMab

c Σab ,

where we have defined the H-covariant derivative

DH ≡ d +
1
2

eHΩab
H Σab . (C.46)

The split is useful since, as we now show, when acting on harmonics DH =

−eaTa. First, consider a left translation gD = D′h, where g ∈ S U(2)1 × S U(2)2 and

h ∈ U(1)H. Then the Maurer-Cartan one-forms transform as

e′a = (D′−1dD′)a = [h(D−1dD)h−1]a ≡ (D−1dD)b(Adj h−1) a
b = eb(Adj h−1) a

b , (C.47)

that is, the action of TH on vectors is given by the adjoint action (TH) b
a =

(Adj TH) b
a or more generally on tensors by TH = 1

2 (Adj TH) b
a Σ a

b . Now

(Adj TH) b
a ≡ −C b

Ha and from equation (C.41) we read off that C b
Ha = −(ΩH) b

a ,

so when acting on harmonics the H-covariant derivative takes the form

DH = d + eHTH . (C.48)

Then from the defining equations of the Maurer-Cartan one-forms follows the

desired property DHD−1 = (d + eHTH)D−1 = −eaTaD−1, and the action of the co-

variant derivativeD = VaDa is determined completely by the group algebra

Dc = −rcTc +
1
2

Mab
c Σab , (C.49)
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where the rescalings ra are ri = a, rr = b and r5 = c. Using equation (C.37-C.38)

for Mab
c we explicitly get for the various components

Di = −aT (1)
i +

a2

4c
ε

j
i Σ5 j , (C.50)

Dr = −bT (2)
r +

b2

4c
ε s

r Σ5s , (C.51)

D5 = −cT5 −

(
c −

a2

4c

)
Σ12 −

(
c −

b2

4c

)
Σ34 . (C.52)

Notice that the action on scalar harmonics with Σab = 0 is extremely simple, i.e.

Da = raTa and the scalar Laplacian is

� ≡
∑

a

(raTa)2 = 6
[
(T (1)

1 )2 + (T (1)
2 )2

]
+ 6

[
(T (2)

1 )2 + (T (2)
2 )2

]
+

9
4

T 2
5

= 6
(
(T (1)

A )2 + (T (2)
A )2 − T 2

5/8 − T 2
H/2

)
, (C.53)

which reproduces the group theoretical structure for ∇2 obtained in equation

(C.18).

C.3 Symmetric Two-Tensor Harmonics

To simplify the action of the Lichnerowicz operator (∆L) cd
ab we first go to a com-

plex basis where the action of T (σ)
3 is diagonal, i.e. we work with raising and

lowering operators

T (σ)
± = T (σ)

1 ± iT (σ)
2 , V±(σ) =

1
2

(V1
(σ) ∓ iV2

(σ)) . (C.54)

That is, we do a transformation in the tangent space

Tā = U b
ā Tb , V b̄ = Va (U−1) b̄

a , (C.55)
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where a = 1, 2, 3, 4, 5 and ā = +1,−1,+2,−2, 5. Lower indices are converted using

U b
ā and upper indices are converted using (U−1) b̄

a , where

U b
ā =



1 i 0 0 0

1 −i 0 0 0

0 0 1 i 0

0 0 1 −i 0

0 0 0 0 1


, (U−1) b̄

a =
1
2



1 1 0 0 0

−i i 0 0 0

0 0 1 1 0

0 0 −i i 0

0 0 0 0 2


. (C.56)

In this basis the Lichnerowicz operator takes the form (∆L) c̄d̄
āb̄

=

U a
ā U b

b̄
(∆L) cd

ab (U−1) c̄
c (U−1) d̄

d .

We then go on and introduce a complete and orthogonal basis of symmetric

matrices EN
āb̄

, labeled by N = 1, . . . , 15, with the properties

EM
āb̄Eāb̄

N = δM
N , EN

āb̄E c̄d̄
N = δc̄

(āδ
d̄
b̄) , (C.57)

where we have defined Eāb̄
N numerically as Eāb̄

N ≡ EN
āb̄

. We then use EN
āb̄

to convert

all pairs of symmetric indices āb̄ into an index N, such that the Lichnerowicz

operator becomes a 15 × 15 matrix

(∆L) N
M = −(D2) N

M + 2R N
M + 8δ N

M , (C.58)

where (D2) N
M = Eāb̄

M (D2) c̄d̄
āb̄

EN
c̄d̄

and R N
M = Eāb̄

M Rc̄ d̄
āb̄

EN
c̄d̄

, also we used that R b
a =

4δb
a. We choose EN

āb̄
such that the basis of symmetric two-tensors WN ≡ EN

āb̄
V ā⊗V b̄

takes the form

W1 = V+
(1) ⊗ V+

(1) , W6 =
1
√

2
(V+

(1) ⊗ V−(1) + V−(1) ⊗ V+
(1)) , W11 =

1
√

2
(V−(1) ⊗ V−(2) + V−(2) ⊗ V−(1)) ,

W2 = V−(1) ⊗ V−(1) , W7 =
1
√

2
(V+

(1) ⊗ V+
(2) + V+

(2) ⊗ V+
(1)) , W12 =

1
√

2
(V−(1) ⊗ V5 + V5 ⊗ V−(1)) ,

W3 = V+
(2) ⊗ V+

(2) , W8 =
1
√

2
(V+

(1) ⊗ V−(2) + V−(2) ⊗ V+
(1)) , W13 =

1
√

2
(V+

(2) ⊗ V−(2) + V−(2) ⊗ V+
(2)) ,

W4 = V−(2) ⊗ V−(2) , W9 =
1
√

2
(V+

(1) ⊗ V5 + V5 ⊗ V+
(1)) , W14 =

1
√

2
(V+

(2) ⊗ V5 + V5 ⊗ V+
(2)) ,

W5 = V5 ⊗ V5 , W10 =
1
√

2
(V−(1) ⊗ V+

(2) + V+
(2) ⊗ V−(1)) , W15 =

1
√

2
(V−(2) ⊗ V5 + V5 ⊗ V−(2)) .
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Then if we want to construct a symmetric two-tensor Y (J,M,R) = Y (J,M,R)
N WN with

charges (J,M,R) we pair up basis tensors WN with irreducible harmonics Y (J,M,RN )
(QN )

of appropriately chosen charges RN and QN , i.e.

Y (J,M,R) =
∑

N

cNY (J,M,RN )
(QN ) WN , (C.59)

where cN are constants and the Y (J,M,RN )
(QN ) are chosen according to the charges

(T5) N
M and (TH) N

M of the basis tensors WN , where

(T (1)
3 ) N

M = −(Σ12) N
M = −i diag (−2,+2, 0, 0, 0, 0,−1,−1,−1,+1,+1,+1, 0, 0, 0) ,

(T (2)
3 ) N

M = −(Σ34) N
M = −i diag (0, 0,−2,+2, 0, 0,−1,+1, 0,−1,+1, 0, 0,−1,+1) ,

(T5) N
M = (T (1)

3 + T (2)
3 ) N

M = −i diag (−2,+2,−2,+2, 0, 0,−2, 0,−1, 0,+2,+1, 0,−1,+1) ,

(TH) N
M = (T (1)

3 − T (2)
3 ) N

M = −i diag (−2,+2,+2,−2, 0, 0, 0,−2,−1,+2, 0,+1, 0,+1,−1) .

Explicitly, in this basis, the components of the symmetric two-tensor take the
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form

Y (J,M,R)
N =



c1Y (J,M,R−2)
(−2)

c2Y (J,M,R+2)
(+2)

c3Y (J,M,R−2)
(+2)

c4Y (J,M,R+2)
(−2)

c5Y (J,M,R)
(0)

c6Y (J,M,R)
(0)

c7Y (J,M,R−2)
(0)

c8Y (J,M,R)
(−2)

c9Y (J,M,R−1)
(−1)

c10Y (J,M,R)
(+2)

c11Y (J,M,R+2)
(0)

c12Y (J,M,R+1)
(+1)

c13Y (J,M,R)
(0)

c14Y (J,M,R−1)
(+1)

c15Y (J,M,R+1)
(−1)



. (C.60)

To determine the Lichnerowicz operator we also need the Riemann tensor and

the Laplacian. In the above specified basis the components of the Riemann ten-
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sor are given by

R N
M =



3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 3 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 3 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 3 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 − 1√
2

0 0 0 0 0 0 − 1√
2

0 0

0 0 0 0 −2
√

2 −3 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 3 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −3 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 −2
√

2 0 0 0 0 0 0 0 −3 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



, (C.61)

and row 1 through 15 and column 1 through 8 of the Laplacian (D2) N
M are given
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by

(D2) 1−8
1−15 =



�−3−3iT5 0 0 0 0 0 0 0

0 �−3+3iT5 0 0 0 0 0 0

0 0 �−3−3iT5 0 0 0 0 0

0 0 0 �−3+3iT5 0 0 0 0

0 0 0 0 �−8
√

2 0 0

0 0 0 0 4
√

2 �−2 0 0

0 0 0 0 0 0 �−3−3iT5 0

0 0 0 0 0 0 0 �−2

2
√

3iT (1)
− 0 0 0 4

√
3iT (1)

+ −
√

6iT (1)
+

√
6iT (2)
− −

√
6iT (2)

+

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 −2
√

3iT (1)
+ 0 0 −4

√
3iT (1)
−

√
6iT (1)
− 0 0

0 0 0 0 4
√

2 0 0 0

0 0 2
√

3iT (2)
− 0 4

√
3iT (2)

+ 0
√

6iT (1)
− 0

0 0 0 −2
√

3iT (2)
+ −4

√
3iT (2)
− 0 0

√
6iT (1)
−


while row 1 through 15 and column 9 through 15 of the Laplacian (D2) B

A are
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given by

(D2) 9−15
1−15 =



4
√

3iT (1)
+ 0 0 0 0 0 0

0 0 0 −4
√

3iT (1)
− 0 0 0

0 0 0 0 0 4
√

3iT (2)
+ 0

0 0 0 0 0 0 −4
√

3iT (2)
−

2
√

3iT (1)
− 0 0 −2

√
3iT (1)

+

√
2 2

√
3iT (2)
− −2

√
3iT (2)

+

−2
√

6iT (1)
− 0 0 2

√
6iT (1)

+ 0 0 0

2
√

6iT (2)
+ 0 0 0 0 2

√
6iT (1)

+ 0

−2
√

6iT (2)
− 0 0 0 0 0 2

√
6iT (1)

+

�− 29
4 −

3
2 iT5 0 0 0 0 0 0

0 �−2 0 2
√

6iT (2)
+ 0 −2

√
6iT (1)
− 0

0 0 �−3+3iT5 −2
√

6iT (2)
− 0 0 −2

√
6iT (1)
−

0
√

6iT (2)
− −

√
6T (2)

+ �− 29
4 + 3

2 iT5 0 0 0

0 0 0 0 �−2 −2
√

6iT (2)
− 2

√
6iT (2)

+

0 −
√

6iT (1)
+ 0 0 −

√
6iT (2)

+ �− 29
4 −

3
2 iT5 0

0 0 −
√

6iT (1)
+ 0

√
6iT (2)
− 0 �− 29

4 + 3
2 iT5



,

where � is defined in equation (C.53).

Now for fixed indices M,N the operator (∆L) N
M takes Y (J,M,RN )

(QN ) to Y (J,M,RM)
(QM)

3 with

some numerical coefficientM N
M , i.e.

(∆L) N
M Y (J,M,RN )

(QN ) ≡ M N
M Y (J,M,RM)

(QM) , no sum over M,N (C.62)

Then we diagonalize (∆L) N
M by finding the eigenvectors cN and eigenvalues λ

ofM N
M , with

∑
NM

N
M cN = λ cM, such that the vector with coefficients Y (J,M,R)

N =

cNY (J,M,RN )
(QN ) has the eigenvalue λ, indeed

∆LY (J,M,R)
M =

∑
N

(∆L) N
M cNY (J,M,RN )

(QN ) =
∑

N

M N
M cN Y (J,M,RM)

QM
= λY (J,M,R)

M . (C.63)

3 We hope that there is no confusion in using both M = 1, . . . , 15 as an index and M = (m1,m2)
as a charge label.
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When deriving the numerical matrix M N
M we use that all terms in the Lich-

nerowicz operator give purely group theoretical factors familiar from S U(2)

group theory

T (1)
± Y (J,M,R)

(Q) = −iJ∓
(

j1,
R + Q

2

)
Y (J,M,R∓1)

(Q∓1) , (C.64)

T (2)
± Y (J,M,R)

(Q) = −iJ∓
(

j2,
R − Q

2

)
Y (J,M,R∓1)

(Q±1) , (C.65)

T5 Y (J,M,R)
(Q) = −iR Y (J,M,R)

(Q) , (C.66)

TH Y (J,M,R)
(Q) = −iQ Y (J,M,R)

(Q) , (C.67)

�Y (J,M,R)
(Q) = −6

(
j1( j1 + 1) + j2( j2 + 1) − R2/8 − Q2/2

)
Y (J,M,R)

(Q) . (C.68)

where J±( j,m) =
√

j( j + 1) − m(m ± 1) and where we used expression (C.53) for

�.

When we diagonalizeM N
M we find 15 eigenvalues: one scalar trace mode,

five longitudinal modes of which one corresponds to a scalar and four cor-

respond to transverse vectors, and nine transverse-traceless modes. In terms

of the quantity H0 defined in (C.24), the nine eigenvalues corresponding to

transverse-traceless modes are

λTransverse-Traceless =
{
H0( j1, j2,R) + 8 , H0( j1, j2,R ± 4) + 8 ,

9 + H0( j1, j2,R ± 2) − 2
√

H0( j1, j2,R ± 2) + 4 ,

9 + H0( j1, j2,R ± 2) + 2
√

H0( j1, j2,R ± 2) + 4 ,

12 + H0( j1, j2,R) ± 4
√

H0( j1, j2,R) + 4
}
. (C.69)
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C.4 Smallest Eigenvalues

For the lowest quantum numbers (J,M,R) the Lichnerowicz operator reduces

considerably in size and the formula (C.69) for the eigenvalues is not applicable.

The result from studying the individual cases 0 ≤ j1, j2 ≤ 1 is summarized in

Table C.1.

Eigenvalues of the Lichnerowicz operator

j1 j2 |R| λLongitudinal/Trace λTransverse-Traceless

0 0 0 0 4, 20
0 0 2 — 5
1
2

1
2 1 8.25, 8.25, 11.25, 19.25, 24.25, 34.25

1
2

1
2 3 — 16.25

1 0 0 12, 12, 24 20, 40
1 0 2 15 29
1 1 0 17.42†, 24, 24, 24, 24, 38.58∗ 14.83§, 32, 40, 40, 57.17††

1 1 2 21, 21, 27, 35 22.42∗∗, 29, 43.58§§, 53
1 1 4 — 32

†28 − 4
√

7 ≈ 17.42, ∗28 + 4
√

7 ≈ 38.58, §36 − 8
√

7 ≈ 14.83, ††36 + 8
√

7 ≈ 57.17, ∗∗33 − 4
√

7 ≈ 22.42, §§33 + 4
√

7 ≈ 43.58

Table C.1: The eigenvalues of the Lichnerowicz operator for the modes
with the lowest quantum numbers. The two smallest eigenval-
ues λ = 4, 5 correspond to modes with j1 = j2 = 0 and R = 0, 2.
The third-smallest eigenvalue is λ = 36 − 8

√
7 and corresponds

to a mode with j1 = j2 = 1 and R = 0.

C.4.1 Modes with j1 = j2 = 0

As a concrete example we discuss the most degenerate case when j1 = j2 = 0. In

this case only the vielbeins can be used to construct tensors, and there are only
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five tensors with Q = 0:

W5 = V5 ⊗ V5 , (C.70)

W6,13 =
1
√

2
(V+

(1,2) ⊗ V−(1,2) + V−(1,2) ⊗ V+
(1,2)) , (C.71)

W7,11 =
1
√

2
(V±(1) ⊗ V±(2) + V±(2) ⊗ V±(1)) . (C.72)

Of these, only W7 has R = 2 and only W11 has R = −2, so for these two modes

the Lichnerowicz operator reduces to 1 × 1 matrices and the eigenvalues can be

read off directly from the expressions for (∆L) 7
7 and (∆L) 11

11 :

∆LW7,11
ab = 5 W7,11

ab . (C.73)

Both modes W7,11 are transverse-traceless gabW7,11
ab = DaW7,11

ab = 0.

The modes W5,6,13 all have R = 0, so the Lichnerowicz operator is reduced

to a 3 × 3 matrix which has three eigenvalues λ = 0, 4, 20. Of these, the λ = 0

eigenvalue corresponds to a trace mode:

YTrace
0 = 2

√
2(V6 + V13) + V5

= 2V+
(1) ⊗ V−(1) + 2V−(1) ⊗ V+

(1) + 2V+
(2) ⊗ V−(2) + 2V−(2) ⊗ V+

(2) + V5 ⊗ V5

≡ gabVa ⊗ Vb . (C.74)

Note that ∆Lgab = 0 trivially. The two other modes are transverse-traceless and

the mode with λ = 4 is given by

YTransverse-Traceless
4 = 2

√
2 (V6 − V13) (C.75)

=
[
2V+

(1) ⊗ V−(1) + 2V−(1) ⊗ V+
(1)

]
−

[
2V+

(2) ⊗ V−(2) + 2V−(2) ⊗ V+
(2)

]
,

while the the mode with λ = 20 is given by

YTransverse-Traceless
20 = 2

√
2 (V6 + V13) + 4 V5 (C.76)

= 2V+
(1) ⊗ V−(1) + 2V−(1) ⊗ V+

(1) + 2V+
(2) ⊗ V−(2) + 2V−(2) ⊗ V+

(2) + 4V5 ⊗ V5 .
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C.4.2 Higher quantum numbers

From Table C.1 we see that the smallest transverse-traceless eigenvalues are

λtransverse-traceless = 4, 5, 14.83, 16.25, . . . (C.77)

The modes with λ = 4, 5 have j1 = j2 = 0 and are discussed in the above section.

The third-smallest eigenvalue is λ = 36 − 8
√

7 ≈ 14.83 and corresponds to a

transverse-traceless mode with j1 = j2 = 1 and R = 0. This mode has eigenvector

c5 = −
√

2(8 −
√

28), c6 = c13 = 8 −
√

28, c9 = c14 =
√

3(2 −
√

28), c12 = c15 =

−
√

3(2 −
√

28), c7 = c11 = −10 −
√

28, c8 = c10 = 6, and all other cN’s zero.
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