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A search for the rare decays of B0
s → µ+µ− and B0

d → µ+µ− is presented in pp colli-

sions at
√

s=1.96 TeV corresponding to 10 fb−1 of integrated luminosity collected

by the CDF II detector. The observed number of B0
d candidates is consistent with

background-only expectations and yields an upper limit on the branching frac-

tion B(B0
d → µ+µ−) of 4.2 × 10−9 at 95% confidence level. An excess is observed

for the B0
s signal region. The probability that background processes alone could

produce such an excess or larger is 0.94%. The probability that the combination

of background and the expected standard model rate B0
s → µ+µ− could produce

such an excess or larger is 6.8%. These data are used to determine a central

value of B(B0
s → µ+µ−) = (1.3+0.9

−0.7) × 10−8 as well as a two sided limit at 90% C.L.

of 2.2 × 10−9 < B(B0
s → µ+µ−) < 3.0 × 10−8.
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CHAPTER 1

INTRODUCTION

During the last century a comprehensive model for all interactions and parti-

cles in particle physics has been developed and is known as the standard model

(SM). This theoretical model has been extraordinarily successful in describing

particle physics. The vast majority of experimental results from the past five

decades have been accurately described by this model.There are, however, prob-

lems with this model that include the weak hierarchy problem, the exclusion of

gravity in the model, and the use of ad-hoc parameters. The SM also fails to

explain dark matter and dark energy which are the main constituents of the

universe. Many new physics (NP) models have been proposed to solve these

problems. Each of these models solve problems in differing ways from intro-

ducing a new symmetry to the addition of space dimensions.

Experiments have been searching for both direct and indirect indications

of physics beyond the SM. Direct searches usually study particles or interac-

tions that would directly be produced in a NP model. Indirect searches tend to

measure physical quantities such as branching fractions or Cabibbo-Kobayashi-

Maskawa (CKM) matrix angles that could be anomalous if any beyond the SM

physics were present.

Flavor changing neutral current (FCNC) processes, such as the B0
s,d → µ+µ−

decays, can not occur in the SM at tree level and require higher order box and

penguin diagrams. These processes are thus heavily suppressed in the SM and

are a powerful probe for NP. Several NP models predict potentially significant

enhancements in the decay rate of B0
s,d → µ+µ−.
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A specific group of models, supersymmetric (SUSY) models, arose from an

attempt to solve the weak hierarchy problem. These models all predict enhance-

ments to the branching fraction B(B0
s → µ+µ−). SUSY models are particularly

popular because they not only help solve the hierarchy problem by introducing

fermion/boson partners to SM boson/fermion particles, but also hypothesize

very heavy particles that could serve as a dark matter candidate. One such

model, the minimal supersymmetric standard model (MSSM) predicts an en-

hancement of tan6β, where tanβ is the ratio of the vacuum expectation values

(VEV’s) of the two Higgs doublets in the MSSM. These models predict maxi-

mum enhancements of B(B0
s → µ+µ−) that are orders of magnitude larger than

the SM predicted values.

We search for B0
s,d → µ+µ− decays in attempt to find possible enhancements

to the branching fraction B(B0
s → µ+µ−). If no enhancement is found, limits will

be able to constrain the NP parameter space significantly while complementing

the constraints set by direct searches.

This document is organized as follows: Chapter 2 discusses the theoretical

framework and current experimental status for B0
s,d → µ+µ− decays. Chapter 3

provides an overview of both the accelerator and collider detector used for the

search for B0
s,d → µ+µ− decays. This is then followed by a discussion of the

analysis methods in Chapter 4. Finally the results and conclusion for this search

are explored in Chapter 5.
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CHAPTER 2

THEORETICAL FRAMEWORK

Fundamental particles and their interactions are very well modeled by a quan-

tum field theory known as the standard model. This model was first developed

during mid 20th century by Glashow, Weinberg, and Salam. Experimental re-

sults have verified many predictions of the model since the first evidence of

quarks in the 1970’s. The model contains 12 fermions, 5 gauge bosons, and a

Higgs boson. Gauge bosons act as the force mediators of the three fundamen-

tal interactions in the SM: electromagnetic, weak, and strong. Even though the

SM is the most successful theory of physics there are many aspects of physics

that the model does not describe. Even within the set of interactions the model

describes there are problems that can not be solved.

2.1 Introduction to the standard model

The SM describes 12 fermions (and their charge conjugates) and their interac-

tions through 5 gauge bosons. An additional boson, the Higgs boson, is in-

cluded in the model to yield the masses of the particles in the SM.

The SM describes fermions as spin-1
2 spinor fields and divides the fermions

up into quarks and leptons. Leptons only interact with the electromagnetic and

weak force. There are three generations of leptons of which three are electro-

magnetically charged: the electron (e), the muon (µ), and the tauon (τ). The

remaining leptons are neutrinos (ν) that have a very low mass (< 2 eV [1]), no

charge, and are associated with a particular charged lepton. The strength with
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which the lepton interacts with the electromagnetic or weak force is given by a

coupling constant. For the electromagnetic force this coupling constant can be

associated with the electric charge of a particle. Leptons have either an electric

charge of ±1e, or 0. For the weak force the strength of interaction is described

by the weak isospin which depends on the chirality of the fermion.

Quarks are divided into up and down types. Up type quarks have charge

±2
3e while down type quarks have charge ∓1

3e. Quarks interact with the same

forces as leptons with the addition of the strong force. The strong force ’charge’

can can be either red (r), green (g), or blue (b). Due to their interaction with

the strong force quarks can not be observed in a free state and are confined in

combinations known as hadrons. Hadrons are either baryons, a combination of

three quarks, or mesons, a combination of a quark and an antiquark. Hadrons

always have net color of zero. A summary of the fermions described by the SM

is given in Table 2.1.

Table 2.1: Fermions in the standard model. The isospin quantum number
depends on the chirality of the fermion. Right-handed particles
have isospin 0 and do not interact with the weak force. The color
quantum number can have three values: red, green, or blue.

Generation Quantum Number

I II III Electric Charge Isospin Color

Leptons
e µ τ +1e –1/2 0

νe νµ ντ 0 +1/2 0

Quarks
u c t +2/3e +1/2 r,g,b

d s b −1/3e –1/2 r,g,b

The three forces are described as boson mediator particles. These three forces
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each form their own symmetry gauge groups. The electromagnetic force, math-

ematically described by the unitary group (U(1)), is mediated by the massless

and chargeless photon which can have spin ±1. There are three massive gauge

bosons for the weak force described by a generators of the 2D special unitar-

ity group (S U(2)). The W± mediate the charged current interactions while the

Z mediates the neutral current weak interactions. The force mediating bosons

for the strong force are the massless and chargeless gluons. These bosons are

mathematically described by the generators of 3D special unitary (S U(3)) gauge

group.

The SM unifies the electromagnetic and weak force into one electroweak

force with gauge symmetry (S U(2) × U(1)). The SM predicts that all particles

are massless without a process known as the Higgs mechanism which sponta-

neously breaks the S U(2) × U(1) symmetry. This spontaneous symmetry break-

ing gives rise to a fifth massive boson, the Higgs boson, and gives masses to all

massive particles through interactions with the Higgs boson.

Together these bosons and fermions and their couplings describe most parti-

cle physics phenomena. This document will focus on the weak interactions that

can occur during the decay of diquark steady states.

2.1.1 Electroweak symmetry breaking

A key component of the SM is a process of spontaneous symmetry breaking

known as electroweak symmetry breaking (EWSB). The symmetry group of the

SM is S U(3) × S U(2) × U(1) which is broken by fermion and gauge boson mass

terms. To allow for masses, spontaneous breaking of the S U(3) × S U(2) × U(1)
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symmetry to S U(3) × U(1) is introduced using a scalar field. A scalar complex

doublet (Eq. (2.1)) is introduced to the Lagrangian with a potential known as

the Mexican hat potential shown in Eq. (2.2) and Fig. 2.1.

Φ =

 φ
+

φ0

 (2.1)

V(φ) = µ2|φ|2 + λ|φ|4 (2.2)

This yields a non zero vacuum expectation value (VEV) for µ2 < 0. The scalar

field can be written as S U(2) doublet expanded around the VEV:

vev =
1
√

2

 0

v + h(x)

 . (2.3)

A Lagrangian using the expansion around the vacuum yields terms that in-

dicate a massive self-interacting scalar boson, the Higgs boson. In addition, the

kinetic terms of the scalar field result in mass terms of the gauge boson while

the fermion masses arise from the Yukawa couplings with the Higgs field. These

Yukawa couplings play an important role in defining the mixing between quark

generations and thus help predict the SM B0
s,d → µ+µ− branching fraction.

The Higgs boson mass depends on the coupling constant, λ, and the VEV.

The VEV can be determined from the gauge boson masses (γ, W±, and Z0) and

is approximately 246 GeV/c2. The coupling constant, however, is unknown and

can only be determined from measuring interactions of known particles with

the Higgs. On July 4th 2012 both the ATLAS and CMS collaborations announced
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the discovery of a Higgs like boson with a mass of around 125 GeV/c2. This

discovery could mean that all SM particles have been observed experimentally.

Figure 2.1: The potential of the scalar field. There is a semistable point at
φ=0 which preserves the gauge symmetry while there is stable
minimum that breaks the symmetry.

2.2 Unresolved issues with the standard model

The standard model has been a very successful model of the fundamental con-

stituents of matter and their interactions. However, there are several problems

with this model. One of the longest standing problem of the model is the “large

hierarchy problem”. This hierarchy problem arises from loop corrections to the

masses of the fermions and bosons in the SM. For both fermions and gauge

bosons the correction to their mass are proportional to the mass of the fermion

or gauge boson. These loop diagrams usually are divergent and contain an en-

ergy scale cutoff. This cutoff tends to be the Planck scale, ΛPl = 1018 GeV/c2,

which is the highest energy levels at which the SM could to still be valid. Be-

yond this energy scale, quantum gravity begins to have significant effects. Even

at these scales, because the correction is proportional to the fermion or gauge bo-
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son mass, the correction is greatly limited. However, for the Higgs boson, these

corrections are not proportional to a Higgs mass and are of order ΛPl. This prob-

lem questions the entire SM, and many models, some of which are discussed in

Sec. 2.6, have proposed methods to resolve this issue.

Besides direct problems in the SM there are also phenomena that the SM has

no explanation for. One of which is the presence of dark matter and dark energy.

The SM essentially describes ∼4% of the universe (Fig. 2.2) while the remaining

dark matter and dark energy are not described. There is strong evidence for the

presence of dark matter from gravitational lensing, galactic velocity curves, the

CMB power spectrum, and the abundance of light elements. Evidence for dark

energy come from observation of supernovae and the CMB. Very little is known

about dark matter and even less about dark energy. Some extensions of the SM,

such as SUSY, propose dark matter candidates but no such candidate has yet

been discovered.

In addition the SM also does not explain the matter asymmetry in our uni-

verse. Processes described by the SM do not prefer decays of matter over anti-

matter at the rate seen in the matter dominated universe. The SM also fails to

explain the hierarchy in fermion masses. Why is the top quark mass five orders

of magnitude larger than the up quark mass?

The SM is an exceptionally successful theory but there are many indications,

both theoretically and experimentally, that the SM is only an effective field the-

ory of a much more complete theory. There are many efforts in both experiment

and theory to find clues of this more complete theory. The search for B0
s,d → µ+µ−

is one such experimental effort.
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Figure 2.2: Constituents of the universe. The SM only describes small frac-
tion of the universe.

2.3 B Mesons

Quarks can combine into unstable bound states known as mesons consisting of

a quark and antiquark. These mesons are created through a process of hadroniza-

tions. In hadron colliders bb are produced by gluon fusion or light quark and

antiquark annihilation. Due to quark confinement these b-quarks start to pull

quarks from the vacuum to form hadrons. This process is modeled by several

empirical models of which the Lund string model [2] is the most used model.

In this model the quark-antiquark pair are linked by a string with a constant

energy density as a function of length. This yields an increasing energy as a

function of quark-antiquark (qq) separation distance. When the energy reaches

levels equivalent to the mass of new qq masses a new pair of quarks is produced.
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The Lund string fragmentation model predicts a higher rate of light quark

production during hadronization due to the energy in the string reaching levels

of twice the light quark masses more easily than for heavier quarks. Addition-

ally, the production of baryons is less likely than mesons for similar reasons.

This is in agreement with experimental observations and plays a role in the

B0
s → µ+µ− and B0

d → µ+µ− searches. The fragmentation ratio between a b-quark

fragmenting with a s-quark and a light up or down quark need to be taken into

account when measuring the branching fractions relative to a normalization de-

cay. If the normalization decay is a decay of a B-meson with the same quark

content no such fragmentation ratio enters the branching fraction estimation.

However, in this analysis the B+ → J/ψK+ normalization mode for both the

B0
s → µ+µ− and B0

d → µ+µ− searches are used, resulting in the need for an accu-

rate estimation of the fragmentation ratio. The details of the branching fraction

estimation in the B0
s,d → µ+µ− search using a normalization mode are discussed

in detail in Sec. 4.3.

There are many possible qq combinations and this document will focus on

B-mesons. B-mesons are a combinations of b̄ quark and a quark with a different

flavor. They are characterized by their relatively large mass (∼5GeV [3]) and

their long lifetimes (∼440 µ m). We will limit ourselves to particular decays of

the B+, B0
s , B0

d, and their charge conjugates. The B+ consists of a b̄ and u quark,

while the B0
s and B0

d contain s and d quarks along with a b̄ quark, respectively.
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2.4 The Cabibbo-Kobayashi-Maskawa Matrix

The rate at which quark flavor changes occur in the SM are summarized in a

matrix known as the Cabibbo-Kobayashi-Maskawa matrix. This matrix arises

naturally from the Yukawa interactions with the Higgs condensate after trans-

formation from a weak eigenstate to a quark mass eigenstate. The CKM matrix

is a 3 × 3 unitary complex matrix that diagonalizes mass matrices in the SM La-

grangian and is given in Equation 2.4. Each element in Equation 2.4 represents

a coupling for a charged current interaction as depicted in Fig. 2.3. The approx-

imate measured values are also shown in Equation 2.4 [3]. The diagonal terms

represent mixing within one quark generation and are ∼1. Interaction involving

mixing of different generations are, however, significantly smaller. The smallest

off diagonal interaction is from u to b and is more than 250 times smaller than

the diagonal terms.

t, c, u

b̄, s̄, d̄ W−

Figure 2.3: Charged current interaction. The coupling constant of the ver-
tex, V i j

CKM, is one of the elements of the CKM matrix.

There are several parametrization of the matrix of which the “Standard” and

Wolfenstein parametrization are the most used [3]. These parametrization have

four independent parameters. A complex N × N matrix has 2N2 real parame-

ters, where N is the number of generations. The CKM matrix is unitary which

reduces the number of parameters down to N2. The SM Lagrangian is invari-
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ant under global phase transformation which allows for the absorption of two

phases into the quark fields, one for the up type and two for the down type.

This means that 2N − 1 phases can be removed from the initial N2 phases. This

yields a total of (N − 1)2 free parameters, which comes to four parameters in the

SM.

VCKM ≡


|Vud| |Vus| |Vub|

|Vcd| |Vcs| |Vcb|

|Vtd| |Vts| |Vtb|

 ∼

0.974 0.225 0.003

0.225 0.973 0.041

0.009 0.040 0.999

 (2.4)

2.4.1 Flavor changing neutral currents

Flavor changing neutral current processes involve a change in flavor without a

change in charge. A typical electroweak interaction either contains a change in

charge or flavor. The B0
s,d → µ+µ− decays are FCNC decays and occurs in the SM

through loop processes. FCNC’s are suppressed by the GIM-mechanism in the

SM. The suppression arises from both the higher powers of the weak coupling

constant (gW), the large mass of the W± and Z0 bosons, as well as subtraction

of different higher order contribution. The high powers of gW comes from the

many vertices involved in the higher order diagrams. The propagator for mas-

sive bosons is given in the SM by Equation 2.5. At low energies (such as with

most meson decays) where q << m2
W this can be heavily suppressed by m2

W .

i(gαµ +
qαqµ
m2

W
)

q2 + m2
W

∼
igαµ
m2

W

(2.5)

An example of the suppression due to addition of different contribution can
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be given with the K0
L → µ+µ− decay. When the box diagram is considered for

this example the quark in the box can be either the u, c, or t quarks. The t can be

ignored due to small CKM matrix element. This leaves the u and c contributions.

If these two quarks had the same mass the two contributions would cancel out

since the fermion propagator is a function of fermion mass. However, the u

an c quark do have different masses resulting in a non zero branching fraction.

This type of calculation will be examined in more detail in the next section that

discusses the SM B(B0
s → µ+µ−) prediction in detail.

2.5 Standard model B0
s,d → µ+µ−

In the SM B0
s,d → µ+µ− decays can only occur through higher order box and

penguin diagrams shown in Fig. 2.4. There are no diagrams involving pho-

ton penguins (X → γ → µ+µ−) because the B0
s,d mesons are scalars with spin 0

which must be conserved. This can not happen with photons since photons can

only have spin ±1. Higgs penguins are not shown in Fig. 2.4 due to their small

contribution caused by the small muon masses relative to the Higgs vacuum ex-

pectation value (VEV, or v). The couplings involving the Z0 penguin is of order

g2
W ∼ 0.5 while the Higgs penguin’s couplings are of order mµ

v ·
mt,W

v ∼ O(10−4)

while having similar propagators.

The branching fraction for any Bs → l+l− can be calculated using Equa-

tion 2.6, where B indicates either the B0
s or B0

d meson, and τB is the total meson

lifetime. The matrix element,M, depends on the Feynman diagram. Due to the

low mass of the B0
s,d mesons relative to the mass of the Z0 and W± bosons the

matrix elements can be evaluated with an effective Lagrangian using operator
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product expansion (OPE) [4]. The OPE method writes the Lagrangian as a series

of effective vertices each of which depend on Wilson coefficients and local oper-

ators, that is L = GF√
2

∑
i

V i
CKMCiQi, where GF is the Fermi constant and GF√

2
=

g2
W

8m2
W

.

The low energy coupling constants are represented by local operators (Qi) while

the short length scale effects are represented by Wilson coefficients (Ci). Thus the

Wilson coefficients will depend on the mass of the top quark, W± and Z0. For the

B0
s,d → µ+µ− decays the local operators will consist of a leptonic V−A interactions

as well as a quark V − A interaction. The quark V − A interaction will contain

QCD corrections and is summarized as the B0
s,d decay function FB0

s
. The resulting

expression for the branching fraction B(B0
s → µ+µ−) is given in Equation 2.7 [5].

In this equation α

4πsin2θW
=

gW
16π , where α is the fine structure constant and is re-

lated to the elementary electric charge e by α = e2

4π . The weak mixing angle, θW ,

relates electroweak eigenstates and mass eigenstates after electroweak sponta-

neous symmetry breaking. The function Y(m2
t /m

2
W) correspond to the functional

form of the Wilson coefficients. A more detailed description of these functions

can be found in Ref. [4].

B(B0
s,d → l+l−) =

τB

mB
·

1
16π
·

√
1 − (

2ml

mB
)2 · |M|2 (2.6)

B(B0
s → l+l−) =

G2
F

π

(
α

4πsin2θW

)2

τB0
s
mB0

s
m2

l F2
B0

s

√
1 − (

2ml

mB0
s

)2|V∗tbVts|
2Y2(

m2
t

m2
W

) (2.7)

From Equation 2.7 one can see that the branching fraction has a m2
l depen-

dence on the lepton mass. A greater lepton mass would thus result in a larger

branching fraction. This would make decays into two τ’s the most probably

decay. However τ decays are much more challenging to detect experimentally,
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leaving muons as the most experimentally attractive channel. Both the lepton

and B0
s mass terms come from the V − A interaction which yield a squared four

momentum.

The final evaluation of B(B0
s → µ+µ−) is given in Equation 2.8. Here m̄t(mt)

represents the running top mass in the MS renormalization scheme. The great-

est uncertainty in the theoretical determination of B(B0
s → µ+µ−) comes from the

decay functions FB due to low energy QCD corrections. The branching fraction

for B0
d can be determined by replacing s with d.

B(B0
s → l+l−) = 3.5 × 10−9

[
τ(B0

s)
1.6 ps

] [ FB0
s

210 MeV

]2 [
|Vts|

0.040

]2 [
mt(mt)

170 GeV

]3.12

(2.8)

A numerical evaluation of the branching fractions yields an expectedB(B0
s →

µ+µ−) = (3.2 ± 0.2) × 10−9 and B(B0
d → µ+µ−) = (1.0 ± 0.1) × 10−10 [6]. The branch-

ing fractions for B0
s → τ+τ− and B0

s → e+e− are O(10−6) and O(10−13), respec-

tively. If the decay functions for B0
d and B0

s are calculated accurately the ratio of

B(B0
s → µ+µ−) and B(B0

d → µ+µ−) should yield a measurement of |Vts |

|Vtd |
, one of the

input parameters of the SM, with a smaller uncertainty than the two branching

fraction measurements separately.

2.6 B0
s,d → µ+µ− In new physics models

There are many NP models that predict potentials enhancements of the branch-

ing fraction B(B0
s → µ+µ−). A summary of the maximal enhancements of several

groups of models are shown in Table 2.2 [7]. The fundamentals of all these mod-
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b̄
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Figure 2.4: Leading order SM Feynman diagrams for B0
s,d → µ+µ− decays

Table 2.2: Maximal enhancements for B(B0
s,d → µ+µ−) from different the-

oretical NP models. AC=Agashe, Carone; RVV=Ross, Velaso-
Sevilla, Vives

Model B(B0
s,d → µ+µ−) Enhancement

MFV 1000%

CMFV 20%

LHT 30%

RS 10%

AC 1000%

RVV 1000%

els and the cause of the B(B0
s,d → µ+µ−) enhancement will be briefly discussed

below.

Minimal flavor violation (MFV) models are a class of models for which all

flavor violation is caused by the Yukawa couplings. There are many models
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to which the MFV principle can be applied, such as SUSY models. There is

vast array of SUSY models but all have in common that they introduce super-

partners to the SM particles. The superpartners of fermions are bosons and the

partners of bosons are fermions. These new particles are introduced to cancel

divergences caused by loop correction to the Higgs mass. A particular exam-

ple of such a model is the minimally supersymmetric standard model (MSSM).

These models contains two Higgs doublets which cause significant enhance-

ment due to new contributions to B(B0
s,d → µ+µ−) involving new neutral and

charged scalar particles. The presence of two Higgs doublets causes enhance-

ment in models other than SUSY. For most two Higgs doublet models (2HDM)

the presence of the new Higgs doublet can cause enhanced contributions to

B0
s,d → µ+µ− decays. In these additional channels a charged W, seen in some

of the diagrams in Fig. 2.4, is replaced with a charged Higgs boson. This causes

very significant contribution to B(B0
s → µ+µ−) in both 2HDM and MSSM models

with MFV.

In constrained minimal flavor violation (CMFV) models all the flavor viola-

tion comes from the SM CKM matrix and only the SM interactions are relevant

below the weak scales. Since B0
s,d meson decays are significantly below the weak

scale the decays are essentially governed by SM processes. The main NP contri-

bution to B(B0
s → µ+µ−) originate from the Y(m2

t /m
2
W) functions, which summa-

rize the higher energy scale effects on the branching fraction. These functions

are model dependent but the maximal enhancement to B(B0
s,d → µ+µ−) is 20%

for CMFV models.

A model that attempts to solve the Higgs loop correction problem without

the addition of SM superpartners is the littlest Higgs with t-parity (LHT) model.
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In this model, the Higgs is a composite pseudo-Goldstone boson of a S O(5) bro-

ken symmetry, similar to the pion being a pseudo-Goldstone of flavor symmetry

in the SM strong sector [8]. Goldstone bosons are massless when an exact sym-

metry is broken while pseudo-Goldstone bosons have a small mass when an

approximate symmetry is broken. This breaking of a new symmetry keeps the

Higgs mass light. A new set of particles with the same spin as their SM counter-

parts are introduced by this symmetry breaking. To be in agreement with preci-

sion electroweak measurement a new discrete symmetry is introduced: t-parity.

All, but the new top quark counterpart, the T quark, have odd t-parity while the

SM particles and the other new particles have even t-parity. This allows for can-

cellation of the Higgs mass correction divergences through the contribution of

the new T quark. The advantage of this model compared to SUSY models is the

relatively small number of parameters. The main contribution to B(B0
s,d → µ+µ−)

comes from diagrams now including the heavier T quark which can enhance

the branching fraction by up to 30%.

Only a small increase in the branching fraction B(B0
s,d → µ+µ−) is predicted

by a model known as the Randall-Sundram model with custodial protections

(RSc). This model introduces an new warped spacial dimension in an attempt

to explain the hierarchy problem both between the Planck and electroweak scale

as well as between the fermions masses and mixing angles. The first versions of

these models predicted significant enhancements of FCNC’s through Kaluza-

Klein gluon excitations. These excitations are a result of the introduction of

a new spacial dimensions. To prevent conflicts with current experimental data

the gauge group is enlarged, as with the LHT model. This introduces new heavy

gauge bosons that can add a 10% and 20% enhancement to B(B0
s → µ+µ−) and

B(B0
d → µ+µ−), respectively. The small enhancement is due to the large masses
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of the new gauge bosons which show up in the denominator of the Y functions.

There are many SUSY models with different constraints, with some models

not requiring MFV. Without MFV, SUSY models can predict significant increases

in the branching fractions of B0
s,d → µ+µ−. Particular examples of these models

are the supersymmetric flavor models which can be divided into abelian and

non-abelian models. The abelian models are known as Agashe-Carone (AC)

models while the non-abelian models are the Ross-Velasco-Vives (RVV) based

models. The abelian models are based on a U(1) flavor symmetry, while the

non-abelian has a S U(3) flavor symmetry. These symmetries are introduced to

explain the sources of the flavor structure in the SM and to extend these to SUSY.

The SM Yukawa structure would then be an effective result of the flavor sym-

metry breaking, similar to the mechanism for S U(2) ×U(1) symmetry breaking.

These models both predict significant enhancement to the branching fraction

B(B0
s,d → µ+µ−). The AC model predictions is based on current measurements of

other flavor physics observables.

From the discussion above one can see that there are many NP models that

predict an increased B(B0
s,d → µ+µ−). There are several other flavor physics ob-

servables that together with the branching fraction B(B0
s,d → µ+µ−) measure-

ments could yield an indication to which models are most probable. These ob-

servables and their correlations to B(B0
s,d → µ+µ−) are not discussed here but

a comprehensive account is given in Ref. [7]. Experimental measurements of

these parameters are imperative to be able to find the true flavor structure of

nature. The following sections will discuss the search for B0
s,d → µ+µ− at the

Collider Detector at Fermilab.
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2.7 Experimental status

There are experiments at two hadronic colliders, the Large Hadron Collider

(LHC) and the Tevatron, conducting searches for the B0
s,d → µ+µ− decays. At

the LHC, the general purpose Compact Muon Solenoid (CMS) and the heavy

flavor specific LHCb experiments have analysis efforts ongoing. The Tevatron

is used by two experiments, CDF and D0, for the B0
s,d → µ+µ− search. A short

description of all the experiments and their results (Fig. 2.5) as of the Summer

of 2011 are discussed below.

Figure 2.5: Experimental results as of the August of 2011.

2.7.1 CDF and D0

CDF and D0 are both general purpose experiments that have done several it-

erations of B0
s,d → µ+µ− searches. Both experiments search for B0

s,d → µ+µ− de-

cays in pp collisions with
√

s = 1.96 TeV. Similar analysis methods were used

in both experiments involving multivariate discriminants and dimuon triggers.
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CDF has a dimuon mass resolution of ∼25 MeV/c2 allowing for separation of

B0
s → µ+µ− and B0

d → µ+µ− while D0 can only search for the combined contribu-

tion of B0
s → µ+µ− and B0

d → µ+µ−. D0 set a limit of B(B0
s → µ+µ−) < 5.1 × 10−8

at 95% confidence level (C.L.) using 6 fb−1 of data [9]. CDF using 7 fb−1 of data

measured an excess in the B0
s → µ+µ− search while the data were consistent with

a background-only hypothesis in the B0
d → µ+µ− search resulting in a limit of

B(B0
d → µ+µ−) < 6.0×10−9 at 95% C.L. For the B0

s → µ+µ− search p-values of 0.27%

and 1.92% were estimated using a background-only and a SM+background hy-

pothesis, respectively. A branching fraction of B(B0
s → µ+µ−) = 1.8+1.1

−0.9 × 10−8 was

also determined with a fit to the data. Using the same method for the branch-

ing fraction estimate, a 95% C.L. bound was set at 2.8 × 10−9 < B(B0
s → µ+µ−) <

4.4 × 10−8 [10].

2.7.2 CMS and LHCb

CMS and LHCb search for B0
s,d → µ+µ− decays in pp collisions at

√
s = 7 TeV.

CMS is a general purpose detector with a geometry similar to CDF and D0 while

LHCb is a purpose built B-meson detector with a forward geometry. The first

results from both CMS and LHCb were released during the Summer of 2011.

Using a cut based analysis (no multivariate discriminant as in CDF and D0) and

∼1 fb−1 of data CMS set an upper bound of B(B0
s → µ+µ−) < 1.9 × 10−8 at 95%

C.L. [11]. For the B0
d → µ+µ− search they also set an upper limit of B(B0

d →

µ+µ−) < 4.6 × 10−9 at 95% C.L. LHCb used a multivariate discriminant and ∼300

pb−1 to set an upper bound of B(B0
s → µ+µ−) < 1.5 × 10−8 and B(B0

d → µ+µ−) <

5.2 × 10−9 at 95% C.L. [12]. The CMS and LHCb results for B(B0
s → µ+µ−) were

combined to yield an upper bound of B(B0
s → µ+µ−) < 1.1×10−8 at 95% C.L. [13].
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CHAPTER 3

EXPERIMENTAL APPARATUS

This chapter discusses the experimental apparatus used in the search for B0
s,d →

µ+µ−. The apparatus consists of a series of accelerators that brings protons and

antiprotons to an energy of 980 GeV each. These protons and antiprotons are

then brought to collide while the solenoidal collider detectors detect the prod-

ucts of the decays.

3.1 Fermi National Accelerator Laboratory

The Fermi National Accelerator Laboratory (Fig. 3.1) was founded in 1967 and is

located between Warrenville, IL and Batavia, IL, about 35 miles west of Chicago,

IL. The laboratory was originally named the National Accelerator Laboratory

but was renamed in 1974 to honor the Nobel prize winning physicist, Enrico

Fermi. Today, Fermilab is a hub for a variety of experiments such as searches in

the dark matter sector (CDMS, COUPP, DAMIC), neutrino experiments (Mini-

BooNE, MINERνA, MINOS, NOνA), astrophysics (Sloan Digital Sky Survey,

DES), and high energy collider physics (CMS, CDF, D0). The laboratory is home

to the first TeV scale particle accelerator, the Tevatron, which accelerates pro-

tons and antiprotons to a center-of-mass energy of 1.96 TeV. The experiments

at Fermilab have greatly aided in the understanding of fundamental particle

physics with the discovery of the bottom quark in 1977 [14], and the top quark

in 1995 [15]. The first evidence of the tau during the Summer of 2000 [16] and the

discovery of the Σb baryon [17] can also be attributed to Fermilab. Besides dis-

coveries, Fermilab has also significantly contributed to precision measurements
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such as the search for rare decays and the W± and Z0 mass.

Figure 3.1: Areal view of the Fermi National Accelerator Laboratory.

3.2 Accelerators

The search for B0
s,d → µ+µ− studies B-mesons produced from pp collisions at an

energy of 1.96 TeV. A series of accelerators (Fig. 3.2) is used to produce the pro-

tons and antiprotons and to accelerate them to this high energy. The process

starts at the pre-accelerator and the Linac, that produce and are the first to ac-

celerate negative hydrogen ions (H−), and then moves on to the booster, turning

the H− ions into proton and accelerating them further. The proton beam con-

tinues on to acceleration by the main injector while a subset of protons are sent

to the antiproton source for p production. Finally, once both the protons and

antiprotons are ready, they are accelerated to 980 GeV each in the Tevatron. The

following sections will detail this process.
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Figure 3.2: Accelerator Chain at Fermilab. The process starts at the
Cockcroft-Waltron amplifier and ends at the Tevatron. The pro-
ton, neutrino, and meson lines go to the switchyard which is no
longer used for proton, neutrino and meson experiments.

3.2.1 Pre-accelerator and Linac

All protons and antiprotons come from a small tank with 6.88 liters of hydrogen

compressed to 5 × 1025 atmosphere. The hydrogen atoms are stripped of their

electrons with an electric field and are sent to a cathode where they acquire

two electrons and become H− ions. The H− ions are initially accelerated to 750

KeV using a Cockroft-Walton generator [18]. The Cockroft-Walton generator

(Fig. 3.3) is a solid state voltage multiplier that amplifies a low AC voltage to a

high DC voltage. The H− are accelerated to 750 KeV every 66 ms and sent to the

linear acceleration (Linac) for further acceleration. The energy of the hydrogen

ions is increased from 750 KeV to 400 MeV in the Linac. The Linac accelerates

the ion beam at the same frequency as the pre-accelerator using radio frequency

(RF) cavities. Two sections accelerate the beam: the drift tube section, accelerat-

ing the beam to 116 MeV with an RF of 201 MHz, and the side-coupled cavity
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Figure 3.3: Cockroft-Walton generator. The arrow indicates the direction
of acceleration of the H− ions. The column to the right gener-
ates a –750 KV potential to accelerate the ions.

section that brings the beam to the final 400 MeV with an RF of 805 MHz. The

difference in frequency is due to change in H− ion velocity. Once the ions have

reached 400 MeV they are transferred to the booster.

3.2.2 Booster

The H− ions are brought to the booster after being accelerated by the Linac. The

booster is a circular accelerator with a radius of 75 m. The ions are first stripped

of their two electrons by a thin layer of carbon. The bare protons are accelerated

using 17 RF cavities to an energy of 8 GeV. The resulting proton beam is sent

to the main injector (MI). Alternatively, the beam can also be deflected just be-

fore it reaches the MI for the production of a neutrino beam that is used in the

MiniBooNE (a booster neutrino experiment).
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3.2.3 Main injector

The main injector takes the 8 GeV protons from the booster and accelerates them

for injection into the Tevatron, for antiproton production, or for use in the neu-

trino experiments at Fermilab. The MI is a circular accelerator that, similar to

the booster, uses RF cavities to accelerate the beam while using dipole magnets

to keep the beam traveling in a circular path. The circumference of the MI, at ∼2

miles, is about half that of the Tevatron.

Protons that are meant for use in the Tevatron are accelerated to 150 GeV.

The MI also coalesces the beam into a superbunch and continues to inject these

into the Tevatron until there are 36 of these proton bunches.

Some of the protons are accelerated to 120 GeV and sent to the antiproton

source (discussed in the next section). When the antiproton source returns 8

GeV antiprotons, the MI accelerates them to 150 GeV and coalesced them into

superbunches. These bunches are then injected into the Tevatron until there are

36 antiproton bunches.

Another subset of protons is accelerated to 120 GeV and sent to produce neu-

trino beams (NuMI). These neutrino beams are produced for the MINOS near

and far detectors, with the far detector located in Soudan, MN, about 450 miles

away. Another near neutrino experiment that uses the neutrino beam from the

MI protons is MINERνA. In the near future (∼2013) the NOνA experiment will

also make use of the NuMI beam for both its near and far detectors.

26



3.2.4 Antiproton source and recycler

The antiproton source, also known as Pbar, produces antiprotons using the in-

coming 120 GeV protons from the MI. The Pbar is made up of a nickel source,

a debuncher, and an accumulator. The protons are made to hit a nickel target

producing a spray of particles. The antiprotons are selected using a series of

magnetic fields which essentially selects particles within a certain mass range.

The antiproton yield is relatively low, requiring 50,000 proton collisions for ap-

proximately one selected antiproton.

After the antiprotons have been selected they have a large energy spread. To

reduce the spread in energy they are sent to the debuncher which is a triangular

cooling ring with a radius of about 90 m. The debuncher transfers the spread in

energy to a spread in time causing a debunched antiproton beam with a narrow

energy spectrum at around 8 GeV.

Once the debuncher has cooled the antiproton beam the antiprotons are sent

to the accumulator. The accumulator is a storage ring with a 75 m radius that

collects the antiprotons until they are injected to the MI or recycler.

The recycler is a permanent magnet storage ring that stores the 8 GeV an-

tiprotons. The permanent magnet configurations is simple and efficient by avoid-

ing the need for cooling that is required for electromagnet storage rings. The re-

cycler has the same radius as the MI and is actually mounted in the same tunnel,

a few feet above the MI. The antiprotons are cooled and stored in the recycler

for several hours until the Tevatron is ready for collider physics.
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3.2.5 Tevatron

The Tevatron is a ∼4 mile circumference synchrotron accelerator that accelerates

protons and antiprotons from an energy of 150 GeV to 980 GeV. This is done

using 8 RF cavities all located in one section of the ring. Due to the high ve-

locities of the beams superconducting dipole magnets with magnetic fields of

about 4 T are required to keep the protons and antiprotons in a circular orbit.

The magnets have a constant strength because the difference in speed for 150

and 980 GeV is negligibly small. The superconducting dipole magnets require

significant amounts of cooling from liquid Helium to maintain their critical tem-

perature. In addition to the dipole magnets the Tevatron utilizes quadrupole

magnets to focus the beam.

The Tevatron has 6 straight sections, A through F. The first straight, A0, con-

nects to the switchyard and is used to dump the beam while the B0 and D0

straights are used for collider detection. The switchyard previously held meson,

proton, and neutrino experiments but is no longer used. The collider detector

at Fermilab (CDF) is located at the B0 straight while the D0 collider detector

is located at the D0 straight. The F0 straight is where the MI connects with

the Tevatron and where the accelerating RF cavities are located. The remaining

straights are not currently used for a particular purpose.

The proton and antiproton beams traverse a helical orbit and pass through

each other at the B0 and D0 straights. This occurs for hours at a time, known as

a store, until the collision rate becomes too low at which point the store is ended

and preparations are made for a new store.
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3.2.6 Beam structure

The protons and antiprotons are each divided into three 12-bunch trains (Fig. 3.4)

with bunches within a train separated by 396 ns. Between the trains there are

2.6 µs gaps without any proton or antiproton bunches. These gaps are known as

abort gaps and are meant to allow kicker magnets enough time to ramp up

to deflect the protons and antiprotons during a beam abort. The search for

B0
s,d → µ+µ− studies the products of these collisions at the B0 point using the

CDF experiments.

Figure 3.4: Beam structure at the Tevatron. There are three trains of 12
bunches each, separated by abort gaps. A bucket corresponds
to 18.8 ns.

3.3 The CDF II detector

The CDF II detector is a general-purpose detector [19, 20, 21] with cylindrical

symmetry designed to detect products of pp collisions at a center-of-mass en-

ergy of
√

s = 1.96 TeV.

The detector has a cylindrical layout consisting of different sub-detector re-

gions as can be seen in Fig. 3.5. The innermost region of the detector contains

the tracking system which is comprised of a silicon vertex detector surrounded
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by the central outer tracker (COT). Outside of the tracking system is a solenoidal

magnet that produces a 1.4T magnetic field along the direction of the incoming

proton beam. Electromagnetic and hadronic calorimeters are positioned around

the magnet. The outermost detectors are muon detectors that consist of drift

chambers and scintillators. Muons typically pass through the calorimeters, un-

like hadrons, electrons and photons, reaching the outermost detectors.

A cylindrical coordinate system is used to describe particle trajectories. The

z axis is defined as the direction of the incoming protons. Besides the familiar

azimuthal angle, φ, radius relative to the beamline, r, and polar angle, θ, we also

define a pseudorapidity: η = −ln(tan(θ/2)). We define the transverse momen-

tum, pT , which represents the component of a particle momentum in the plane

perpendicular to the beam axis, pT = psinθ.

The most important sub-detectors for this analysis are discussed in detail

below and include the tracking system and the muon system. A more detailed

description of the remaining systems, calorimeters and trigger systems can be

found in Ref. [19].

3.3.1 Tracking system

The tracking system consists of a silicon vertex detector, a multi-wire open-cell

drift chamber, and a solenoidal superconducting magnet. The innermost track-

ing system consists of three sub-systems: layer 00 (L00) [22], the silicon vertex

detector (SVXII) [23], and the intermediate silicon layers (ISL) [24]. The trans-

verse view of the silicon detectors is shown in Fig. 3.6. L00 is the closest to the

interaction point and consists of 12 one-sided Rohacell foam assemblies (known

30



Figure 3.5: Cutaway isometric view of the CDF II detector

as ladders) supported by a carbon fiber structure. Six of these ladders are at a ra-

dius of 1.4 cm while the remaining six are at 1.6 cm. Outside the L00 is the main

vertexing detector, SVXII, with five double-sided layers at radii ranging from

2.4 to 10.6 cm. Each of these layer also consists of 12 ladders. Figure 3.7 shows

the L00 sub-detector together with the first two layers of the SVXII detector in

the plane transverse to the beamline (r − φ plane). Three of these layers, layer 0,

1, and 3, contain r − φ modules, with strips aligned with the beam axis, on one

side while having modules with strips rotated at a 90◦ angle relative to beam

axis on the other (90◦ stereo layers). The remaining layers combine r − φ mod-

ules on one side with modules with strips rotated at a small angle on the reverse

side. The SVXII hit resolution is 11 µm while the impact parameter resolution

for tracks with a pT > 2.0 GeV/c is about 40 µm of which 35 µm is due to the

size of the interaction point. The impact parameter resolution improves slightly

for tracks with pT > 2.0 GeV/c when L00 hits are included as seen in Fig. 3.8.

In addition to the five layers in the SVXII, two double-sided small-angle stereo
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layers at radii 20 and 28 cm, and one layer at a radius of 22 cm provide coverage

for 1 < |η| < 2 and |η| < 1, respectively. These layers are collectively known as the

ISL and aid in COT/SVXII hit matching. The forward two layers extend the sili-

con pseudorapidity coverage beyond the COT coverage into the forward section

of the detector. Together these silicon detectors provide important hit informa-

tion needed for secondary vertex reconstruction and pseudorapidity coverage

up to |η| < 2.0.

Figure 3.6: View of the silicon detectors in the r − φ plane.

Outside the silicon subsystems is the COT [25], an open-cell multi-wire drift

chamber divided into 8 concentric superlayers (Fig. 3.9). The COT spans 310

cm in the z direction and from 43 to 132 cm in radius, allowing for tracking

coverage for |η| < 1. The open configuration allows the ionizing gas, a 50:50

mixture of Argon and Ethane with a small admixture of isopropyl alcohol, to be

shared amongst all cells. The superlayers consist of alternating axial and two-

degree stereo layers. The axial layers have wires that are aligned with the beam

axis while the stereo layers are rotated by a small angle. This configuration al-
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Figure 3.7: View of the L00 subsystem and two layers of the SVXII detector
in the r − φ plane.

lows for a full 3D track parameter determination. The superlayers themselves

are divided in φ into supercells that each contain 12 sense wires with a poten-

tial wire on each side (Fig. 3.10). In total the COT contains over 30,000 sense

wires. The potential wires in conjunction with field panels, made of gold plated

Mylar, produce a 1.9 kV/cm electric drift field. The resulting drift time is ∼50

µm ns−1, leading to a maximal drift time of 180 ns, which is compatible to the

beam crossing interval of 396 ns. The COT also measures the ionization per unit

path length, dE/dx, for particle identification. The dE/dx of a particle depends

on its β, where β = v/c. For this analysis the dE/dx information is mainly used

to help reject kaons.

Surrounding the COT is a superconducting solenoidal magnet producing a

1.4 T magnetic field parallel to the beam axis. The magnetic field is uniform
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Figure 3.8: Impact parameter resolution as a function of pT for SVXII alone
and SVXII+L00.

to 0.1% within a volume for r < 150 cm and |z| < 150 cm. The transverse mo-

mentum (in GeV/c) is then determined by pT = 0.3qBrc, where q is the total

charge of the particle in terms of the electron charge, B (in T) is the magnetic

field strength, and rc (in m) the radius of curvature of the reconstructed helix

trajectory of the particle. The transverse momentum resolution of the COT is

determined by comparing the curvature of inward and outward going tracks of

cosmic ray events. The resulting resolution is σpT /p2
T ≈ 0.15% (GeV/c)−1 [25].

The absolute momentum scale is determined using J/ψ, Υ, and Z0 resonances,

where the resonances decay into two muons [26].

In summary, the COT measures the particle trajectory inside the magnetic

field of the solenoid and thus allows for momentum and charge determination.

The silicon subsystems further refine the momentum measurement and provide

precision vertex information for decays involving multiple charged particles.
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Figure 3.9: Quadrant of the COT showing the 8 superlayers.

3.3.2 Calorimeters

The CDF calorimeters are placed outside the solenoidal magnet. This place-

ment is chosen because the CDF calorimeters use photomultipler tubes (PMT’s)

whose operation is problematic in magnetic fields. The calorimeters are sam-

pling calorimeters, with absorbers interspersed between scintillators. The calorime-

ters can be divided into two sub-detectors known as the electromagnetic calorime-

ter and hadronic calorimeter which together measure electromagnetic and hadronic

energy deposits. Both the calorimeters are set up in a projective tower configu-

ration pointing towards the nominal interaction point. The combined pseudo-
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Figure 3.10: Configuration of the sense and field wires in each cell of the
COT.

rapidity coverage of all the calorimeter subsystems is of |η| < 3.5.

The electromagnetic calorimeter consists of a central detector (CEM) with a

η coverage of |η| < 1 [27] and a forward plug calorimeter (PEM) [28] that extends

the coverage to |η| < 3.6. Both calorimeters are made of alternating layers of lead

and polystyrene scintillator with photomultiplier tubes that collect the scintilla-

tion light. The CEM has a φ and η segmentation of 15◦ and 0.1, respectively. The

PEM has the same φ segmentation for |η| < 2.1 while having a finer structure

with 7.5◦ segments for 1 < |η| < 2.1. In η the PEM has the same sectioning for

|η| < 1.8 but with segments of between 0.2 and 0.6 for |η| > 1.8. The thickness of

both the CEM and PEM are equivalent to one absorption length. The resolution,

attained with test beam data, of the CEM is 14/
√

(ET ) [19] while that of the PEM

is 16/
√

(E) ⊕ 1 [19], where ET is the transverse energy given in GeV and defined
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in an analogous manner to pT , while E is the total energy given in GeV.

The energy of hadronic particles is measured by the hadronic calorimeter

systems placed outside the electromagnetic calorimeters. The hadronic calorime-

ter system consist of a central (CHA) [27], wall (WHA), and forward (PHA) [28]

calorimeter, with pseudorapidity coverage of |η| < 0.6, 0.6 < |η| < 1.3 [29], and

1.3 < |η| < 3.6, respectively. The CHA, WHA, and PHA have the same scintil-

lator material as the CEM and PEM but use iron instead of lead as an absorber.

Both the CHA and the WHA have the same φ and η segmentation as the CEM

and are ∼4.5 absorption lengths thick. The PHA has the same angular segmen-

tation as the PEM and a thickness that corresponds to 7 absorption lengths. The

resolution of both the CHA and the WHA is ∼80/
√

ET while that of the PHA is

∼80/
√

E ⊕ 5%.

In addition to the scintillator based sub-detectors in the electromagnetic calorime-

ter proportional chambers are added just before the calorimeter (CPR) and at ap-

proximately six radiation lengths (X0) (CES for the CEM and PES for the PEM).

The preshower detectors, placed immediately after the solenoid, are used to

distinguish electrons from pion/photon decays from (prompt) electrons origi-

nating from the beam crossing point. These prompt electrons tend to have a

softer shower profile due to interactions with the material between the inter-

action point and the preshower detectors. The CES detectors are used to attain

position information of the incident particle within a given tower. This informa-

tion aids in matching tracks with electromagnetic showers. Instead of a dedi-

cated proportional chamber, the first layer the PEM is used as a preshower scin-

tillator (PPR) for the plug calorimeter. This first layer is more than twice as thick

as the other PEM layers and is made up of a different polyvinyltoluene-based
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scintillator. The PPR has the same function as the CPR and helps discriminate

non-prompt electrons.

3.3.3 Muon system

The electromagnetic and hadronic calorimeters are surrounded by the muon

systems that consist of single wire drift chambers and scintillators. The drift

chambers are used to reconstruct muon tracks (stubs) while the scintillators are

used for timing information to match muon tracks to the correct bunch crossing.

The total η and φ coverage of the muon sub-detectors used in this analysis is

shown in Fig. 3.11.

Figure 3.11: Muon system φ and η coverage.

In the central region the cylindrical central muon chambers (CMU) [30] pro-

vide coverage up to |η| < 0.6. Due to the large amount of material that pre-

cedes the CMU (5.5λ) a muon must have a minimum pT of 1.4 GeV/c (range-out
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threshold) to reach the CMU. The CMU is made up of 24 wedges comprised of

four layers of four drift chambers. Each drift chamber is filled with the same

gas mixture as in the COT and contains one sense wire that runs along the ẑ

direction. As with the COT, these chambers are run in proportional mode. This

configuration results in a maximum drift time in each chamber of 800 ns. A

sign ambiguity relating to which side, relative to the sense wire, of the chamber

the ionizing particle traveled is resolved by shifting adjacent layers by 2 mm.

Position information along the z coordinate is acquired by connecting layers 1

and 3 as well as 2 and 4 and measuring the collected charge differences in the

two wires. This is done to have readout on one side of the chambers rather than

one both sides. Due to mechanical constraints there are 2.4◦ gaps between the

wedges that are uninstrumented. There are also 18 cm gaps between the two

180◦ arcs that each contain half the wedges.

Outside the CMU are additional central chambers, with the same η cover-

age, known as the central muon upgrade (CMP) [30]. Additional steel absorber

with a thickness 2.3λ is placed between the CMU and CMP yielding a range-out

threshold pT of 2.2 GeV/c. The drift chambers are similar to the CMU using the

same gas mixture, and having the sense wires aligned with the beam axis. The

four layers of chambers, each layer being offset by a half chamber width, form

a box around the cylindrical CMU. The CMP drift chambers are significantly

wider resulting in an increased maximum drift time of 1.8 µs.

To extend the muon system coverage to higher pseudorapidity, 0.6 < |η| <

1.0, the central muon extension (CMX) [19] was added to the muon system.

The CMX consists of two arches at each end of the detector, with additional

upper (keystone) and lower (miniskirts) sets of chambers. These drift chambers
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are, other than being shorter, the same as in the CMP, resulting in the same

maximum drift time. The chambers are configured in 8 layers with six chambers

per layer. The sense wires in the drift chambers are on a conical surface that has

a ∼41◦ angle with the beamline.

The intermediate muon system (IMU) extends the η coverage further to 1.0 <

|η| < 1.5. This system consists of 4 layers of drift chambers known as the BMU

and two scintillator sub-detectors, the BSU and TSU. The TSU covers 1.3 < |η| <

1.5 and consists of two rings of counters on either side of the detector.

In addition to the drift chambers the muon system also contains scintillators.

These scintillators are used for timing information and are necessary due to the

long drift times of the muon chambers when compared to the bunch crossing

interval. For the CMP, one layer of scintillator (CSP) is placed on the outside of

the CMP. The CMX has two scintillator layers (CSX) [31]: one on each side of

the 8 layers of drift chambers. In the BMU system, the scintillator (BSU) is on

the outer end of the BMU, similar to the CMP.

In this analysis muons are required to have either a CMU or CMX stub and

have the stub matched, in r − φ, to an extrapolated track from the tracking sys-

tem. Further information, such as z position and stub angle, is used in a multi-

variate likelihood discriminant for muon identification. The muons are paired

into either a CMU-CMU (CC) or a CMU-CMX (CF) channel. The selection crite-

ria for these two channels is discussed in Sec. 3.3.6.
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3.3.4 Time of flight

Between the COT and the cryostat of the superconducting solenoid is a sub-

detector meant to detect the time of flight (TOF) of particles. The time of flight

is the time it takes a particle to travel from the interaction point to the TOF detec-

tor. The detector sits at a radius of 138 cm and has a length, along the beam axis,

of 279 cm. The TOF consists of 216 plastic, BC-408, scintillator bars in a cylindri-

cal configuration [32]. Light produced from the scintillators is collected at the

end of the bars and brought to PMT’s located inside the magnetic field using

wave guides. Due to the PMT’s low efficiency within the magnetic field, special

amplifiers with a gain of about 15 are used to amplify the PMT signal. The time

of flight is determined by estimating the time of interaction from COT tracks

and the time the scintillation signal is received from the TOF detectors. The

time of flight information together with the track trajectory allows for the deter-

mination of the mass of particles. The COT tracks yield both a traveled distance

and a momentum measurement (from the curvature of the helix). The mass can

then be determined with m = (p/c)
√

ct2
L2 − 1, where m is the particle mass, p is the

particle momentum, t is the time of flight, and L is distance traveled. The mass

then can be used to distinguish between pions, kaons, and protons.

3.3.5 Luminosity determination

The instantaneous luminosity of inelastic pp collisions is measured by the Cerenkov

luminosity counter (CLC). The CLC consists of long cones wedged between the

beamline and the forward calorimeters. There are 48 conical counters made up

of two layers of aluminized mylar filled with isobutane gas at approximately at-
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mospheric pressure. On the end of the CLC that is near the forward calorimeter

a light collector and PMT measure the light produced from a particle travers-

ing the detector. The CLC counts the number of particles that traverses it’s

volume using Cerenkov radiation. Cerenkov radiation is produced when a par-

ticles travels faster than the speed of light for the medium it is traversing. This

Cerenkov light has a characteristic wavelength for a particular material. The

CLC measures the luminosity by counting the number of particles that produce

Cerenkov radiation per bunch crossing. The actual luminosity is estimated us-

ing the following equation: µα · fBC = σin · α · L [33]. Here the CLC measures µα,

which corresponds to the average number of interactions per bunch crossing,

while fBC is the bunch crossing rate, σin is the inelastic pp cross section, mea-

sured in CDF Run I, α is the probability to detect a single pp interaction (the

acceptance), and L is the instantaneous luminosity. The dominant systematic

uncertainty for the luminosity determination comes from the pp inelastic cross

section. In summary, the CLC allows for accurate instantaneous luminosity de-

termination to within a relatively small systematic uncertainty of 3%.

3.3.6 Muon trigger

Bunch crossings occur every 396 ns (2.5 MHz) at instantaneous luminosities of

∼1032 cm−2s−1, causing of order millions of primary interactions (events) per

second. The detector readout can simply not be made fast enough to read out

every event at this rate. If such a readout were to exist, extremely large data sets

would be produced for which there is currently no storage technology. Most

interactions, however, are of little interest and involve low-momentum events.

The CDF trigger system is meant to reduce the data flow from the raw pp col-
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lision rate. The trigger system is divided into three consecutive triggers: level

1 (L1), level 2 (L2), and level 3 (L3). Each trigger takes the previous trigger’s

output data as its input. The L1 trigger uses basic track, calorimeter, and muon

information to reach a decision within 5.5 µs, which corresponds to a 42 event

buffer. For low-momentum events the selection criteria of the L1 trigger can

still result in a too high an output rate. To reduce the rate further, a momen-

tum threshold is introduced. The low-momentum events are treated separately

from the lower-rate high-momentum events. The rate for the lower-momentum

thresholds events is reduced by randomly discarding events at a variable rate.

The L1 trigger employs the strongest filtering and reduces the data rate to 20–30

kHz. After the L1 trigger has reached a trigger decision the data are passed to

the L2 trigger. This trigger level uses more detailed event information and if an

accept decision is made passes the data to the event builder, which constructs

a data structure known as an event with all the information available from all

sub-detectors. The data rate after the L2 decision is 200–500 Hz. The L3 trigger

then uses the full event information together with event requirements that are

similar to the ’offline’ requirements discussed in Sec. 4.1.1. If the L3 trigger ac-

cepts the event it is saved on mass storage facilities. The final event rate after

the L3 trigger is 50–70 Hz. This entire trigger event selection process is known

as the ’online’ event reconstruction while all event requirements after the on-

line reconstruction is known as the ’offline’ event reconstruction. Figure 3.12

summarizes the online reconstruction procedure.

The data are collected in continuous periods of time with fixed hardware,

software, and trigger configurations, known as runs. The trigger configurations

can change from run to run to incorporate changes in specific requirements.

Due to data runs with high instantaneous luminosities some triggers are dy-
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namically prescaled. Prescaling randomly omits events even if they pass all

trigger requirements to meet the maximum data output restrictions. This can be

done at a rate based on the run conditions, dynamically, or at a constant rate.

In this document we will only discuss a subset of muon triggers relevant to this

analysis. More details on the separate levels of the muon triggers is given below.

Figure 3.12: Data flow of CDF Run II data acquisition.

3.3.7 The level 1 muon trigger

The level 1 trigger uses primitives, a basic reconstruction using information

from the COT and the muon chambers, to reach an accept or reject decision.

Tracks are reconstructed using the extremely fast tracker (XFT) [34]. The XFT

reconstructs track segments from all four of the axial COT layers. When high
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instantaneous luminosities are reached additional information from stereo lay-

ers are used for segment reconstruction. In the early Run II data, there was a

requirement that 10 of the 12 wires in a layer have a hit. This was changed to 11

of the 12 wires in later data due to the increased instantaneous luminosity, with

only marginal effects on the XFT efficiency. The XFT track segments are linked

together to form coarse tracks. The XFT only relies on φ and pT information and

requires a minimum track pT of 1.5 GeV/c. The pT and φ resolution of the XFT

is 1.7%/(GeV/c) and ∼ 0.3◦.

Once the track segments have been linked into XFT tracks the track extrap-

olater (XTRP) estimates the track position in the muon chambers with a φ res-

olution of 2.5◦. This divides the detector into 2.5◦ segments known as trigger

towers. The tracks are estimated as circles inside the solenoid and straight lines

outside the solenoid. Deviations due to pT dependent multiple scattering are ac-

counted for during the matching process. Multiple scattering is dominated by

multiple Coulomb scatterings of a particle off the Coulomb fields of nuclei.The

L1 trigger has two separate pT thresholds for both the CMU and CMX. For the

CMU chambers the XFT has mappings for thresholds of pT > 1.5 GeV/c and

pT > 4.0 GeV/c while the CMX has thresholds of pT > 2 GeV/c and pT > 8

GeV/c.

The muon chamber hits are collected, independently of the XFT, and form

stub primitives. The transverse momentum of the stub is measured by compar-

ing the drift times of chambers in adjacent layers. Due to the offsets discussed in

Sec. 3.3.3 of neighboring drift chamber layers, the difference in drift times yields

a measurement of the angle with which the track exits the COT. This angle, κ, is

due to the deflection caused by the magnetic field inside the solenoid and thus
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is dependent on pT : κ = 0.13/pT . This causes a pT dependence of the drift time

of 0.26/pT µs, where pT is in GeV/c. Two pT thresholds for both the CMU and

CMX are set at 1.5 GeV/c and 6.0 GeV/c. Each of these pT threshold has a muon

stub map with a granularity of 2.5◦.

Additional information from the CMP and CSX muon detectors can also be

used in the L1 trigger decision. If CMP hits are present, they are matched to

CMU hits. A similar matching is made for CSX and CMX hits.

The XFT, XTRP, and muon chamber information is combined into 12 muon

matchboxes which each process 30◦ in φ. The matchboxes produce the final L1

muon triggers of either a single muon or a dimuon trigger. If an XTRP track and

a CMU stub, with the same pT threshold, are matched a CMU trigger is reported.

If in addition to the XTRP and CMU match there is also a CMP match, a CMUP

trigger is reported. For a CMX trigger there must be an XTRP, CMX, and CSX

match. A pair of matches is reported as a dimuon trigger for a combination of

two CMU, a CMU and a CMX, a CMU and a CMUP, or a CMUP and a CMX

triggers.

3.3.8 The level 2 muon trigger

The level 2 trigger works in a similar manner to the level 1 trigger. Matches are

made between different subsystems to make a trigger decision. The L2 trigger,

however, has a φ granularity of 1.25◦, half that of the L1 trigger, when matching

information from different sub-detectors. During the matching at this level a

more detailed matching of XFT tracks and muon system hits is performed than

with the XTRP. An exception is a small fraction of the data where the L2 trigger
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passed every input event to the L3 trigger.

In the B0
s,d → µ+µ− search a dimuon L2 trigger is required. This trigger re-

quires two oppositely charged (opposite curvature) XFT tracks that are sepa-

rated by more than 1.25◦ in φ, at the sixth COT super layer (∆φS L6), or that are

on opposite halves of the detector (+z or −z). For a small fraction of the data the

trigger also requires ∆φS L6 < 120◦.

3.3.9 The level 3 muon trigger and offline reconstruction

The last level of the trigger uses full event information from all sub-detectors

to reach an accept or reject decision. The L3 trigger consists of Linux PC farms

that have a decision output frequency of 50–70 Hz. Events are reconstructed in

essentially the same method as with the offline reconstruction using the same in-

formation except for a somewhat simplified and faster tracking algorithm. The

individual requirements of all the L3 triggers used are discussed in Sec. 4.1.1.

The offline reconstruction constructs physics objects that cause particular

combinations of detector signals. There are several groups of objects: charged

particle tracks, muons, electrons, photons, jets, and missing energy. A muon ob-

ject is reconstructed when there is a charged particle track in the COT and hits

in the muon chambers that match the COT track. Electrons require a charged

particle track and large deposit in the electromagnetic calorimeter, while pho-

tons only have large deposits in the electromagnetic calorimeter systems. Jets

are characterized by clusters of particles that leave significant energy deposits in

the hadronic calorimeters. Missing energy events seem to not conserve energy

in the plane transverse to the beam axis.
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In this analysis we will focus on the muon reconstruction as well as the pri-

mary and secondary vertex finding algorithms. The primary vertex is defined

as the interaction point of the original interaction, while the secondary vertex

is the location of a secondary interaction. Good track reconstruction is essential

for secondary vertex reconstruction.

A track is reconstructed as a helix due to the uniform magnetic field in the

z direction inside the tracking volume. The helix is parametrized by the curva-

ture, C = q/2R, where q is the charge of the particle and R is the radius of the

helix, the signed impact parameter (d0), the z coordinate (z0), the azimuthal an-

gle (φ0), and the polar angle (α = cotθ). The zero subscript indicates that these

variables are measured at the point of closest approach to the beam axis. The

curvatures is a function of the pT and the strength of the magnetic field: |C| = eBc
2pT

,

where B is the strength of the magnetic field. The final helix fit is done using a

Kalman fitter [35]. Using the COT alone, the resolution of the helix parameters

are σpT /p2
T ≈ 0.15%/ GeV/c, σz0 ≈ 0.3 cm, σd0 ≈ 250 µm, σφ0 ≈ 0.6 mrad, and

σα ≈ 3 mrad. Adding silicon hits reduces the impact parameter resolution by

nearly an order of magnitude to σd0 ≈ 20 µm. The resolution of the azimuthal

and polar angle also decrease to σz0 ≈ 50 µm and σα ≈ 1 mrad. The impact

parameter resolutions quoted include a 30 µm beam size uncertainty and is a

function of pT . The raw impact parameter resolution is σd0 =
√

302 + (30/pT )2

without L00 hits and σd0 ≈
√

152 + (30/pT )2 with L00 hits, where pT is in GeV/c.

Muons are reconstructed (for this analysis) as either CMU, CMUP, or CMX

muons if hits from these respective muon systems match tracks in the COT.

CMUP muons have hits in both the CMU and the CMP subsystems and have

a higher pT threshold consistent with the additional absorber placed between
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the CMU and CMP. Deviations from the expected muon path are caused by

multiple scattering and are proportional to 1/pT . The proportionality constants

are roughly 15 cm×(GeV/c) for the CMU while 40 cm×(GeV/c) for all the other

muon sub-detectors.

Primary and secondary vertices also need to be reconstructed in this analy-

sis. The displaced secondary vertex requirement comes from the relatively long

lifetime (∼1.5 ps) of the B-meson. For the reconstruction used in this analysis the

muon tracks are required to form a secondary vertex. A fit for a primary vertex

is also performed. Both the primary and secondary vertex fits involve refitting

track helix parameters to a common vertex. A fitting algorithm commonly used

by many analyses at CDF, known as CTVMFT [36], is used for the secondary

vertex fit, while a similar method is used for the primary vertex fit.
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CHAPTER 4

ANALYSIS

This analysis searches for the B0
s → µ+µ− and B0

d → µ+µ− decays using the full 10

fb−1 CDF Run II data set. The same analysis methods are used for both modes

with a shift in the B-meson mass search window. The branching fractions are

measured relative to the B+ → J/ψ(→ µ+µ−)K+ normalization mode. This mode

together with J/ψ→ µ+µ− decays are used to estimate signal efficiencies and per-

form several cross-checks. Monte Carlo (MC) simulations of B0
s → µ+µ− decays

together with a full CDF detector simulation are employed to estimate many of

the signal efficiencies. In addition to the B0
s → µ+µ− MC sample, a sample of

B+ → J/ψK+ MC events is also produced for MC modeling cross-checks. Ini-

tially baseline requirements (described in Sec. 4.1.1) are applied to all data and

MC samples. An artificial neural network (NN) is applied to enhance our ex-

pected signal over background. The entire signal selection optimization as well

as the background estimates are done with the signal dimuon mass window

blinded. The signal mass window is defined by a 300 MeV/c2 window centered

around the B0
s,d world average mass.

Major backgrounds come from Drell-Yan (qq̄→ µ+µ−) processes through vir-

tual γ and Z0 states, double semileptonic decays (bb̄ or cc̄→ µ+µ−X), and sequen-

tial semileptonic decays (b → cµ−X → sµ−µ+X′) of b or c quarks. A combination

of semileptonic decays with a fake muon can also be a source of background.

Additional background contributions come from B → h+h′− decays with two

hadrons misidentified as muons. Backgrounds can be divided into a combina-

torial dimuon background and a peaking background from hadronic B-meson

decays, which are estimated separately. Backgrounds are studied in detail in
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orthogonal control samples with various baseline requirements inverted to en-

hance the background contribution.

The NN binning is determined by an a priori optimization that uses the ex-

pected B(B0
s → µ+µ−) limit as a figure of merit, resulting in 8 signal NN bins.

The signal region is also divided into five mass bins centered on the world aver-

age B0
s and B0

d masses. This yields a total of 80 single bin counting experiments

corresponding to CC and CF topologies, each with 8 NN bins, and five mass

bins.

The branching fractions are measured relative to the B+ → J/ψK+ normaliza-

tion mode using Eq. (4.1), where αB0
s

is the geometric acceptance of the dimuon

triggers, εtrig+reco
B0

s
is the combined trigger and reconstruction efficiency within the

acceptance, εNN
B0

s
is the NN efficiency, fu

fs
is the b-quark fragmentation probabil-

ities ratio, and B(B+ → J/ψ(→ µ+µ−)K+) is the normalization mode branching

fraction. The equivalent efficiencies and acceptance for the normalization mode

are indicated with the B+ subscript.

B(B0
s → µ+µ−) =

NB0
s

NB+

·
αB+

αB0
s

·
ε

trig+reco
B+

ε
trig+reco
B0

s

·
1
εNN

B0
s

·
fu

fs
· B(B+ → J/ψK+ → µ+µ−K+) (4.1)

Finally, once the signal efficiencies and the background estimates are well

understood, the signal region is unblinded and a thorough statistical analysis of

the result is performed. The sections below will discuss the analysis methodol-

ogy and results in more detail.
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4.1 Data samples

The data samples used in this analysis consist of a dimuon sample and a B+ →

J/ψK+ sample. Both of these samples are collected with the same RAREB dimuon

triggers. In addition to data samples both a B0
s → µ+µ− and a B+ → J/ψK+ MC

sample are generated. This section discusses these samples and their selection

criteria in detail.

4.1.1 Baseline event selection

All samples used in this analysis are required to pass basic event-selection re-

quirements. Initially, events are required to meet the RAREB dimuon trigger

requirements discussed in Sec 3.3.6. All tracks from events that pass these trig-

ger requirements are refit during our offline reconstruction using L00 silicon

hits. After the refitting, events must meet the trigger requirements again and

are also required to pass requirements on secondary vertex variables.

All tracks are required to have fired a single muon L1 trigger. For CMU

muons this translates to requiring pT > 1.5 GeV/c with an XTRP matching of

an equivalent low-pT CMU primitive. In a small fraction of early data CMU

wedge 17 is not used. CMUP muons must have a high-pT CMU primitive as

well as a CMP primitive matched to a COT track. CMX muons require an XTRP

matching with a pT > 2.0 GeV/c muon. Each candidate event must also have

two tracks that are linked to two corresponding XFT tracks. In addition to the

L1 matching, two opposite-sign tracks are required, corresponding to the L2

trigger requirements. The majority of L3 triggers require the sum of the pT for
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the two muon tracks to be greater than 5 GeV/c (known as the SUMPT trigger

paths). For CMU-CMU muon events a two trigger tower separation of the two

muons is required, unless each muon is on a different η side of the detector (east

or west). The L3 trigger also requires that the difference in the z coordinate of

the two muons at the point of closest approach to the interaction point (∆z0) be

less than 5 cm.

The following requirements are made after the trigger matching require-

ments have been met:

COT track quality cuts: Tracks must have pT > 0.5 GeV/c and at least five hits

in two of the axial layers as well as in two of the stereo layers.

Good run: Runs used for this analysis must be marked good by the data qual-

ity monitoring group [37]. Specific requirements are that the CLC, all the

trigger levels, COT, offline reproduction, silicon, calorimeters, CMU, and

CMX (if there are CMX hits) information is marked as being good qual-

ity. The entire CDF Run II data set is used which corresponds to approxi-

mately 9.7 fb−1 of data that is marked as good.

Muon quality: CMU, CMUP, and CMX tracks must have pT > 2.0 GeV/c, pT >

3.0 GeV/c, and pT > 2.2 GeV/c, respectively. These requirements are

meant to avoid rapidly changing trigger efficiency ranges near the trigger

thresholds. The tracks must also have |z0| < 60 cm.

XFT fiducial: Tracks are required to be within the XFT tracking volume i.e., they

must have a z coordinate, at the COT exit radius (r = 136 cm), within 155

cm of the origin.

SVXII quality: Each muon track must have at least 3 layers of L00+SVXII with

more than one associated hit.
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Dimuon: A primary vertex for each event is reconstructed by refitting track

helix parameters of all tracks, except for the muon candidate tracks, to a

common vertex. Tracks used for the primary vertex fit are required to have

pT > 0.5 GeV/c and have their z0 within 1 cm of the dimuon average z0. If

the fit fails, the beamline position at the average z0 dimuon pair, estimated

using the SVXII, is used as the primary vertex position. A well defined

secondary vertex, formed by the dimuons, is also required. For tracks

to be considered dimuon pair, the φ separation of the tracks at the sixth

superlayer must be greater than 1.25◦. For a small subset of early data the

difference is also required to be less than 120◦.

B-meson: The B-meson candidate must have pT > 4 GeV/c as well as |y| <

1, where y is the rapidity, y = tanh−1( pz
E ). For the dimuon sample these

quantities are estimated using the two muons while for the B+ → J/ψK+

sample the two muons and the kaon are used.

Requirements are also made on both the dE/dx and the muon likelihood of

a track. dE/dx is the energy lost by the muon through ionization of the COT

gas. This energy loss is a function of the β of the particle and the material that is

being traversed. Thus by knowing the momentum of the particle, the mass can

be determined by measuring the dE/dx. In our case this allows for kaon rejec-

tion but not pion rejection since the mass of the pion and muon are similar. The

quantity Z = log( dE/dxObs.
dE/dxPred.

) is used in this analysis, where the Obs. subscript in-

dicates the observed value and the Pred. subscript signifies the predicted value

based on the muon mass hypothesis. The dE/dx value used in the determi-

nation of Z is calibrated to be constant over time (run number), instantaneous

luminosity, geometrical variances, and COT occupancy. The calibration was

performed using a pure sample of D∗-tagged D0 → K+π− decays and validated
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with the earliest third of the data set. The average COT occupancy measured

in a subset of the data and a run based luminosity approximation is used for

the dE/dx calibration. This has a minimal effect on the efficiency on muons

and kaon rejection while avoiding including significantly more information in

the data reconstruction. A dE/dx requirement is chosen to be 98% efficient for

muons from J/ψ → µ+µ− candidates. This is equivalent to a Z > −0.083 require-

ment and results in a ∼50% kaon rejection.

The muon likelihood is required to be greater than 0.1 to yield similar signal

efficiencies but enhanced background rejection as a previously used method.

The method used in iterations of the analysis that used less than 2 fb−1 of data

yielded a χ2 for the muon stub and COT track matching. The muon likelihood

method uses a likelihood function that incorporates muon stub matching to

COT tracks and calorimeter information. The matching information comes from

∆z, ∆φ, and ∆x, the difference between stub and COT track z, φ, and x coordi-

nate at the innermost part of the muon detector. The calorimeter deposits for

real muons should be consistent with the minimum ionizing energy for muons.

Signal and background distributions for these discriminating variables are de-

termined and used as template probability distribution functions (PDF’s). The

final likelihood is defined as L = S
S +B where S represents the result from the fit

to signal templates and S + B represents the result from signal-plus-background

templates.

In addition to the above requirements, secondary vertex related variables

must also meet certain requirements. We define a 3D displacement length, L3D,

as the distance between the primary and secondary vertex. We also estimate

a proper decay time, τ = L3DMvtx/|~p(B)|, which we use to calculate the proper
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decay length, λ = cτ. The following requirements are made on these variables

and their uncertainties (σ) as well as on the χ2 returned by the secondary vertex

fit:

• χ2 < 15

• σL3D < 0.0150 cm

• L3D < 1.0 cm

• 0 < λ < 0.3 cm

• λ/σλ > 2

Finally, loose requirements on the isolation, I > 0.5, and the pointing angle,

Ω < 0.7 rads are made. Here the isolation is defined as I = pT (B0
s)/(pT (B0

s) +∑
i

pT (i)), where sum goes over all tracks within an η − φ cone centered around

the B0
s momentum with radius, R =

√
η2 + φ2 < 1.0. The pointing angle is defined

as the 3D angle between the B0
s candidate momentum and the vector that points

from primary to secondary vertex. Signal like events should be isolated (I → 1)

and have a small pointing angle.

4.1.2 Dimuon sample

The dimuon sample is required to have dimuon invariant mass in the range

4.669 GeV/c2 < Mµ+µ− < 5.969 GeV/c2. This yields 60,842 and 64,495 events for

the CC and CF channels, respectively (Fig. 4.1). After the baseline requirements

have been met we blind our self to a 300 MeV/c2 dimuon mass region from

5.169 GeV/c2 to 5.469 GeV/c2. We also define a ±60 GeV/c2 signal dimuon
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mass region centered around the world average B0
s mass. The ±60 GeV/c2 is

equivalent to ±2.5σm, where σm is the dimuon mass resolution determined by

MC simulations discussed in Sec. 4.1.4. This 120 MeV/c2 signal region is further

divided into five dimuon mass bins with equal widths.

Figure 4.1: Dimuon mass distribution for the CC and CF channels after
baseline requirements.

4.1.3 Normalization sample

The normalization sample consists of B+ → J/ψK+ candidate events collected

on the same trigger as the dimuon sample. The B+ → J/ψK+ sample has to pass

all the baseline requirements as the dimuon sample. For the secondary vertex
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related selection criteria of the baseline requirements variables from the recon-

structed J/ψ are used instead of from the B-meson. The kaon must have hits in

at least three layers of the SVXII and L00; pT > 1.0 GeV/c; z0 within 5 cm of the

dimuon vertex; and z < 155 cm at the radius where the track exits the COT. The

fit probability of the B+ vertex is required to be greater than 10−5 and the dimuon

mass must be between 3.017 GeV/c2 and 3.177 GeV/c2. An invariant mass res-

olution of the two muons and the kaon is determined by fitting the invariant

mass to a first order polynomial added to a Gaussian distribution. The invari-

ant mass resolution is 11 MeV/c2 for both the CC and CF channels. To assess

the final B+ → J/ψK+ yield a signal region of width 35 MeV/c2 centered around

the world average B+ mass is defined. Simple sideband subtraction, using side-

bands for which 5.120 < Mµ+µ−K+ < 5.225 GeV/c2 and 5.335 < Mµ+µ−K+ < 5.440

GeV/c2, is used to attain the final B+ → J/ψK+ yield. A small correction of 0.14%

is applied to the yield of the sideband subtraction to account for the small con-

tribution of B+ → J/ψπ+ decays. The final B+ → J/ψK+ yield is 28082 ± 196 and

12145 ± 1384 and is shown in Fig. 4.2 for the CC and CF channels, respectively.

4.1.4 Monte Carlo simulation sample

A B0
s → µ+µ− MC sample is generated using pythia [2] and EvtGen [38] with the

underlying event modeling tuned to reproduce minimum bias events [39]. One

of the B-mesons is forced to decay to two muons while the other is left to decay

freely. The samples go through a full CDF II detector simulation to account for

detector resolution effects and are reconstructed in the same manner as the data

events. The MC sample must pass the same baseline requirements as the data

(Sec. 4.1.1) with the exception of the muon likelihood and dE/dx requirements.
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Figure 4.2: B+ mass distribution for the CC and CF channels after baseline
requirements.

These particle identification requirements are omitted because their efficiencies,

which were found to be ∼100%, are studied using data. The MC simulations

do not accurately reproduce the B-meson pT and isolation distribution. This

is corrected by reweighting the MC using pT distributions from B+ → J/ψK+

decays and isolation distributions from B0
s → J/ψφ decays.

The B0
s → µ+µ− MC sample is used for signal efficiency estimates of the vari-

ous baseline requirements. The MC sample is also used as the signal sample for

the neural network (NN) training discussed in detail in Sec. 4.2.1. The dimuon

invariant mass resolution is also determined from the B0
s → µ+µ− MC sample at
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σM ∼ 24 MeV/c2.

A B+ → J/ψK+ MC sample is produced and must pass all but the muon

identification B+ → J/ψK+ baseline requirements. This sample is used to esti-

mate and cross-check some of the signal efficiencies for the B+ → J/ψK+ nor-

malization mode. This collection of MC events is also reweighted due to the

mismodeling of the pT and isolation distributions. The reweighting is done us-

ing B+ → J/ψK+ data pT and isolation distribution. The invariant mass reso-

lution of the B+ → J/ψK+ MC is compared to the mass resolution determined

from B+ → J/ψK+ data. The simulated resolution and measured resolution are

within 10% of each other which is adequate for this analysis.

An additional small sample of B0
d → µ+µ− MC simulations is generated for

an NN mass bias check discussed in detail in Sec. 4.2.2.

4.2 Artificial neural network

To increase our discrimination power between signal and background an arti-

ficial neural network is used to combine multiple discriminating variables. In

the 2 fb−1 iterations of the analysis a rootSNNS [40] NN package was used to

combine the discriminating power of six kinematic variables. A new NN pack-

age, the neurobayes [41, 42] package, is used during the most recent iteration

of the B0
s,d → µ+µ− search using 7 fb−1 of CDF Run II data. This analysis uses

the same NN as the analysis based on 7 fb−1 analysis. The new NN uses 14

input variables consisting of vertex and kinematic variables and outputs a sin-

gle signal-background discriminant, νN . Particle identification variables such as

dE/dx and muon likelihood were not used in the training of the NN because
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the MC simulations are unable to accurately model the distributions of these

variables. The output of the NN ranges from -1 to 1 but is rescaled to range

from 0 to 1. Zero corresponds to the most background like events and one sig-

nifies the most signal like events. The neurobayes NN yielded the same signal

efficiency for a range of νN cuts as rootSNNS, but had approximately twice the

background rejection (Fig. 4.3). Details on the NN training and validation are

discussed in the next two sections.

Figure 4.3: Background as a function of signal efficiency for the neu-
robayes (new) and rootSNNS (old) neural networks.

4.2.1 Neural net training

To train the NN a background and signal sample needs to be prepared. The

background sample consists of dimuon mass sideband data that pass the base-

line requirements in the first 7 fb−1 of data. The events are required to be within a
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mass range of 4.669 GeV/c2 < Mµ+µ− <5.169 GeV/c2 or 5.469 GeV/c2 < Mµ+µ− <5.969

GeV/c2. This sample is representative of backgrounds that are present in the

signal mass region. The data is further divided into a CC and CF sample. Be-

cause these two muon topologies have different signal/background ratios, two

separate NN are trained using the CC and CF background sample. This results

in a total of 36 329 CC background events and 39 657 CF events.

The MC sample discussed in Sec. 4.1.4 is used as a signal training sample.

A mass window of 120 MeV/c2, centered around the worlds average B0
s mass,

is selected as the training sample. The signal and background samples must be

the same size for NN training. To achieve this, events are randomly discarded

from the MC sample to match the number of background events. When training

the NN, 80% of the background and signal sample are used for training while

the remaining 20% are used as a testing sample. This 80% is randomly selected

from the signal and background sample. The testing sample is used to check for

overtraining by the neurobayes package.

A total of 19 input variables are initially used during the NN training. These

input variables consist of vertex related and kinematic variables:

I: isolation of the B0
s candidate defined in Sec. 4.1.1.

∆Ω: three-dimensional angle between the B0
s momentum and the vector point-

ing from primary to secondary vertex.

∆ΩT: angle between the B0
s momentum and the vector pointing from primary

to secondary vertex in the plane transverse to the beamline.

Lower pT(µ): lower transverse momentum of the muon pair.

Higher pT(µ): higher transverse momentum of the muon pair.
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Smaller |d0(µ)|: muon impact parameter of muon with the smaller value of the

muon pair.

Significance of smaller d0(µ): d0(µ)/σd0(µ) of the muon with smaller impact pa-

rameter, where σd0(µ) is the estimated uncertainty of d0(µ).

Larger d0(µ): impact parameter of muon with the larger value of the muon pair.

Significance of larger d0(µ): d0(µ)/σd0(µ) of the muon with the larger impact pa-

rameter.

d0(B0
s): impact parameter of B0

s candidate.

χ2: χ2 of the secondary vertex fit.

L: three-dimensional vertex displacement obtained from the primary and sec-

ondary vertex fit.

L/σL: significance of L.

λ: three-dimensional proper decay length defined in Sec. 4.1.1.

λ/σλ: significance of λ.

LT: version of LT measured in plane transverse to the beamline.

LT/σLT : significance of LT .

λT: version of λ in the transverse plane.

λT/σλT : significance of λT .

Some possible input variables were not included due to the introduction of

a mass bias or MC mismodeling of the variables. The B-meson pT and the open-

ing angle between the two muons were excluded from the input variable list

because they caused a correlation between dimuon mass and νN . The distance

of closest approach of the two muon tracks in the z direction, ∆z0, was also omit-

ted because the MC simulations mismodel this variable’s distribution. After the
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training procedure, the neurobayes package ranks the input variables in order

of separation power and automatically removes variables with a significance

below three [41, 42]. This results in a total of 14 input variables shown in Ta-

ble 4.2.1 together with their separation significance. The distribution for data

mass sideband and signal MC of the six variables with the strongest separation

power are shown in Fig. 4.4.

Table 4.1: List of input parameters and their discrimination significance
selected by the neurobayes package.

Rank Variable Significance [41, 42]

1 ∆Ω 250.9

2 Isolation 97.8

3 Larger d0(µ) 78.8

4 d0(B0
s)| 46.9

5 LT/σLT 37.5

6 χ2 24.3

7 L 23.4

8 Lower pT (µ) 14.0

9 Significance of smaller d0(µ) 9.0

10 λ/σλ 7.8

11 λ 6.5

12 Smaller d0(µ) 7.7

13 ∆ΩT 4.3

14 Significance of larger d0(µ) 4.0

The final νN distributions for signal MC and data mass sideband after com-

bining the CC and CF channels can be seen in Fig. 4.5.
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Figure 4.4: Comparison of the most powerful kinematic and lifetime pa-
rameter distributions of background from sideband (black
solid) and signal MC (gray dashed) samples for the first 7 fb−1

of data.

4.2.2 Neural net validation: mass bias

The mass sidebands will be used to determine combinatorial background es-

timates making it essential that the NN does not sculpt the dimuon mass dis-

tribution. Several cross-checks are performed to ensure that the NN leaves the

dimuon mass distribution unchanged. One of the cross checks compares the

average νN with the dimuon mass for our dimuon sample after baseline require-

ments (Fig.4.6). The signal dimuon sample consists of two opposite-sign muons

with a positive λ (OS+). In this sample, the 300 MeV/c2 invariant dimuon mass

region is still blinded. To assess possible mass sculpting of the NN in this re-
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Figure 4.5: Distributions of νN for signal and background samples with 14
variable neurobayes NN. The background sample consists of
sideband data events from the first 7 fb−1 of data.

gion we study the νN distribution as a function of dimuon mass in a sample

with opposite-sign muons and negative lifetime (OS–). The resulting average

NN output versus dimuon mass distribution is shown in Fig.4.6. Both distribu-

tions were fit to a constant resulting in good χ2’s and no significant indication

of a correlation between NN output and dimuon mass. As a cross-check, a first

order polynomial is also fit to the distribution and is described in more detail

in appendix A.1. The χ2’s of the constant fits and first order polynomial fits are

found to be similar.

An additional check is performed by training the NN on only sideband data.

The dimuon sample, after meeting baseline requirements, is divided into an

inner and an outer sideband region. The inner sideband region is defined as

5.002 < Mµ+µ− < 5.169 GeV/c2 while the outer is defined as 5.496 < Mµ+µ− < 5.636
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Figure 4.6: Result of the νN and dimuon mass correlation check using the
first 7 fb−1 of data. Left: correlation between average νN and
dimuon mass in OS+ sample. Right: correlation between aver-
age νN and dimuon mass in OS− sample.

GeV/c2. These regions were chosen to have equal statistics for both the inner

and outer sidebands. The NN is retrained using the inner sideband region as

a ’signal’ sample while the outer sideband regions is used as the background

training sample. Since these two sideband regions are kinematically similar

and only differ by invariant dimuon mass, an NN without mass bias should

display similar output distributions for the two samples. The NN trainings are

performed separately for the CC and CF channels. The resulting NN output

distributions are shown in Fig. 4.7 and show no evidence of an NN mass bias.

To assess more subtle dimuon mass correlation of the NN due to the use of

a B0
s MC sample for training, a small B0

d MC sample is produced for comparison

with the B0
s sample. The two MC samples should produce a similar NN output

distribution for an NN without any mass correlations. The two distributions for

the two samples are shown in Fig. 4.8 indicating no significant mass dependence

of the NN.
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Figure 4.7: Result of the νN and dimuon mass correlation check using in-
ner and outer mass sidebands from the first 7 fb−1 of data for
separate CC and CF trainings.

4.2.3 Neural net validation: overtraining

Overtraining occurs when an NN becomes sensitive to the statistical fluctuation

and properties unique to a training data set. The optimal training would be

sensitive to general properties that many independent data sets of similar nature

share. Overtraining can lead to an NN response in the training sample that

is significantly different to the NN output in an independent sample. In this

analysis 80% of the sideband data is used to train the NN. Overtraining could

potentially cause an artificial suppression of the sideband yields in the 80% that

is used during the NN trainings. To check for such effects, we compare the NN

output distributions for the sideband data using NN’s trained on 30%, 50%, and

80% of the sideband sample. The resulting distributions are shown in Fig. 4.9

and show no significant difference.
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Figure 4.8: Comparison of νN for B0
s and B0

d MC. The distributions have
been normalized to have total area of unity for the entire NN
output range, 0 < νN < 1.

4.2.4 Neural net validation: MC modeling

As a check that the MC simulations model the NN input variable and some ad-

ditional kinematic variable distributions correctly, we compare the distributions

of B+ → J/ψK+ sideband-subtracted data and B+ → J/ψK+ MC simulations.

Minor alterations were made to the input variables. Variables that are recon-

structed using the B0
s vertex in the B0

s → µ+µ− sample use the J/ψ vertex in the

B+ → J/ψK+ samples. The reconstructed B-meson pT and isolation, however,

use three-track information. The comparison of the distributions are shown in

Figs. 4.10 and 4.11. The distributions are very similar for the MC sample and

the sideband-subtracted data sample. Residual difference in the distributions of

the isolation and the B-meson pT distributions are assigned as systematic uncer-

tainties to the NN efficiency and are discussed in detail in Sec. 4.3.
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Figure 4.9: νN distributions for NN’s trained with 33%, 50%, and 80% of
the sample of sidebands events reconstructed in 7 fb−1.

To ensure that our B0
s → µ+µ− MC simulations properly model the νN and

NN signal efficiencies we compare the νN distributions for the B+ → J/ψK+ data

and B+ → J/ψK+ MC sample. The NN, trained with B0
s → µ+µ− MC signal and

B0
s → µ+µ− dimuon mass sideband data, is applied to the B+ → J/ψK+ data and

MC sample. The NN output distributions for both the MC and data samples

are shown in Fig. 4.12. Differences between the distributions are small and are

assigned as a systematic uncertainty on the NN efficiency. The NN efficiency

and its systematic uncertainty are discussed in more detail in Sec. 4.3.3.

4.3 Acceptance and efficiencies

B(B0
s → µ+µ−) =

NB0
s

NB+

·
αB+

αB0
s

·
ε

trig
B+

ε
trig
B0

s

·
εreco

B+

εreco
B0

s

·
1
εNN

B0
s

·
fu

fs
· B(B+ → J/ψK+ → µ+µ−K+) (4.2)
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Figure 4.10: Distributions of NN input variables and additional kinematic
variables for the entire 10 fb−1 of B+ → J/ψK+ sideband-
subtracted data and signal MC.

The branching fraction B(B0
s,d → µ+µ−) is measured using Eq. (4.2), where

αB0
s

is the geometric acceptance of the dimuon triggers determined by the kine-

matic requirements on the phase space of B-meson decays considered, while

ε
trig
B0

s
is the trigger efficiency within the acceptance, εreco

B0
s

is the efficiency of the

baseline requirements for events passing the trigger requirements, εNN
B0

s
is the

NN efficiency of all the NN bins combined for events satisfying the trigger and
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Figure 4.11: NN input variable distributions for the entire 10 fb−1 of B+ →

J/ψK+ sideband-subtracted data and signal MC.

baseline requirements, fu
fs

is the b-quark fragmentation probabilities ratio, and

B(B+ → J/ψ(→ µ+µ−)K+) is the normalization mode branching fraction. The

equivalent efficiencies and acceptance for the normalization mode are indicated

with the B+ subscript. No NN efficiency is indicated for the B+ → J/ψK+ mode

because the NN is not applied to the normalization mode. The acceptance and

efficiencies need to be estimated separately for the B0
s → µ+µ− and B+ → J/ψK+

mode due to the kinematic differences between two and three body decays. Two
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Figure 4.12: Comparison of νN distributions for B+ → J/ψK+ sideband-
subtracted data and B+ → J/ψK+ MC simulations. The dis-
tributions in the left column show the νN over the entire NN
output range while the distributions to the right show the νN

for νN > 0.95, which is our most signal sensitive range.

and three-body decays have different distributions for muon kinematic vari-

ables which affect the angular and kinematic acceptance. For the B+ → J/ψK+

mode the acceptance of the kaon also needs to be taken into account. Efficiencies

can depend on kinematic properties and thus the different kinematic distribu-

tions of the two and three body modes can yield differing efficiencies. How-

ever, the efficiency differences for muons as a function of kinematic variables

are typically not large and systematic uncertainties are substantially reduced by

measuring the ratio of efficiencies.

4.3.1 Acceptance

The acceptances are determined using B0
s → µ+µ− and B+ → J/ψK+ MC simu-

lations for B0
s and B+ mesons that satisfy |y| < 1.0 and pT (B0

s) > 4 GeV/c, where
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y = 1
2 ln( E+pz

E−pz
), is the rapidity. Both muons are required to satisfy the fiducial

and kinematic requirements of the trigger discussed in Sec. 3.3.6. Muons are re-

quired to have pT > 2.0 GeV/c for CMU muons, pT > 3.0 GeV/c for CMUP, and

pT > 2.2 GeV/c for CMX and must extrapolate to the active fiducial volumes

of the muon, COT, and L00+SVXII systems. Kaons in the normalization mode

must have pT > 1.0 GeV/c and extrapolate to the active fiducial volumes of the

COT and L00+SVXII systems. Effects from COT tracking, multiple scattering,

and stub-track matching are included in the reconstruction efficiency discussed

below. Systematic uncertainties on the acceptances are assessed by varying b-

quark mass, fragmentation modeling, and the renormalization scale during the

MC generation. These quantities are varied by ±1σ, where σ is the uncertainty

of the quantity, while the effect on the acceptance ratio is assessed. We also as-

sign variations of the acceptance due to changes in the size of the beam spot

as a systematic uncertainty. The observed differences are added in quadrature

leading to a final acceptance ratio and systematic uncertainty given in Table 4.2.

4.3.2 Trigger efficiencies

The trigger efficiencies consist of two one-track efficiencies estimated from J/ψ

dimuon events. Three separate trigger efficiencies, L1, L2, and L3, are estimated.

The L1 measurement quantifies both the efficiency of the XFT to identify muon

tracks as well as the efficiency of the XTRP to match these tracks to muon stubs

in the muon chambers. The L1 one-track efficiency is parametrized in pT , η,

detector operation conditions, and φ. The pT parametrization is meant to take

into account the pT dependence of the efficiency near the trigger pT thresholds.

This parametrization also considers the probability of muon range-out before
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the muon candidate reaches the muon chambers. We parametrize the L1 effi-

ciency in η due to the improved efficiency at higher η values due to the larger

ionization path lengths in the COT. Bins in run number corresponding to detec-

tor operation conditions such as trigger configuration and COT performance

are grouped into large bins with similar properties. The parametrization in

detector operating conditions and φ is used to quantify the effects of thresh-

old gains, gas gains in the COT, and trigger configurations on the efficiency.

A tag-and-probe method is used to estimate the single-track L1 trigger effi-

ciency. Events are collected using a single muon trigger and are reconstructed

as J/ψ→ µ+µ− candidates. After sideband subtraction, this yields a pure sample

of J/ψ → µ+µ− events. One muon track in the sideband-subtracted J/ψ event

is required to have fired an L1 muon trigger while the other passes fiducial

and trigger baseline requirements described in the previous section. The nu-

merator of the efficiency calculation consists of sideband-subtracted J/ψ events

where both muon tracks are matched to an L1 trigger while the denominator

consists of all sideband-subtracted J/ψ events. The dominant systematic uncer-

tainties of the L1 efficiency comes from variations in the efficiency as a function

of dimuon isolation and ±η asymmetries. This uncertainty is estimated sepa-

rately for coarse φ bins and ranges from 0.3% to 2.7% for central muons. For

the forward muons an additional effect due to a charge asymmetry (µ+ or µ−) is

taken into account. The total systematic uncertainty for forward muons ranges

between 0.5% and 3%. Once the one-track efficiencies are measured they are

combined into a dimuon trigger efficiency by convolution with the distributions

of the parameters in B0
s → µ+µ− and B+ → J/ψK+ MC. Double-track correlations

are studied and are found to be small.

The L2 and L3 efficiencies quantify the ability to refine and fully reconstruct
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the dimuon events. The L2 and L3 trigger efficiencies are estimated in a similar

manner to the L1 efficiency but are only parametrized in bins of run numbers.

Due to the changing luminosity over time, luminosity weighting is used to es-

timate the final L2 and L3 efficiencies. The final efficiencies for B0
s → µ+µ− and

B+ → J/ψK+ are the products of L1, L2, and L3 efficiencies. The trigger effi-

ciencies were cross-checked with Z0 → µ+µ−, for high pT muons, and non J/ψ

muon triggers. All efficiencies were consistent within statistical uncertainties.

Residual variations in the L2 efficiency due to pT dependence are assigned as

systematic uncertainties, ranging between 0.14% and 3.4%. The systematic un-

certainty on the L3 efficiency originates from efficiency dependence on several

dimuon kinematic variables. Efficiency variations due to dimuon pseudora-

pidity, isolation, opening angle, and pT are considered and result in systematic

uncertainties between 1.3% and 4.3%.

The total trigger efficiency is taken as the product of the L1, L2, and L3

trigger efficiencies for the B0
s → µ+µ− and B+ → J/ψK+ mode separately. The

uncertainty of the efficiency ratio is estimated by treating the B0
s → µ+µ− and

B+ → J/ψK+ total uncertainties as 100% correlated. The final trigger efficiency

ratios for the CC and CF channels and their associated uncertainties are shown

in Table 4.2.

4.3.3 Reconstruction efficiencies

The reconstruction efficiency can be broken down into the COT, muon, SVXII,

and vertex reconstruction efficiency of the two muons. For the normalization

mode the kaon COT and SVXII efficiencies also need to be considered. An addi-
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tional efficiency for the B+ → J/ψK+ mode is the B+ vertex probability efficiency.

The COT track efficiency is estimated using MC track embedding. MC tracks

are embedded in real COT data events to account for occupancy effects on the

efficiency. The final one track efficiency is close to unity for muons with pT > 1.5

GeV/c and the ratio of efficiencies for muons is taken as one. The dominant

systematic uncertainties take into account the variation of the efficiency with

isolation, pT , and detector operation conditions. These parameters have differ-

ent distributions for muons in B0
s → µ+µ− and B+ → J/ψK+ decays. The largest

systematic uncertainty comes from the absolute measurement of the kaon COT

efficiency in the B+ → J/ψK+ decays where the full variation of the efficiency

with the parameters is assigned as an uncertainty. The resulting efficiency ratio

for muons is 1.00 ± 0.01 for both the CC and CF channels.

The muon stub efficiency is determined from J/ψ → µ+µ− events using a

tag-and-probe method similar to the L1 trigger efficiency determination. One

track in the sideband-subtracted J/ψ event is required to have matched muon

stub while the other passes fiducial and baseline requirements described in

Sec. 4.1.1. The numerator of the efficiency calculation is the number of events

where both tracks are matched to muon stubs while the denominator consists of

all sideband-subtracted events in the J/ψ → µ+µ− dimuon mass signal window.

In addition to an efficiency estimated with data, an efficiency using MC events is

also calculated. For the final muon stub efficiency the data efficiency is divided

by the simulated efficiency to account for geometric losses already counted in

the acceptance estimation. As a cross-check of the efficiency estimates the same

procedure is used to determine the efficiency of high pT muons for Z0 decays.

The difference in efficiencies is taken as a systematic uncertainty. The ratio of
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the efficiencies, for both the CC and CF channels, is 1.00 ± 0.03.

We also estimate the combined efficiency of our dE/dx and muon likelihood

requirements. The efficiency of the muon identification cuts are determined in

a J/ψ → µ+µ− sample by comparing the signal yield with and without the re-

quirements as a function of pT . The efficiencies are then convoluted with the

B0
s → µ+µ− and B+ → J/ψK+ MC muon pT distributions to determine a set of

average efficiencies. These efficiencies are cross-checked with the B+ → J/ψK+

normalization mode. The difference between the efficiencies in the B+ → J/ψK+

MC and B+ → J/ψK+ sideband-subtracted data is assigned as a systematic un-

certainty on the efficiency ratio. The final efficiency ratio and its uncertainty for

the muon identification requirements is 1.01 ± 0.03 for both the CC channel and

CF channels.

The efficiency of requiring SVXII hits on COT tracks is estimated using J/ψ→

µ+µ− events in a similar manner to the muon stub and trigger efficiencies. The

denominator in these calculations is the number of J/ψ → µ+µ− events that are

identified as muons and matched to a COT track. This denominator includes

the acceptance defined earlier in this section i.e., events must be fiducial to the

silicon detectors, and accounts for dead regions of the detector. The numerator

adds the requirement of hits in at least three of the SVXII and L00 layers. The

efficiency is estimated as a function of muon pT , the opening angle between the

two muons in the transverse plane, and track isolation. The average over these

kinematic variables is taken as the final efficiency while the variations in these

variables are used for systematic uncertainties. The correlation in the silicon

hit efficiency for the two muons, when both muon tracks point into the same

silicon ladder, is taken into account. The efficiency ratio for adding SVXII hits,
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combining all the uncertainties, is 1.00 ± 0.03 for both the CC and CF channels.

The efficiency of the vertex requirements are estimated using our B+ →

J/ψK+ and B0
s → µ+µ− MC samples. The B+ → J/ψK+ efficiency is checked using

sideband-subtracted B+ → J/ψK+ data events. The difference between the data

and MC samples is within statistical uncertainties and no additional systematic

uncertainty is assigned to the vertex requirement efficiency. The resulting effi-

ciency ratios and its uncertainty for the vertex requirements is 0.986 ± 0.013 for

the CC and CF channel.

The kaon COT efficiency is estimated using the same method as the muon

COT efficiency and is 0.964 ± 0.016 for both the CC and CF channels. The sys-

tematic uncertainty of the kaon COT efficiency takes into account the proba-

bility of the kaon interacting hadronically with matter and the uncertainty on

the amount of material the kaon traversed for a given path. The efficiency of

requiring SVXII hits for the kaon track is directly measured from B+ → J/ψK+

data and thus automatically accounts for the correlation between the muons

and the kaon when a combination of the three point to the same silicon ladder.

The final efficiencies in the CC and CF channels for the SVXII hit requirement

are 0.942 ± 0.002 and 0.948 ± 0.003, respectively. An additional requirement is

made for the B+ → J/ψK+ mode on the B+ → J/ψK+ vertex probability. The

efficiencies of this requirement is also directly measured in sideband-subtracted

B+ → J/ψK+ data and are 0.938 ± 0.006 and 0.919 ± 0.010 for the CC and CF

channels, respectively.

The efficiency ratios as well as the kaon and B+ → J/ψK+ vertex probability

efficiencies are multiplied to form a combined reconstruction efficiency ratio.

The resulting efficiencies for the CC and CF channel and their associated total
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uncertainties are shown in Table 4.2.

Neural network efficiency

The NN efficiency for each NN bin is estimated using B0
s → µ+µ− signal MC. The

NN efficiency is only estimated for the B0
s → µ+µ− mode and not the B+ → J/ψK+

decay because the NN is only applied to the B0
s → µ+µ− sample. The NN is not

applied to the normalization mode because the signal/background is relatively

large after the baseline requirements and sideband subtraction. Table 4.2 shows

the combined efficiencies for all NN bins in the CC and CF channels. When

setting limits or fitting for branching fractions the efficiencies for each NN bin

are estimated separately. The highest NN bin is the most sensitive to signal and

accounts for the bulk of the NN efficiency. The efficiency for the highest NN bin

is approximately 46% for both the CC and CF channels. The final efficiencies for

all NN bins separately are shown in Table 4.3.

The NN efficiencies are checked using the normalization mode. The same

NN that is applied to the B0
s → µ+µ− MC is applied to sideband-subtracted

B+ → J/ψK+ data and B+ → J/ψK+ MC with slight modifications of the in-

put parameters. Here the J/ψ vertex is used for secondary vertex related input

parameters. The efficiencies of various NN bins are now compared between

MC and sideband-subtracted data and are shown in Table 4.4. Some difference

in performance is observed between the B+ → J/ψK+ simulated and data sam-

ples. This difference in performance is likely due to systematic overestimation

of vertex information precision in the simulation due to sensor degradation that

is not simulated. For most NN bins the difference between MC and sideband-

subtracted data is less than 2.5σ. Here σ is the statistical uncertainty for MC
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and sideband-subtracted combined. The highest NN bin has the most signifi-

cant deviation, 3.4% and 7.0% for the CC and CF, respectively.

The B0
s → µ+µ− MC is reweighted using B+ → J/ψK+ and B0

s → J/ψφ pT and

isolation distribution, respectively. An additional systematic of 4% is assigned

based on the residual mismodeling of B-meson pT and isolation.

Table 4.2: A summary of the inputs used in equation 4.2 to estimate the
branching fraction B(B0

s → µ+µ−). The relative uncertainties are
given parenthetically. The single-event-sensitivities, SES’s, for
the sum of all NN bins, corresponding to NB0

s
= 1, are shown in

the two last rows.

CC CF

(αB+/αB0
s
) 0.307 ± 0.018 (±6%) 0.197 ± 0.014 (±7%)

(εtrig
B+ /ε

trig
B0

s
) 0.99935 ± 0.00012 ( – ) 0.97974 ± 0.00016 ( – )

(εreco
B+ /εreco

B0
s

) 0.86 ± 0.06 (±8%) 0.84 ± 0.06 (±9%)

εNN
B0

s
(νN > 0.70) 0.915 ± 0.042 (±4%) 0.864 ± 0.040 (±4%)

εNN
B0

s
(νN > 0.995) 0.461 ± 0.021 (±4.7%) 0.468 ± 0.022 (±4.6%)

NB+ 28081 ± 219 (±1%) 12144 ± 153 (±1%)

fu/ fs 3.55 ± 0.47 (±13%) 3.55 ± 0.47 (±13%)

B(B+ → J/ψK+ → µ+µ−K+) (6.01 ± 0.21) × 10−5 (±4%) (6.01 ± 0.21) × 10−5 (±4%)

SES (All bins) 2.3 × 10−9 (±18%) 3.3 × 10−9 (±18%)

4.3.4 Additional systematic uncertainties

The fragmentation ratio and the B+ → J/ψK+ branching fraction and their asso-

ciated systematics are both taken from Ref. [3].
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Table 4.3: NN bin efficiencies for CC and CF channels.

CC CF

0.7 < νN < 0.76 2.2%±0.1% 2.3%±0.1%

0.76 < νN < 0.85 4.1%±0.1% 4.4±0.1%%

0.85 < νN < 0.90 2.9%±0.1% 3.4±0.1%%

0.90 < νN < 0.94 4.5%±0.1% 4.7±0.1%%

0.94 < νN < 0.97 8.3%±0.1% 6.2±0.1%%

0.97 < νN < 0.987 10.9%±0.1% 10.2%±0.1%

0.987 < νN < 0.995 12.5%±0.1% 8.5%±0.1%

0.995 < νN < 1.0 46.1%±0.3% 46.8%±0.3%

4.3.5 Standard model signal expectations

The expected SM signal yield for B0
s → µ+µ− decays is estimated for each NN

bin using Eq. (4.2), the factors discussed in Sect. 4.3, and the NN bin efficiencies

from Table 4.3. There is no expectation of significant SM B0
d → µ+µ− contribution

in the B0
d mass window due to the expected branching fraction being a factor of

32 smaller than B(B0
s → µ+µ−). The final expected number of SM events for each

NN bin is given in Table 4.5. Combining all NN bins, approximately 1.4 and 1.0

SM B0
s → µ+µ− events are expected in the CC and CF channels, respectively.

4.4 Background estimation

There are two types of backgrounds that need to be estimated in this analy-

sis. The main source of background in the B0
s search comes from combinatorial
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Table 4.4: Relative differences in NN bin efficiencies between B+ → J/ψK+

data and MC. A positive (negative) difference indicates that the
MC efficiency was higher (lower) than the data efficiency. The
differences, normalized to the standard deviation of the MC ef-
ficiency (σ), are given in parenthesis.

NN bin CC CF

0.700 < νN < 0.760 –8.3% (–1.6σ) –5.3% (–0.7σ)

0.760 < νN < 0.850 –8.5% (–2.3σ) –7.9% (–1.4σ)

0.850 < νN < 0.900 4.0% (0.9σ) –8.2% (–1.3σ)

0.900 < νN < 0.940 –0.5% (–0.1σ) 2.4% (0.5σ)

0.940 < νN < 0.970 0.1% (0.1σ) –6.1% (–1.4σ)

0.970 < νN < 0.987 2.9% (1.1σ) 0.3% (0.1σ)

0.987 < νN < 0.995 4.4% (2.1σ) –4.1% (–1.0σ)

0.995 < νN < 1.000 3.4% (2.6σ) 7.0% (3.7σ)

background. In addition to the combinatorial background there is also a peak-

ing background from B→ h+h′− decays, where h and h′ are either a pion or kaon.

These backgrounds are mainly significant for the B0
d search due to the shift in in-

variant mass caused by assuming a muon mass hypothesis. Both backgrounds

are estimated separately for the CC and CF channels. The signal dimuon mass

region is a 300 GeV/c2 region between 5.169 < Mµ+µ− < 5.469 GeV/c2 and is

blinded throughout the background estimation process. The final backgrounds

are estimated for a narrower dimuon mass region that is divided into five mass

bins and lies between ±60 MeV/c2 ∼ 2.5σm around the world average B0
s (B0

d)

region.
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Table 4.5: SM expected signal contribution in each NN bin for the B0
s →

µ+µ− search.

NN bin CC CF

0.700 < νN < 0.760 0.04 ± 0.01 0.03± < 0.01

0.760 < νN < 0.850 0.07 ± 0.01 0.05 ± 0.01

0.850 < νN < 0.900 0.05 ± 0.01 0.04 ± 0.01

0.900 < νN < 0.940 0.07 ± 0.01 0.05 ± 0.01

0.940 < νN < 0.970 0.10 ± 0.02 0.07 ± 0.01

0.970 < νN < 0.987 0.13 ± 0.02 0.11 ± 0.02

0.987 < νN < 0.995 0.20 ± 0.04 0.09 ± 0.02

0.995 < νN < 1.000 0.75 ± 0.13 0.52 ± 0.10

4.4.1 Combinatorial backgrounds

The combinatorial background is estimated using the data mass sideband. The

NN output is divided into 8 bins with the optimization process discussed in

Sec. 4.6.1. For each NN bin the dimuon mass sideband regions of 5.009 <

Mµ+µ− < 5.169 GeV/c2 and 5.469 < Mµ+µ− < 5.969 GeV/c2 are fitted to a first

order polynomial with a fixed slope but a free floating normalization. Events

below Mµ+µ− = 5.009 GeV/c2 are not used due to b → µ+µ−X contamination.

These b → µ+µ−X events tend to have a lower dimuon mass due to the miss-

ing contribution from X. A fixed slope is used because νN is found to have no

mass correlation and thus the slope should be constant with respect to the νN

requirement. The fixed slope is estimated using all the NN bins combined with

νN > 0.7. The final combinatorial background estimates are determined in the

signal region for five mass bins centered around the B0
s world average mass us-

84



ing B = N × (a + b × (x − 480)). Here a is a constant offset determined from

the sideband events for which νN > 0.7, b is the fixed slope, 480 is the average

dimuon mass in our sideband and signal window in GeV/c2, x is the center of

the mass bin considered in GeV/c2, and B is the estimated background for that

bin. The fixed slope and offset are determined separately for the CC and CF

channels. We obtain aCC = 0.030±0.001, aCF = 0.031±0.001, bCC = −0.012±0.003,

bCF = −0.017 ± 0.003 from the fit shown in Fig. 4.13.

Figure 4.13: Dimuon mass distributions for νN > 0.7 for the CC and CF
channels with the signal region blinded.

The same procedure and same sidebands are used for the B0
d meson using

five mass bins centered around the B0
d mass. Figures 4.14 and 4.15 show the

dimuon mass distribution and the fit results for the CC and CF channel, respec-

tively. The statistical uncertainty from the normalization and the systematic

uncertainties from the slope determination are propagated into the background

estimate uncertainties. The final combinatorial background estimates are given
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in Tables 4.6 and 4.7.

The highest three NN bins are fitted to alternative functions to assess the

systematic uncertainty based on the Mµ+µ− distribution shape uncertainty. The

highest three bins are more susceptible to contamination from partially recon-

structed decays (b→ µ+µ−X) because these decays have similar kinematics to the

B0
s → µ+µ− decay. This occurs when the additional hadron, X, has a low momen-

tum causing a invariant dimuon mass close to the B0
d or B0

s mass. Contributions

from these decays can cause a different dimuon mass shape in the most sensi-

tive NN bins. A first order polynomial with free floating slope for each NN bin

is used on the same dimuon mass sideband as the fixed slope fit. In addition, an

exponential fit to the entire sideband mass region, 4.669 < Mµ+µ− < 5.169 GeV/c2

and 5.469 < Mµ+µ− < 5.969 GeV/c2, is performed (Figs. 4.16 and 4.17). The largest

difference between the background estimates from these alternative fits and the

standard fit is assigned as a systematic uncertainty across all five mass bins. The

final relative uncertainties range from ±19% (±3%) to ±43% (±42%) for the CC

(CF) channel.

4.4.2 Peaking backgrounds

A peaking background from two-body hadronic B-meson decays also contributes

to possible backgrounds in the signal region. These B → h+h′− decays, where h

and h′ are either a π± or K± are a factor of 10 smaller than the combinatorial

background for the B0
s search window while they comprise about half the total

background events in the B0
d window. Decays involving other hadrons such as

Λb → pπ− tend to be above the dimuon mass signal region. These hadrons also
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Figure 4.14: Dimuon mass distributions in all 8 NN bins for the CC chan-
nel the with extended signal region blinded.

have significantly lower productions rates than B-mesons while protons are re-

jected at a higher rate by the particle identification requirements than pions and

kaons [43].

The rate at which pions and kaons pass all our muon requirements is ex-

tracted with a pure sample of kaons and pions from D∗-tagged D0 → K−π+ de-

cays. These decays yield two same-sign pions, one from the D∗+ → D0π+ decay

and one from the subsequent D0 decay, and an oppositely-signed kaon. Due to

the small difference between MD∗+ and MD0π+ , the pion from the D∗+ decay has

a much lower pT spectrum. The D0 → K−π+ mode is a Cabibbo-favored decay
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Figure 4.15: Dimuon mass distributions in all 8 NN bins for the CF channel
the with extended signal region blinded.

with a branching fraction of (3.87 ± 0.05) × 10−2 [3].

We use the first 7 fb−1 of data collected with the two track trigger (TTT),

where the two triggered tracks are the two tracks from D0 → K−π+ candidates.

This trigger requires two tracks with a displaced secondary vertex, by demand-

ing the tracks have 0.1 < |d0| < 1 mm and LT > 200 µm. The trigger also makes

the following requirements: 2◦ < ∆φ0 < 90◦, where ∆φ0 is the angular separation

of the two tracks; pT > 2.0 GeV/c for each of the two tracks; |∆z0| < 5 cm, where

∆z0 is the difference in z coordinate of the two tracks; and |η| < 1.2 for each of the

two tracks.
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Figure 4.16: Alternative fits to the dimuon mass distributions of the three
highest NN bins in the CC channel.

Additional requirements are made on events that pass the trigger require-

ments. The higher pT tracks are required to have muon stubs in either the cen-

tral or forward muon detectors matched to COT tracks. We demand that both

tracks individually as well as the D0 candidate, reconstructed from the pion and

kaon from the secondary vertex, have |η| < 1, the χ2 returned from the secondary

vertex fit be no greater than 15, and the impact parameter of the D0 candidate

relative to the primary vertex be less than 100 µm. The third track from the

primary vertex, the soft pion from the D∗+ → D0π+ decay, is required to have

pT > 0.4 GeV/c, |z0| < 1.5 cm, |d0| < 600 µm, and must have the same charge as

the pion from the D0 decay. Finally, we require 1.77 < MD0 < 1.97 GeV/c2, where

MD0 is the D0 candidate mass, and 144 < MD∗+−MD0 < 147 MeV/c2, where MD∗+ is

the reconstructed D∗+ candidate mass. These selection criteria yield a very pure

sample (> 99%) of kaons and pions from the D0 decay which we use to estimate
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Figure 4.17: Alternative fits to the dimuon mass distributions of the three
highest NN bins in the CF channel.

the efficiency of our muon identification requirements on kaons and pions, or

fake rates.

The fake rates were measured for central and forward muons and separately

for π+, π−, K+, and K− and binned in pT . However, due to the near identical fake

rates of π+ and π− the two fakes rates were combined to yield a π± fake rate. A

dependence of the fake rates on instantaneous luminosity is found requiring a

binning of (0 < L < 40) × 1030cm−2s−1, (40 < L < 80) × 1030cm−2s−1, (80 < L <

120)× 1030cm−2s−1, and (120 < L)× 1030cm−2s−1. The fake rates change from 20%

to a factor of three due to instantaneous luminosity.

Within these pT and luminosity bins the number of events that pass our

muon identification is estimated by fitting the MD0 mass distribution to a func-

tion that is the sum of a Gaussian distribution and a first order polynomial.
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Table 4.6: Estimated number of combinatorial background events with
statistical uncertainty for B0

s signal window for all NN bins.

XXXXXXXXXXXXXXXX
NN bin

Mass bins (GeV/c2)
5.310−5.334 5.334−5.358 5.358−5.382 5.382−5.406 5.406−5.430

CC

0.700< νN <0.760 10.42±0.72 10.33±0.71 10.23±0.70 10.14±0.70 10.04±0.69

0.760< νN <0.850 11.02±0.74 10.92±0.74 10.82±0.73 10.72±0.72 10.62±0.71

0.850< νN <0.900 4.69±0.46 4.65±0.45 4.61±0.45 4.56±0.44 4.52±0.44

0.900< νN <0.940 4.49±0.45 4.45±0.44 4.41±0.44 4.37±0.43 4.33±0.43

0.940< νN <0.970 3.85±0.41 3.81±0.41 3.78±0.40 3.74±0.40 3.71±0.39

0.970< νN <0.987 2.21±0.30 2.19±0.30 2.17±0.30 2.14±0.30 2.12±0.29

0.987< νN <0.995 0.92±0.19 0.91±0.19 0.91±0.19 0.90±0.19 0.89±0.19

0.995< νN <1.000 0.24±0.10 0.24±0.10 0.24±0.10 0.23±0.10 0.23±0.10

CF

0.700< νN <0.760 10.18±0.72 10.05±0.71 9.93±0.70 9.80±0.69 9.68±0.68

0.760< νN <0.850 11.21±0.76 11.08±0.75 10.94±0.74 10.80±0.73 10.66±0.72

0.850< νN <0.900 6.11±0.54 6.03±0.53 5.96±0.52 5.88±0.52 5.81±0.51

0.900< νN <0.940 4.65±0.46 4.59±0.46 4.54±0.45 4.48±0.44 4.42±0.44

0.940< νN <0.970 3.94±0.42 3.90±0.42 3.85±0.41 3.80±0.41 3.75±0.40

0.970< νN <0.987 2.74±0.35 2.71±0.34 2.67±0.34 2.64±0.34 2.61±0.33

0.987< νN <0.995 0.83±0.19 0.82±0.18 0.81±0.18 0.80±0.18 0.79±0.18

0.995< νN <1.000 0.71±0.17 0.70±0.17 0.69±0.17 0.68±0.17 0.67±0.16

The number of events that fail our muon identification is taken from a fit of the

MD0 mass distribution to the sum of two Gaussian distributions and a first or-

der polynomial. The muon identification requirements are identical to the ones

used in the B0
s → µ+µ− data set and consist of a muon likelihood requirement

and a dE/dx requirement. Fits with one Gaussian have the mean of the Gaus-

sian distribution fixed to the world average of the D0 mass while the width is

set to a width determined for each pT bin using events without the muon iden-
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Table 4.7: Estimated number of combinatorial background events for B0
d

signal window for all NN bins.

XXXXXXXXXXXXXXXX
NN bin

Mass bin (GeV/c2)
5.219−5.243 5.243−5.267 5.267−5.291 5.291−5.315 5.315−5.339

CC

0.700< νN <0.760 10.78±0.74 10.69±0.74 10.59±0.73 10.50±0.72 10.40±0.72

0.760< νN <0.850 11.41±0.77 11.30±0.76 11.21±0.76 11.10±0.75 11.00±0.74

0.850< νN <0.900 4.85±0.47 4.81±0.47 4.77±0.46 4.72±0.46 4.68±0.46

0.900< νN <0.940 4.64±0.46 4.60±0.46 4.56±0.45 4.52±0.45 4.48±0.44

0.940< νN <0.970 3.98±0.42 3.95±0.42 3.91±0.42 3.88±0.41 3.84±0.41

0.970< νN <0.987 2.28±0.32 2.26±0.31 2.24±0.31 2.22±0.31 2.20±0.30

0.987< νN <0.995 0.95±0.20 0.95±0.20 0.94±0.20 0.93±0.20 0.92±0.19

0.995< νN <1.000 0.25±0.10 0.25±0.10 0.24±0.10 0.24±0.10 0.24±0.10

CF

0.700< νN <0.760 10.65±0.75 10.52±0.74 10.40±0.73 10.27±0.72 10.15±0.72

0.760< νN <0.850 11.73±0.80 11.60±0.79 11.46±0.78 11.32±0.77 11.18±0.76

0.850< νN <0.900 6.39±0.56 6.31±0.55 6.24±0.55 6.16±0.54 6.09±0.53

0.900< νN <0.940 4.87±0.48 4.81±0.48 4.75±0.47 4.70±0.47 4.64±0.46

0.940< νN <0.970 4.13±0.44 4.08±0.44 4.03±0.43 3.98±0.43 3.94±0.42

0.970< νN <0.987 2.87±0.36 2.83±0.36 2.80±0.35 2.77±0.35 2.73±0.35

0.987< νN <0.995 0.87±0.20 0.86±0.19 0.85±0.19 0.84±0.19 0.83±0.19

0.995< νN <1.000 0.74±0.18 0.73±0.18 0.72±0.18 0.71±0.17 0.70±0.17

tification requirements. The number of events is extracted from the fitted am-

plitude of the Gaussian for the one-Gaussian fit and the sum of amplitudes for

the two-Gaussian fit. Figures 4.18 and 4.19 show the D0 mass distributions with

the accompanying fits for a lower and higher kaon pT bin for central muons

combining all luminosity bins.

As a cross-check, the fake rates, binned in pT and luminosity, were applied to

the D∗-tagged sample as weights and counted in run number bins. These sum
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Figure 4.18: D0 mass distributions and their associated fits for central
kaons with 2.0 < pT < 2.8 GeV/c.

of weights were compared to the actual number of fakes in each run number

bin resulting in differences of up to 20%. This 20% difference is assigned as

a systematic uncertainty and accounts for the largest contribution to the fake

rate uncertainty. In the final determination of the total B → h+h′− contribution

a weighted average of fake rates is used based on the luminosity profile of the

dimuon mass sideband events. The luminosity-averaged fake rates are shown

in Fig. 4.20.

The B-meson mass shape and pT distributions are modeled by MC simula-

tions. These distributions are necessary to properly apply the fake rates and to

estimate the contribution in each of the five B0
s (B0

d) mass bins. The expected

number of peaking background events for a specific two-body hadronic decay

is given by
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Figure 4.19: D0 mass distributions and their associated fits for central
kaons with 6.0 < pT < 8.0 GeV/c.

Nb = Fsb · Rb ·
εb

εs
·
Bb

S S
,

where Fsb is the ratio of fragmentation fractions which is either unity, fu/ fs,

or fs/ fu. If we are considering B0
d hadronic backgrounds in the B0

d search window

this factor is equal to unity. However, if we consider B0
d hadronic background

events in the B0
s search region Fsb = fu/ fs, while Fsb = fs/ fu for the inverse. fu/ fs

is taken from Ref. [3] and has an uncertainty of 13%. Rb is the average decay

mode fake rate, the rate at which both final state hadrons are misidentified as

muons. This average is obtained by averaging the fake rate over the double-

track pT distribution of B → h+h′− MC events. An uncertainty of 35% based on

the single track uncertainty of 20% is assigned to this. The efficiencies εs and εb

are the mass bin efficiency, that is the efficiency of a signal B0
s,d → µ+µ− event

occurring in one of the five mass bins, and the efficiency for a B → h+h′− back-
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Figure 4.20: Fake rates as a function of pT and averaged over luminos-
ity bins for central (left two columns) and forward (right two
columns) muon detectors.

ground event falling in a specific mass bin. These efficiencies are determined

with MC simulations. The Bb is the branching fraction of a specific background

mode. The value and associated uncertainty of Bb are current world averages

from Ref. [3]. For unobserved processes, we use the current upper limit and

assign a 100% uncertainty. Finally, S s is the single-event-sensitivity which is

discussed in more detail in Sec. 4.3. The final estimated peaking background

contribution is given in Tables 4.8 and 4.9.

Our B0
s → µ+µ− MC is used to cross-check whether the pT dependence of the

fake rates could have an effect on the νN distribution. To test this, a νN distribu-

tion weighted by the fake rates is compared to an unweighted νN distribution

yielding no significant difference in νN distributions.
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Table 4.8: B → h+h′− background estimates for B0
s signal window for all

NN bins. The contribution are negligibly small in all the lower
NN bins.

XXXXXXXXXXXXXXXX
NN bin

Mass bin (GeV/c2)
5.310−5.334 5.334−5.358 5.358−5.382 5.382−5.406 5.406−5.430

CC

0.700< νN <0.760 0.003± < 0.001 0.001± < 0.001 – – –

0.760< νN <0.850 0.006±0.001 0.002± < 0.001 0.001± < 0.001 – –

0.850< νN <0.900 0.005±0.001 0.002± < 0.001 0.001± < 0.001 – –

0.900< νN <0.940 0.007±0.001 0.003± < 0.001 0.001± < 0.001 – –

0.940< νN <0.970 0.011±0.001 0.003± < 0.001 0.001± < 0.001 – –

0.970< νN <0.987 0.013±0.002 0.005±0.001 0.002± < 0.001 0.001± < 0.001 –

0.987< νN <0.995 0.019±0.002 0.007±0.001 0.002± < 0.001 0.001± < 0.001 –

0.995< νN <1.000 0.074±0.010 0.026±0.003 0.009±0.001 0.003± < 0.001 0.001± < 0.001

CF

0.700< νN <0.760 0.001± < 0.001 – – – –

0.760< νN <0.850 0.002± < 0.001 0.001± < 0.001 – – –

0.850< νN <0.900 0.002± < 0.001 0.001± < 0.001 – – –

0.900< νN <0.940 0.002± < 0.001 0.001± < 0.001 – – –

0.940< νN <0.970 0.003± < 0.001 0.001± < 0.001 – – –

0.970< νN <0.987 0.004±0.001 0.002± < 0.001 0.001± < 0.001 – –

0.987< νN <0.995 0.004±0.001 0.002± < 0.001 0.001± < 0.001 – –

0.995< νN <1.000 0.021±0.003 0.009±0.001 0.003± < 0.001 0.002± < 0.001 –

4.4.3 Background estimate checks with control samples

Our signal data sample consists of two opposite-sign muons with λ > 0. We

form four independent control samples described below.

OS–: opposite-sign muon pairs, passing the baseline requirements with λ < 0;

SS+: same-sign muon pairs, passing looser baseline requirements with λ > 0;
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Table 4.9: B → h+h′− background estimates for B0
d signal window for all

NN bins.

XXXXXXXXXXXXXXXX
NN bin

Mass bin (GeV/c2)
5.219−5.243 5.243−5.267 5.267−5.291 5.291−5.315 5.315−5.339

CC

0.700< νN <0.760 0.015±0.002 0.013±0.001 0.011±0.001 0.006±0.001 0.002± < 0.001

0.760< νN <0.850 0.027±0.003 0.027±0.003 0.019±0.002 0.011±0.002 0.004±0.001

0.850< νN <0.900 0.022±0.002 0.019±0.002 0.014±0.002 0.008±0.001 0.003± < 0.001

0.900< νN <0.940 0.030±0.003 0.029±0.003 0.022±0.003 0.013±0.002 0.004±0.001

0.940< νN <0.970 0.047±0.005 0.039±0.004 0.031±0.004 0.016±0.002 0.005±0.001

0.970< νN <0.987 0.060±0.006 0.052±0.006 0.040±0.005 0.023±0.003 0.009±0.001

0.987< νN <0.995 0.084±0.008 0.083±0.009 0.061±0.008 0.033±0.004 0.011±0.001

0.995< νN <1.000 0.325±0.032 0.298±0.031 0.221±0.028 0.126±0.017 0.050±0.006

CF

0.700< νN <0.760 0.004± < 0.001 0.004± < 0.001 0.003± < 0.001 0.002± < 0.001 0.001± < 0.001

0.760< νN <0.850 0.007±0.001 0.008±0.001 0.006±0.001 0.004±0.001 0.001± < 0.001

0.850< νN <0.900 0.006±0.001 0.006±0.001 0.005±0.001 0.003± < 0.001 0.001± < 0.001

0.900< νN <0.940 0.008±0.001 0.008±0.001 0.007±0.001 0.004±0.001 0.001± < 0.001

0.940< νN <0.970 0.011±0.001 0.011±0.001 0.009±0.001 0.005±0.001 0.002± < 0.001

0.970< νN <0.987 0.017±0.002 0.018±0.002 0.015±0.002 0.008±0.001 0.003± < 0.001

0.987< νN <0.995 0.014±0.001 0.015±0.002 0.012±0.002 0.007±0.001 0.002± < 0.001

0.995< νN <1.000 0.078±0.008 0.084±0.009 0.065±0.008 0.038±0.005 0.014±0.002

Loosening of the trigger matching is required because the dimuon trigger

demands an opposite-sign dimuon pair.

SS–: same-sign muon pairs, passing looser baseline requirements with λ < 0;

FM+: opposite-sign fake-muon pairs, at least one track of which is required to

fail the muon likelihood or dE/dx requirement, with λ > 0.

97



The OS– sample is enhanced with short lived decays from combinatorial

backgrounds. The same-sign samples are dominated by sequential semilep-

tonic decays and muons that are combined from independent processes. The

processes that make up these control samples are representative of the back-

grounds present in the OS+ sideband. We use the same background estimation

process used in the signal sample for these control samples. For all but the FM+

only the combinatorial backgrounds are estimated due to the dominance of this

background over the peaking background. The FM+ has an enhanced sample

of B→ h+h′− background due to the reversal of the muon identification require-

ments. In the FM+, the two tracks pass the standard CDF muon identification

algorithm but fail our muon likelihood and dE/dx requirements. For this sam-

ple, we estimate both the combinatorial and the B → h+h′− background. Due to

the reversed muon requirements new fake rates, shown in Fig. 4.21, are evalu-

ated with the reversed muon identification using the same method as described

in Sec. 4.4.2. The backgrounds are evaluated for the extended blinded signal

mass region for each NN bin and compared to the observed number of events.

A p-value is calculated using the mean and uncertainty of the background esti-

mates. The resulting comparisons for all NN bins and control samples is shown

in Table 4.10.

The comparisons in these four control samples give us confidence in our

background estimation method. Overall the comparison show no large devi-

ation between the predicted number of background events and the observed

number.
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Figure 4.21: Fake rates as a function of pT and averaged over luminosity
bins for central (top) and forward (bottom) muon detectors in
the FM+ control sample.

4.5 Systematic uncertainties

The systematic uncertainties in this analysis are either related to efficiencies,

acceptances, normalization factors, peaking background estimates, or combina-

torial background estimates. Table 4.11 summarizes all systematic uncertainties

used in the search for B0
s,d → µ+µ−.

The dominant systematic uncertainty among the efficiencies, acceptances,

and normalization factors is the uncertainty on the ratio of fragmentation frac-

tions, fu/ fs [3], which induces a 13% effect. The second largest systematic un-

certainty is about a factor of two smaller and is due to the acceptance ratio

(Sec. 4.3.1).

An additional systematic uncertainty, the B0
s,d mass shape uncertainty, is as-
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signed based on the probability for a B0
s,d candidate to be reconstructed into

the signal mass window. This uncertainty is based on the world average B0
s,d

mass uncertainty, our mass scale, and our mass resolution. The final uncertainty

ranges between 1% and 9% depending on mass.

The leading systematic uncertainty for the peaking background is due to the

fake rate (Rb) uncertainty. The fake rates are applied to all B → h+h′− modes

on both tracks. A final double-track 35% relative systematic uncertainty is as-

signed to the predicted B→ h+h′− yield. The source of the fake rate uncertainties

is discussed in detail in Sec. 4.4.2. In addition to the fake rate uncertainty, an

uncertainty associated with the branching fraction of the particular B → h+h′−

decay is taken from Ref. [3]. Branching fractions for which only upper limits

have been set are assigned a 100% relative uncertainty. These decays, however,

contribute a small fraction to the total B → h+h′− background. The leading con-

tribution to the B → h+h′− background in the B0
d signal mass window comes

from B0
d → K+π−, B0

d → π+π−, and B0
s → K+K−. The branching fractions of

these decays have relative uncertainties of 3%, 4%, and 16%, respectively. The

B→ h+h′− background estimates that require fu/ fs are treated as correlated with

the normalization factor since the same source of fu/ fs is used.

The leading systematic uncertainty, up to 43%, in the combinatorial back-

ground estimates is due to the dimuon mass sideband shape uncertainty as-

signed to the three highest NN bins. The mass sideband shape uncertainty is

discussed in Sec. 4.4.1. Another large source of systematic uncertainty, up to

42%, in the higher NN bins is due to finite sample size in the sidebands. A

relatively small contribution (∼ 6%) to the total combinatorial background sys-

tematic uncertainty arises from the νN dimuon mass slope uncertainty.
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In our statistical interpretation of results all, the above systematic uncertain-

ties are taken as nuisance parameters with Gaussian constraints. The correla-

tions between the various systematic uncertainties are also taken into account.

Combinatorial background estimates across the five mass bins are correlated be-

cause they are estimated using the same slope and offset. Peaking backgrounds

are treated as correlated across all NN, mass, and muon topology bins due to

the use of common fake rates. All signal efficiency ratios except for the kaon

SVXII reconstruction efficiency and the B+ vertex probability efficiency, which

are measured directly in the data, are treated as correlated across NN, mass, and

muon topology bins due to the use of a common MC sample.

4.6 Statistical interpretation and analysis optimization

This section will discuss the NN binning optimization as well as the methods

used to statistically interpret the results.

4.6.1 Analysis optimization

The expected limit is the figure of merit for the NN optimization. The ex-

pected limit is calculated using a modified frequentist methodology, the CLs

method [44], combining all NN, mass, and muon topology (CC and CF) bins

while taking correlations between all the bins into account.

An ensemble of MC simulated data are generated for both a background-

only, b, and a signal-plus-background, s + b, hypothesis by varying nuisance

parameters within Gaussian constraints. Our systematic uncertainties on the
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background estimates and signal efficiencies are treated as nuisance parameters.

Likelihood functions for both the background-only and signal-plus-background,

L(b) and L(s + b), hypotheses are constructed. The likelihoods are minimized

by varying the nuisance parameters. This minimization is done for both the

s + b and b simulated data. The likelihood functions are defined as the prod-

uct of Poisson probabilities of all 80 bins, L =
∏80

i=1 tni
i e−ti/n1!, where ti is the

expected number of events according to a specific hypothesis and bin and ni is

the number of simulated experiment events for a specific bin. After the fits have

been performed for each simulated experiment a log likelihood ratio (LLR) is

constructed, 2lnQ = L(s + b)/L(b), where L(s + b) and L(b) are the Poisson

probabilities for the signal-plus-background and background-only hypothesis,

respectively.

For each background-only LLR, the fraction of simulated experiments with

a greater LLR, or p-value, is calculated for the s + b and b simulated data. A

ratio of p-values is constructed, CLs = CLs+b/CLb, where CLs+b is the p-value for

the s + b simulated data and CLb is the p-value for background-only simulated

data. Finally, the median value of CLs is calculated. This process is repeated for

a range ofB(B0
s → µ+µ−), which varies the expected signal in the s+b hypothesis,

to determine the expected 90% and 95% confidence level (C.L.) limit.

We initially chose many NN bins but combined bins that had similar ex-

pected signal-to-background. The signal contribution is estimated using our

B0
s → µ+µ− MC sample while the background expectations are estimated using

the data mass sideband and B→ h+h′− MC simulations. The NN bin boundaries

are varied to optimize the expected limits. This is done starting from the highest

NN boundary down. The highest NN bin boundary is optimized for the low-
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est limit while considering the statistical power and systematic uncertainties.

The uncertainty on the combinatorial background estimates rise steeply as the

NN boundary increases and the sideband regions become depleted of events.

A boundary value of 0.995 is chosen to avoid high systematic uncertainties that

could degrade the analysis performance. Once the highest NN bin is chosen

the minima become relatively shallow and only vary the expected limit about

5% for the various configurations. Our final configuration results in 8 NN bins

with bounds: 0.700 < νN < 0.760, 0.760 < νN < 0.850, 0.850 < νN < 0.900,

0.900 < νN < 0.940, 0.940 < νN < 0.970, 0.970 < νN < 0.987, 0.987 < νN < 0.995,

and 0.995 < νN < 1.000. The final expected limits are 1.3 × 10−8 and 1.3 × 10−8 at

95% C.L. for B(B0
s → µ+µ−) and B(B0

d → µ+µ−), respectively.

4.6.2 Observed limits

The observed limits are calculated with the CLs methodology in a similar man-

ner to the expected limits discussed above. As with the expected limit, simu-

lated data are generated for the s + b and b hypotheses. The same LLR is con-

structed with the same Poisson likelihood functions to fit to the simulated data.

For the observed limit, however, the p-value is determined by also fitting the

observed data to the likelihood functions. Two separate fits are performed, one

for the s + b and one for the b hypothesis, and are used to construct an observed

LLR. The p-values for the s + b and b hypotheses are taken to be the fraction of

s + b and b simulated data, respectively, with an LLR greater than the LLR for

the observed data. As with the expected limit estimation, the two p-values are

combined to form the CLs and calculated for a range of branching fractions.
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4.6.3 Hypothesis testing

We employ an ensemble of background-only simulated experiments to assess

the compatibility of an observation with the predicted background as a p-value.

The same Poisson likelihood functions as in the expected limit calculation are

used. The likelihood functions are minimized for both the observed data and

the ensemble of simulated data. Unlike in the expected limit procedure the sig-

nal yield in the s+b hypothesis is left to float freely while the background yields

are the same as for the background-only hypothesis. Once the fits are complete

an LLR is constructed for the observed data and each simulated experiment. Fi-

nally the p-value is calculated using the number of simulated experiments with

an LLR greater than the LLR for the observed data.

In the event of a significant excess, as quantified by the background-only p-

value, the data will be used to access compatibility with the SM+background

(SM + b) hypothesis. The SM + b hypothesis accounts for the expected standard

model contribution. In this case an ensemble of SM+background simulated ex-

periments is produced. All simulated experiments, as well as the observed data,

are fit using an s+b and an SM+b likelihood function. As with the background-

only p-value determination, the s in the s + b fit is left to float freely. An LLR is

constructed as 2lnQ = L(s + b)/L(SM + b). The final p-value is taken as the ratio

of simulated experiments with an LLR greater than the LLR for the observed

data.

In addition to estimating an SM+background p-value in the case of a signifi-

cant excess, we also perform a ∆χ2 fit to the data to determine a central value for

B(B0
s → µ+µ−). This fit is done by replacing the free-floating s in the s+b hypoth-

esis in the log-likelihood ratio with a signal yield corresponding to a specific
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B(B0
s → µ+µ−). The branching fraction is then varied to find the minimum of

−2lnQ as the central value of B(B0
s → µ+µ−). The 68% and 90% C.L. are taken

from the interval with a change of one and 2.71 units, respectively.
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Table 4.10: A comparison of the predicted and observed number of events
in the extended signal mass region as a function of NN bin for
the various control samples. The values given in the parenthe-
ses are the uncertainties on the mean of the background pre-
diction. The Poisson probability for making an observation at
least as large, given the predicted background, is also shown in
the table. In cases where no events are observed the probability
is actually the Poisson probability that exactly zero events are
observed with a mean equal to the predicted mean.

CC CF
Sample NN bin Pred. Obs. Prob. (%) Pred. Obs. Prob. (%)

0.700 < νN < 0.760 268.8±(14.3) 249 82.3 261.8±(13.9) 241 84.1
OS– 0.760 < νN < 0.850 320.8±(16.1) 282 95.1 399.0±(18.5) 397 53.2

0.850 < νN < 0.900 150.3±(9.9) 156 36.5 193.5±(11.4) 185 68.3
0.900 < νN < 0.940 146.2±(9.7) 158 23.0 177.4±(10.8) 183 37.7
0.940 < νN < 0.970 146.2±(9.7) 137 72.9 156.8±(10.1) 143 81.2
0.970 < νN < 0.987 100.4±(7.8) 98 58.3 112.6±(8.2) 110 58.3
0.987 < νN < 0.995 78.8±(6.8) 59 97.0 53.3±(5.4) 68 6.5
0.995 < νN < 1.000 41.2±(4.8) 42 47.2 48.2±(5.1) 44 70.0

0.700 < νN < 0.760 4.8±(1.2) 3 81.8 0.9±(0.5) 3 8.9
SS+ 0.760 < νN < 0.850 3.6±(1.0) 5 30.6 5.1±(1.2) 5 55.4

0.850 < νN < 0.900 2.4±(0.8) 5 12.2 0.9±(0.5) 6 0.2
0.900 < νN < 0.940 1.5±(0.7) 3 21.3 0.9±(0.5) 1 56.8
0.940 < νN < 0.970 1.5±(0.7) 1 73.3 0.9±(0.5) 1 56.8
0.970 < νN < 0.987 1.8±(0.7) 2 51.3 0.9±(0.5) 0 40.7
0.987 < νN < 0.995 0.3±(0.3) 0 74.1 0.3±(0.3) 0 74.1
0.995 < νN < 1.000 0.3±(0.3) 0 74.1 0.3±(0.3) 1 30.0

0.700 < νN < 0.760 7.8±(1.5) 10 27.8 6.0±(1.3) 4 80.9
SS– 0.760 < νN < 0.850 10.5±(1.8) 11 47.2 7.2±(1.5) 7 55.8

0.850 < νN < 0.900 4.2±(1.1) 7 15.9 3.0±(0.9) 2 75.8
0.900 < νN < 0.940 3.6±(1.0) 4 47.2 0.9±(0.5) 7 0.1
0.940 < νN < 0.970 3.3±(1.0) 6 14.3 3.6±(1.0) 2 83.4
0.970 < νN < 0.987 3.0±(0.9) 3 55.0 2.4±(0.8) 5 12.2
0.987 < νN < 0.995 2.1±(0.8) 0 12.2 1.2±(0.6) 0 30.1
0.995 < νN < 1.000 1.2±(0.6) 1 65.9 1.8±(0.7) 0 16.5

0.700 < νN < 0.760 152.2±(9.9) 161 29.6 66.5±(6.1) 88 2.5
FM+ 0.760 < νN < 0.850 140.9±(9.5) 157 15.3 81.7±(6.9) 76 70.0

0.850 < νN < 0.900 65.2±(6.1) 50 94.4 44.7±(5.0) 34 91.6
0.900 < νN < 0.940 48.7±(5.2) 40 85.8 24.4±(3.6) 38 2.3
0.940 < νN < 0.970 27.7±(3.8) 24 73.1 12.7±(2.6) 20 7.1
0.970 < νN < 0.987 10.9±(2.3) 12 41.4 7.7±(2.0) 13 8.8
0.987 < νN < 0.995 11.0±(2.3) 4 98.3 2.7±(1.1) 3 48.3
0.995 < νN < 1.000 28.3±(4.1) 32 30.6 4.4±(1.6) 8 13.0
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Table 4.11: Summary of systematic uncertainties for the CC and CF chan-
nels.

Category Quantity CC (%) CF (%) Source

Efficiencies,

acceptance,

and nor-

malization

factors

αB+/αB0
s

6 7 b mass, renorm. scale, fragmen-

tation modeling

εCOT
B+ /εCOT

B0
s

1 1 Isolation, pT (B), detector effects

ε
µ
B+/ε

µ

B0
s

3 3 Z0 → µ+µ− and J/ψ → µ+µ−

differences

εPID
B+ /εPID

B0
s

3 3 B+ → J/ψK+ and J/ψ → µ+µ−

differences

εSVXII
B+ /εSVXII

B0
s

3 3 pT (µ), two muon opening angle,

track isolation

εCOT
K 1.7 1.7 Isolation, pT (B), detector effects

εNN 4 4 B isolation, pT (B)

εNN for νN > 0.995 3.4 7.0 Data-MC differences

fu/ fs 13 13 Ref. [3]

B(B+ → J/ψ(→ µ+µ−)K+) 4 4 Ref. [3]

B-meson mass shape 0.1-9 0.1-9 Mass resolution, mass scale,

Ref. [3]

B→ h+h′−
Rb 20 20 Detector and luminosity effects

B(B→ h+h′−) 3-100 3-100 Ref. [3]

Comb. Bkg

Slope 6 6 Fit uncertainty

Normalization 7-42 7-25 Sideband statistics

Shape 10-43 3-42 Comparison of different fit func-

tions
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CHAPTER 5

RESULTS AND CONCLUSION

Summaries of the background estimates, systematic uncertainties on the back-

ground estimates, and the observed number of events are given in Fig. 5.1 and

Table 5.1. The lowest five NN bins have been combined in Fig. 5.1 because

the signal sensitivity is concentrated in the highest three NN bins. The ob-

served number of events in the B0
d → µ+µ− signal region are consistent with

background-only predictions.

The resulting p-value, assuming the background-only hypothesis, for the

B0
d → µ+µ− search window is 41%.

Using the CLs method, we also set upper limits of 4.6 × 10−9 (3.8 × 10−9) at

95% (90%) C.L. These observed limits are close to the expected median limits of

4.2 × 10−9 (3.4 × 10−9) at 95% (90%) C.L. (Fig. 5.2).

In the B0
s → µ+µ− search window the data exceed the background-only ex-

pectations as seen in the bottom part of Fig. 5.1 and Table 5.2. The excess events

populate the most sensitive muon topology bin and NN bins, and concentrate

in the most central mass bins where the signal sensitivity is highest. We estimate

a p-value using all NN bins (νN > 0.7) for a background-only hypothesis as well

as an SM+background hypothesis of 0.94% and 6.8%, respectively.

Since the background-only p-value corresponds to a >2σ excess we perform

a ∆χ2 fit, that includes all our systematic uncertainties, to estimate B(B0
s → µ+µ−)

(Fig. 5.3). The central value and the associated 68% C.L. bound is B(B0
s →

µ+µ−) = 1.3+0.9
−0.7 × 10−8 while the 90% C.L. bounds are 2.2 × 10−9 < B(B0

s → µ+µ−) <

3.0 × 10−8. The central value and bounds estimated from the ∆χ2 fit were cross-
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Figure 5.1: Top: Background estimates (light gray), systematic uncertainty
on background estimates (hashed area), Poisson uncertainty
on the mean (error bars on points), and data for the B0

d sig-
nal window. Bottom: Similar plots for B0

s with the addition
of the 4.1×SM expectations (dark gray). The result of our
B(B0

s → µ+µ−) fit, shown in Fig. 5.3, yields a central value that is
4.1 times greater than the SM expectation. The data are divided
into 8 NN bins, of which lowest 5 NN bins are combined into
one bin for both figures, 5 mass bins, and two muon topologies
(CC and CF).

checked using a Bayesian method using Gaussian priors for all nuisance param-

eters and a flat prior truncated at zero for the branching fraction. The results

from the Bayesian method yielded a similar central value and bound. For com-

parison with our median expected limits of 1.3 × 10−8 (1.0 × 10−8) at 95% (90%)

C.L. we calculate observed upper limits using the CLs methodology of 3.1×10−8
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Figure 5.2: 1–CLs as a function of B(B0
d → µ+µ−).

(2.7 × 10−8) at 95% (90%) C.L. (Fig. 5.4).

The excess is concentrated in the two highest NN bins of the CC channel,

our most sensitive bins. The total background expectations for the 0.987 < νN <

0.995 and 0.995 < νN < 1.000 bins are 4.56 and 1.29 events while the SM expected

signal yields are 0.75 and 0.20 events, respectively. However, we observe a total

of 6 and 4 events, respectively, for these bins.

As a check of consistency we redo our B(B0
s → µ+µ−) fit using only the two

highest NN bins. This yields a central value of B(B0
s → µ+µ−) = 1.0+0.8

−0.6 × 10−8 and

a two-sided bound of 0.8 × 10−9 < B(B0
s → µ+µ−) < 2.5 × 10−8 at 90% C.L. Using

the ∆χ2 method we are not able to extract a 95% bound. The p-values when only

using the two highest NN bins are 2.0% and 21.6% for a background-only and

SM+background hypothesis, respectively.
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Figure 5.3: ∆χ2 distribution as a function of B(B0
s → µ+µ−).

We also observe a data excess in the 0.970 < νN < 0.987 bin of the CC chan-

nel, where no significant signal contribution is expected. The source of the data

excess in this bin has been investigated. We employ the same background esti-

mation methods for both the B0
s and B0

d signal windows. For the combinatorial

background estimates the same sideband events are used for the background

estimates in the B0
d and B0

s signal regions. The B→ h+h′− peaking background is

an order of magnitude larger in the B0
d region and no excess is seen in the B0

d sig-

nal window. We also thoroughly investigated any possible NN biases through

various tests discussed in Sect. 4.2.2. We conclude that the excess in this bin

is not caused by a problem with the background estimates, a NN bias, or any

mismodeling of data, and is likely a statistical upward fluctuation. The analysis

is repeated, discussed in detail in appendix A, using the last 3 fb−1 only. The re-

sults for the additional 3 fb−1 of data added in this analysis are shown in Fig. 5.5

and show no evidence of this fluctuation. This is consistent with our conclusion
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Figure 5.4: 1–CLs as a function of B(B0
s → µ+µ−).

regarding the origin of the excess in this NN bin.

5.1 Conclusion

We report on the search for B0
s → µ+µ− and B0

d → µ+µ− decays using the full

CDF II data set. The observed data are in agreement with background-only

expectations in the B0
d → µ+µ− search. We set an upper bound of B(B0

d → µ+µ−) <

4.6 × 10−9 (3.8 × 10−9) at 95% (90%) C.L.

In the B0
s → µ+µ− search window the observed data exceed the background

expectation. We calculate the p-values for a background-only hypothesis as well

as an SM+background hypothesis of 0.94% and 6.8%, respectively. A fit to the

observed data yields B(B0
s → µ+µ−) = 1.3+0.9

−0.7 × 10−8. Bounds are set at 2.2× 10−9 <

B(B0
s → µ+µ−) < 3.0 × 10−8 and 0.8 × 10−9 < B(B0

s → µ+µ−) < 3.4 × 10−8 at 90% and
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Figure 5.5: Background estimates (light gray), systematic uncertainty on
background estimates (hashed area), Poisson uncertainty on
the mean (error bars on points), SM expectations (dark gray),
and data for the B0

s signal window using only the last 3 fb−1 of
data collected. The data are divided into 8 NN bins, of which
the lowest 5 NN bins are combined into one bin, 5 mass bins,
and two muon topologies (CC and CF).

95% C.L., respectively.

The B0
s → µ+µ− results with the full CDF Run II data set is compatible with

the more stringent bounds set by the LHC experiments. The bounds on B(B0
s →

µ+µ−) and the measurements of the all relevant experiments are shown in Fig. 5.6.

The LHCb experiment sets the strongest upper bound on B(B0
s → µ+µ−) <

4.5 × 10−9 at 95% C.L. which overlaps the CDF confidence level interval of 0.8 <

B(B0
s → µ+µ−) < 34 × 10−9 at 95% C.L.

5.2 Future prospects

The analysis described in this thesis is the last B0
s,d → µ+µ− analysis from CDF

including the entire run II data set. As of October 2011 the Tevatron has been
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Figure 5.6: Current limits from D0 [9], CDF, ATLAS [45], CMS [46], and
LHCb [47], at 95% C.L. The SM prediction is also given at 68%
C.L.

decommissioned and thus no new data can be included to improve sensitivity.

Many of the possible analysis improvements have been studied in several it-

erations of this analysis. Any improvements not implemented in this analysis

would only yield very small increases in sensitivity and would not change our

results. D0 could release another iteration of this analysis but the experiments

mass resolution doesn’t allow for separation of B0
s and B0

d mass regions. Future

searches of B0
s → µ+µ− and B0

d → µ+µ− will be performed at the LHC.

The LHC is a proton-proton accelerator based in Geneva, Switzerland. The

initial data taking runs were done at a center of mass energy of 7 TeV. The center-

of-mass energy of the LHC was increased to
√

s = 8 TeV for 2012 [48]. At the end

of 2012 the ATLAS and CMS expects to have collected 10–15fb−1 of data at which

point the LHC will shutdown for 18–24 months. After this shutdown a running

period from 2015 to 2017 will have the LHC running at the design
√

s = 14 TeV

and producing 75 fb−1 of data. Four large experiments utilize the LHC: ALICE,
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ATLAS, CMS, and LHCb. ALICE is a heavy ion experiment, while ATLAS and

CMS are general purpose experiments, and LHCb is a B physics experiment.

Three experiments at the LHC already have results from early data for the

B0
s,d → µ+µ− searches. Two of the experiments, CMS and ATLAS, are general

purpose detectors with a solenoidal geometry. The other, LHCb, is an experi-

ment designed specifically for B physics and has a forward geometry.

As of July 2012, the current limits set by all the experiments are given in

Fig. 5.6. CMS uses ∼5 fb−1 of data and a cut based analysis, ATLAS performed

the analysis using a multivariate discriminant and ∼2.5 fb−1 of data, while LHCb

performed a multivariate analysis on ∼1 fb−1 of data. LHCb has the lowest lim-

its and observed less than the SM+background hypothesis expected number of

events at a level of 1σ. CMS and ATLAS both observe limits consistent with the

SM+background hypothesis. The LHC experiments combined their result for a

combined upper bound of B(B0
s → µ+µ−) < 4.2 × 10−9, which is also withing 1σ

of the SM+background expectation.

All the LHC experiments are rapidly increasing the size of their data set and

have great sensitivity to these decays. LHCb, in particular, has specialized in B-

meson decays, having not only a forward geometry allowing for very boosted

B-mesons and excellent geometric and kinematic acceptance, but also excellent

vertex reconstruction, and particle identification.

The analysis strategies are in essence the same for all experiments. All use a

dimuon trigger to collect B0
s,d → µ+µ− candidates. The backgrounds are the same

as with CDF, consisting of combinatorial and peaking B → h+h′− backgrounds.

The first results by CMS did not use any multivariate discriminant in the selec-
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tion criteria. LHCb’s first result used a likelihood while their remaining results

used a BDT. CMS plans on using a multivariate discriminant in future analyses.

The LHC will have a two year long shutdown at the end of 2012. By this

time CMS and ATLAS would have collected approximately 10–15 fb−1 while

LHCb would have a total of 2 fb−1 of data. This would give CMS a reach down

to SM B0
s → µ+µ− 3σ evidence. This difference in integrated luminosity be-

tween CMS/ATLAS and LHCb comes from LHCb keeping their instantaneous

luminosity at a constant rate. Even though CMS and ATLAS have a luminosity

advantage over LHCb, trigger bandwidth allocated to B-meson searches could

dampen this advantage.

Unless there are large new physics contributions to the B0
d → µ+µ− decay

much more data is needed to reach the SM predictions. The SM prediction is

a factor of 32 lower for B0
d → µ+µ− than for B0

s → µ+µ−. Neither LHCb nor

CMS/ATLAS will be able to reach these kind of sensitivities before the 2012

shutdown.

SUSY parameter space is now more directly affected by direct searches at the

LHC than indirect searches through the B0
s → µ+µ− and B0

d → µ+µ− decays. The

B0
s,d → µ+µ− searches, however, could still compliment any limits set by direct

searches. As of November 2012 there has been no evidence of beyond the SM

physics. This is an especially exciting era for particle physics that could lead to

a wealth of new physics phenomena and a broader understanding of the basic

constituents of the universe.
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Table 5.1: Expected total backgrounds and number of observed events in
the B0

d signal window for CC (top) and CF (bottom).

Mass bin (GeV/c2) 5.219–5.243 5.243–5.267 5.267–5.291 5.291–5.315 5.315–5.339 Total

CC NN bin Exp. Bkg. 10.80±0.74 10.70±0.74 10.61±0.73 10.51±0.72 10.41±0.72 53.02

0.700–0.760 Obs. 15 14 10 7 11 57

CC NN bin Exp. Bkg. 11.43±0.77 11.33±0.76 11.23±0.75 11.12±0.75 11.01±0.74 56.12

0.760–0.850 Obs. 12 10 7 8 9 46

CC NN bin Exp. Bkg. 4.88±0.47 4.83±0.47 4.78±0.46 4.73±0.46 4.68±0.46 23.90

0.850–0.900 Obs. 10 3 6 6 5 30

CC NN bin Exp. Bkg. 4.68±0.46 4.63±0.46 4.59±0.45 4.54±0.45 4.49±0.44 22.92

0.900–0.940 Obs. 6 10 6 8 6 36

CC NN bin Exp. Bkg. 4.03±0.42 3.99±0.42 3.94±0.42 3.89±0.41 3.85±0.41 19.70

0.940–0.970 Obs. 2 3 4 4 5 18

CC NN bin Exp. Bkg. 2.34±0.39 2.31±0.39 2.28±0.38 2.24±0.38 2.21±0.38 11.39

0.970–0.987 Obs. 2 2 3 1 3 11

CC NN bin Exp. Bkg. 1.04±0.27 1.03±0.27 1.00±0.27 0.96±0.26 0.93±0.26 4.96

0.987–0.995 Obs. 4 2 2 1 1 10

CC NN bin Exp. Bkg. 0.57±0.19 0.54±0.17 0.47±0.16 0.37±0.15 0.29±0.14 2.24

0.995–1.000 Obs. 2 1 1 0 1 5

CF NN bin Exp. Bkg. 10.65±0.75 10.53±0.74 10.40±0.73 10.28±0.73 10.15±0.72 52.01

0.700–0.760 Obs. 8 13 12 16 10 59

CF NN bin Exp. Bkg. 11.74±0.80 11.61±0.79 11.47±0.78 11.33±0.77 11.19±0.76 57.33

0.760–0.850 Obs. 9 13 13 13 12 60

CF NN bin Exp. Bkg. 6.40±0.56 6.32±0.55 6.24±0.55 6.17±0.54 6.09±0.53 31.22

0.850–0.900 Obs. 3 4 3 2 1 13

CF NN bin Exp. Bkg. 4.88±0.48 4.82±0.48 4.76±0.47 4.70±0.47 4.64±0.46 23.80

0.900–0.940 Obs. 3 8 7 8 5 31

CF NN bin Exp. Bkg. 4.14±0.44 4.09±0.44 4.04±0.43 3.99±0.43 3.94±0.42 20.20

0.940–0.970 Obs. 5 7 2 1 2 17

CF NN bin Exp. Bkg. 2.89±0.46 2.85±0.46 2.82±0.45 2.78±0.45 2.74±0.44 14.07

0.970–0.987 Obs. 2 1 3 1 4 11

CF NN bin Exp. Bkg. 0.88±0.26 0.87±0.25 0.86±0.25 0.85±0.25 0.83±0.24 4.30

0.987–0.995 Obs. 4 0 1 0 1 6

CF NN bin Exp. Bkg. 0.82±0.37 0.81±0.36 0.79±0.36 0.75±0.35 0.72±0.35 3.89

0.995–1.000 Obs. 1 0 0 0 1 2

117



Table 5.2: Expected total backgrounds and number of observed events in
the B0

s signal window for CC (top) and CF (bottom).

Mass bin (GeV/c2) 5.310–5.334 5.334–5.358 5.358–5.382 5.382–5.406 5.406–5.430 Total

CC NN bin Exp. Bkg. 10.43±0.72 10.33±0.71 10.23±0.71 10.14±0.70 10.04±0.69 51.17

0.700–0.760 Obs. 13 8 7 6 7 41

CC NN bin Exp. Bkg. 11.03±0.74 10.93±0.74 10.82±0.73 10.72±0.72 10.62±0.72 54.13

0.760–0.850 Obs. 9 8 12 15 8 52

CC NN bin Exp. Bkg. 4.70±0.46 4.65±0.45 4.61±0.45 4.56±0.44 4.52±0.44 23.03

0.850–0.900 Obs. 6 8 5 6 5 30

CC NN bin Exp. Bkg. 4.50±0.45 4.45±0.44 4.41±0.44 4.37±0.43 4.33±0.43 22.05

0.900–0.940 Obs. 5 5 5 6 8 29

CC NN bin Exp. Bkg. 3.86±0.41 3.82±0.41 3.78±0.40 3.74±0.40 3.71±0.39 18.91

0.940–0.970 Obs. 5 7 2 3 4 21

CC NN bin Exp. Bkg. 2.22±0.38 2.19±0.37 2.17±0.37 2.15±0.37 2.12±0.36 10.84

0.970–0.987 Obs. 1 4 8 2 3 18

CC NN bin Exp. Bkg. 0.94±0.26 0.92±0.26 0.91±0.26 0.90±0.25 0.89±0.25 4.56

0.987–0.995 Obs. 1 1 3 1 0 6

CC NN bin Exp. Bkg. 0.31±0.14 0.26±0.14 0.25±0.14 0.24±0.14 0.23±0.14 1.29

0.995–1.000 Obs. 0 1 2 0 1 4

CF NN bin Exp. Bkg. 10.18±0.72 10.05±0.71 9.93±0.7 9.80±0.69 9.68±0.68 49.64

0.700–0.760 Obs. 10 16 12 11 10 59

CF NN bin Exp. Bkg. 11.22±0.76 11.08±0.75 10.94±0.74 10.8±0.73 10.67±0.72 54.71

0.760–0.850 Obs. 8 13 9 13 4 47

CF NN bin Exp. Bkg. 6.11±0.54 6.03±0.53 5.96±0.52 5.88±0.52 5.81±0.51 29.79

0.850–0.90 Obs. 1 5 9 3 6 24

CF NN bin Exp. Bkg. 4.65±0.46 4.60±0.46 4.54±0.45 4.48±0.44 4.42±0.44 22.69

0.900–0.940 Obs. 6 2 8 5 4 25

CF NN bin Exp. Bkg. 3.95±0.42 3.90±0.42 3.85±0.41 3.80±0.41 3.75±0.40 19.25

0.940–0.970 Obs. 1 6 3 4 5 19

CF NN bin Exp. Bkg. 2.75±0.44 2.71±0.44 2.68±0.43 2.64±0.43 2.61±0.42 13.38

0.970–0.987 Obs. 1 6 3 1 3 14

CF NN bin Exp. Bkg. 0.83±0.25 0.82±0.24 0.81±0.24 0.80±0.24 0.79±0.23 4.06

0.987–0.995 Obs. 1 1 1 1 0 4

CF NN bin Exp. Bkg. 0.73±0.35 0.71±0.34 0.69±0.34 0.68±0.34 0.67±0.33 3.48

0.995–1.000 Obs. 1 1 0 1 1 4
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APPENDIX A

ANALYSIS WITH NEW DATA ONLY

The analysis is performed separately with only the new data for compari-

son with the 7 fb−1 analysis. All aspects of the analysis remained the same and

new combinatorial and peaking backgrounds are estimated. The same signal

sensitivities are used with the exception of the normalization mode yields. The

new combinatorial background estimates for B0
s and B0

d are given in Table A.1

and A.2, respectively. The B → h+h′− background estimates have are shown in

Table A.3 and Table A.4. Finally, the unblinded results are given in Table A.5

and Table A.6.

We repeat all the statistical analysis done with the full data set. The expected

limit using the CLs methodology are B(B0
s → µ+µ−) < 3.4 × 10−8 and B(B0

d →

µ+µ−) < 10.0×10−9. The observed limits areB(B0
s → µ+µ−) < 2.9×10−8 andB(B0

d →

µ+µ−) < 9.0×10−9 and no significant excess over the background-only hypothesis

is found. We calculated p-values of 47% and 82% for B0
d and B0

s respectively in

the background-only hypothesis. The p-value for the SM+background hypoth-

esis is also evaluated at 48% for the B0
s window.

To compare to the full analysis we calculate the p-value for the 3rd highest

NN bin in the CC channel. There was no excess in the new data corresponding

to a p-value of 44%.

A.1 NN mass bias check

The NN output distributions as a function of dimuon mass are fitted to both

a constant (Fig. 4.6) and a first order polynomial for OS+ and OS– samples.
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Table A.1: Combinatorial background estimates and statistical uncertainty
for B0

s signal window for all NN bins using only the new data.

XXXXXXXXXXXXXXXX
NN bin

Mass bin (GeV/c2)
5.310–5.334 5.334–5.358 5.358–5.382 5.382–5.406 5.406–5.430

CC

0.700< νN <0.760 2.56±0.34 2.52±0.33 2.49±0.33 2.46±0.32 2.42±0.32

0.760< νN <0.850 2.77±0.35 2.73±0.35 2.69±0.34 2.66±0.34 2.62±0.33

0.850< νN <0.900 1.22±0.23 1.20±0.23 1.18±0.22 1.17±0.22 1.15±0.22

0.900< νN <0.940 1.05±0.21 1.03±0.21 1.02±0.21 1.01±0.20 0.99±0.20

0.940< νN <0.970 1.05±0.21 1.03±0.21 1.02±0.21 1.01±0.20 0.99±0.20

0.970< νN <0.987 0.63±0.16 0.62±0.16 0.61±0.16 0.60±0.16 0.60±0.15

0.987< νN <0.995 0.13±0.07 0.12±0.07 0.12±0.07 0.12±0.07 0.12±0.07

0.995< νN <1.000 0.08±0.06 0.08±0.06 0.08±0.06 0.08±0.06 0.08±0.06

CF

0.700< νN <0.760 1.74±0.28 1.72±0.27 1.69±0.27 1.67±0.27 1.64±0.26

0.760< νN <0.850 1.83±0.28 1.80±0.28 1.77±0.28 1.75±0.27 1.72±0.27

0.850< νN <0.900 1.23±0.23 1.21±0.23 1.20±0.23 1.18±0.22 1.16±0.22

0.900< νN <0.940 0.81±0.19 0.80±0.18 0.78±0.18 0.77±0.18 0.76±0.18

0.940< νN <0.970 0.68±0.17 0.67±0.17 0.66±0.17 0.65±0.16 0.64±0.16

0.970< νN <0.987 0.38±0.13 0.38±0.13 0.37±0.12 0.37±0.12 0.36±0.12

0.987< νN <0.995 0.17±0.09 0.17±0.08 0.17±0.08 0.16±0.08 0.16±0.08

0.995< νN <1.000 0.17±0.09 0.17±0.08 0.17±0.08 0.16±0.08 0.16±0.08

Figure A.1 show the result for the first order polynomial fits. The χ2’s of the fits

to constants are similar to the χ2’s of first order polynomial fits. We also calculate

the linear correlation coefficient (r) for all three of these samples. The resulting

correlation coefficients are 0.022 and 0.004 for OS+ and OS–, respectively. We

estimate the 68% C.L. for the correlation coefficients at 0.004 < r < 0.039 and

−0.005 < r < 0.013 for OS+ and OS–, respectively. For the OS+ sample the

estimated r value is not within the 68% C.L. The estimated r is 1.24σ from the
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Table A.2: Combinatorial background estimates and statistical uncertainty
for B0

d signal window for all NN bins using only the new data.
XXXXXXXXXXXXXXXX

NN bin

Mass bin (GeV/c2)
5.219–5.243 5.243–5.267 5.267–5.291 5.291–5.315 5.315–5.339

CC

0.700< νN <0.760 2.68±0.35 2.65±0.35 2.62±0.34 2.58±0.34 2.55±0.34

0.760< νN <0.850 2.90±0.37 2.87±0.36 2.83±0.36 2.79±0.35 2.76±0.35

0.850< νN <0.900 1.27±0.24 1.26±0.24 1.24±0.23 1.23±0.23 1.21±0.23

0.900< νN <0.940 1.10±0.22 1.08±0.22 1.07±0.22 1.06±0.21 1.04±0.21

0.940< νN <0.970 1.10±0.22 1.08±0.22 1.07±0.22 1.06±0.21 1.04±0.21

0.970< νN <0.987 0.66±0.17 0.65±0.17 0.64±0.17 0.64±0.17 0.63±0.16

0.987< νN <0.995 0.13±0.08 0.13±0.07 0.13±0.07 0.13±0.07 0.12±0.07

0.995< νN <1.000 0.09±0.06 0.09±0.06 0.09±0.06 0.09±0.06 0.08±0.06

CF

0.700< νN <0.760 1.83±0.29 1.81±0.29 1.79±0.28 1.76±0.28 1.74±0.28

0.760< νN <0.850 1.92±0.30 1.90±0.29 1.87±0.29 1.85±0.29 1.82±0.28

0.850< νN <0.900 1.30±0.24 1.28±0.24 1.26±0.24 1.25±0.23 1.23±0.23

0.900< νN <0.940 0.85±0.20 0.84±0.19 0.83±0.19 0.82±0.19 0.81±0.19

0.940< νN <0.970 0.72±0.18 0.71±0.18 0.70±0.17 0.69±0.17 0.68±0.17

0.970< νN <0.987 0.40±0.14 0.40±0.13 0.39±0.13 0.39±0.13 0.38±0.13

0.987< νN <0.995 0.18±0.09 0.18±0.09 0.17±0.09 0.17±0.09 0.17±0.09

0.995< νN <1.000 0.18±0.09 0.18±0.09 0.17±0.09 0.17±0.09 0.17±0.09

r = 0 (no correlation) hypothesis for the OS+ sample.
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Table A.3: B → h+h′− background estimates for B0
s signal window for all

NN bins using only the new data.

XXXXXXXXXXXXXXXX
NN bin

Mass bin (GeV/c2)
5.310–5.334 5.334–5.358 5.358–5.382 5.382–5.406 5.406–5.430

CC

0.700< νN <0.760 0.001± < 0.001 – – – –

0.760< νN <0.850 0.002± < 0.001 0.001± < 0.001 – – –

0.850< νN <0.900 0.001± < 0.001 – – – –

0.900< νN <0.940 0.002± < 0.001 0.001± < 0.001 – – –

0.940< νN <0.970 0.003±0.001 0.001± < 0.001 – – –

0.970< νN <0.987 0.004±0.001 0.001± < 0.001 – – –

0.987< νN <0.995 0.006±0.001 0.002± < 0.001 0.001± < 0.001 – –

0.995< νN <1.000 0.021±0.004 0.008±0.001 0.003± < 0.001 0.001± < 0.001 –

CF

0.700< νN <0.760 – – – – –

0.760< νN <0.850 – – – – –

0.850< νN <0.900 – – – – –

0.900< νN <0.940 0.001± < 0.001 – – – –

0.940< νN <0.970 0.001± < 0.001 – – – –

0.970< νN <0.987 0.001± < 0.001 0.001± < 0.001 – – –

0.987< νN <0.995 0.001± < 0.001 – – – –

0.995< νN <1.000 0.005±0.001 0.002± < 0.001 0.001± < 0.001 – –
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Table A.4: B → h+h′− background estimates for B0
d signal window for all

NN bins using only the new data.

XXXXXXXXXXXXXXXX
NN bin

Mass bin (GeV/c2)
5.219–5.243 5.243–5.267 5.267–5.291 5.291–5.315 5.315–5.339

CC

0.700< νN <0.760 0.004± < 0.001 0.004± < 0.001 0.003±0.001 0.002± < 0.001 0.001± < 0.001

0.760< νN <0.850 0.008±0.001 0.008±0.001 0.006±0.001 0.003±0.001 0.001± < 0.001

0.850< νN <0.900 0.006±0.001 0.005±0.001 0.004±0.001 0.002± < 0.001 0.001± < 0.001

0.900< νN <0.940 0.009±0.001 0.008±0.001 0.006±0.001 0.004±0.001 0.001± < 0.001

0.940< νN <0.970 0.014±0.001 0.011±0.001 0.009±0.001 0.005±0.001 0.001± < 0.001

0.970< νN <0.987 0.017±0.002 0.015±0.002 0.012±0.002 0.007±0.001 0.003± < 0.001

0.987< νN <0.995 0.024±0.002 0.024±0.003 0.018±0.003 0.010±0.002 0.003±0.001

0.995< νN <1.000 0.094±0.009 0.086±0.010 0.064±0.010 0.037±0.006 0.014±0.002

CF

0.700< νN <0.760 0.001± < 0.001 0.001± < 0.001 0.001± < 0.001 0.001± < 0.001 –

0.760< νN <0.850 0.002± < 0.001 0.002± < 0.001 0.002± < 0.001 0.001± < 0.001 –

0.850< νN <0.900 0.002± < 0.001 0.002± < 0.001 0.001± < 0.001 0.001± < 0.001 –

0.900< νN <0.940 0.002± < 0.001 0.002± < 0.001 0.002± < 0.001 0.001± < 0.001 –

0.940< νN <0.970 0.003± < 0.001 0.003± < 0.001 0.002± < 0.001 0.001± < 0.001 –

0.970< νN <0.987 0.004± < 0.001 0.005±0.001 0.004±0.001 0.002± < 0.001 0.001± < 0.001

0.987< νN <0.995 0.004± < 0.001 0.004± < 0.001 0.003±0.001 0.002± < 0.001 0.001± < 0.001

0.995< νN <1.000 0.020±0.002 0.022±0.003 0.017±0.003 0.010±0.002 0.004±0.001
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Table A.5: B0
s signal window for CC(top) and CF(bottom): Expected back-

grounds, including B → h+h′−, and number of observed events
using new data only.

Mass bin (GeV/c2) 5.31–5.334 5.334–5.358 5.358–5.382 5.382–5.406 5.406–5.43 Total

CC NN bin Exp. Bkg. 2.56±0.34 2.52±0.33 2.49±0.33 2.46±0.32 2.42±0.32 12.45

0.7–0.76 Obs. 4 2 1 4 2 13

CC NN bin Exp. Bkg. 2.77±0.35 2.73±0.35 2.69±0.34 2.66±0.34 2.62±0.33 13.47

0.76–0.85 Obs. 1 2 1 4 1 9

CC NN bin Exp. Bkg. 1.22±0.23 1.2±0.23 1.18±0.22 1.17±0.22 1.15±0.22 5.92

0.85–0.9 Obs. 1 2 3 1 1 8

CC NN bin Exp. Bkg. 1.05±0.21 1.03±0.21 1.02±0.21 1.01±0.2 0.99±0.2 5.11

0.9–0.94 Obs. 1 0 1 1 1 4

CC NN bin Exp. Bkg. 1.05±0.21 1.04±0.21 1.02±0.21 1.01±0.2 0.99±0.2 5.11

0.94–0.97 Obs. 1 2 0 0 0 3

CC NN bin Exp. Bkg. 0.63±0.18 0.62±0.17 0.61±0.17 0.6±0.17 0.6±0.17 3.07

0.97–0.987 Obs. 0 0 1 1 0 2

CC NN bin Exp. Bkg. 0.13±0.08 0.13±0.08 0.12±0.07 0.12±0.07 0.12±0.07 0.62

0.987–0.995 Obs. 0 0 0 1 0 1

CC NN bin Exp. Bkg. 0.11±0.07 0.09±0.07 0.08±0.07 0.08±0.07 0.08±0.07 0.44

0.995–1 Obs. 0 0 0 0 0 0

CF NN bin Exp. Bkg. 1.74±0.28 1.72±0.27 1.69±0.27 1.67±0.27 1.64±0.26 8.46

0.7–0.76 Obs. 2 3 3 2 1 11

CF NN bin Exp. Bkg. 1.83±0.28 1.8±0.28 1.78±0.28 1.75±0.27 1.72±0.27 8.88

0.76–0.85 Obs. 1 5 2 2 0 10

CF NN bin Exp. Bkg. 1.23±0.23 1.21±0.23 1.2±0.23 1.18±0.22 1.16±0.22 5.99

0.85–0.9 Obs. 0 0 3 0 1 4

CF NN bin Exp. Bkg. 0.81±0.19 0.8±0.18 0.78±0.18 0.77±0.18 0.76±0.18 3.92

0.9–0.94 Obs. 2 1 2 2 1 8

CF NN bin Exp. Bkg. 0.68±0.17 0.67±0.17 0.66±0.17 0.65±0.16 0.64±0.16 3.3

0.94–0.97 Obs. 1 1 0 0 0 2

CF NN bin Exp. Bkg. 0.38±0.13 0.38±0.13 0.37±0.13 0.37±0.13 0.36±0.13 1.86

0.97–0.987 Obs. 0 2 0 0 1 3

CF NN bin Exp. Bkg. 0.17±0.09 0.17±0.09 0.17±0.09 0.16±0.09 0.16±0.09 0.83

0.987–0.995 Obs. 0 0 1 0 0 1

CF NN bin Exp. Bkg. 0.18±0.11 0.17±0.11 0.17±0.11 0.16±0.11 0.16±0.11 0.83

0.995–1 Obs. 0 0 0 0 0 0
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Table A.6: B0
d signal window for CC(top) and CF(bottom): Expected back-

grounds, including B → h+h′−, and number of observed events
using new data only.

Mass bin (GeV/c2) 5.219–5.243 5.243–5.267 5.267–5.291 5.291–5.315 5.315–5.339 Total

CC NN bin Exp. Bkg. 2.69±0.35 2.65±0.35 2.62±0.34 2.58±0.34 2.55±0.34 13.09

0.7–0.76 Obs. 4 4 4 2 4 18

CC NN bin Exp. Bkg. 2.91±0.37 2.87±0.36 2.84±0.36 2.8±0.35 2.76±0.35 14.18

0.76–0.85 Obs. 4 0 2 2 0 8

CC NN bin Exp. Bkg. 1.28±0.24 1.26±0.24 1.25±0.23 1.23±0.23 1.21±0.23 6.24

0.85–0.9 Obs. 3 1 0 1 1 6

CC NN bin Exp. Bkg. 1.11±0.22 1.09±0.22 1.08±0.22 1.06±0.21 1.05±0.21 5.39

0.9–0.94 Obs. 1 2 1 3 1 8

CC NN bin Exp. Bkg. 1.11±0.22 1.1±0.22 1.08±0.22 1.06±0.21 1.05±0.21 5.4

0.94–0.97 Obs. 0 0 0 1 1 2

CC NN bin Exp. Bkg. 0.68±0.18 0.67±0.18 0.65±0.18 0.64±0.18 0.63±0.17 3.27

0.97–0.987 Obs. 1 0 0 0 0 1

CC NN bin Exp. Bkg. 0.16±0.08 0.15±0.08 0.15±0.08 0.14±0.08 0.13±0.08 0.72

0.987–0.995 Obs. 1 0 1 1 0 3

CC NN bin Exp. Bkg. 0.18±0.09 0.17±0.08 0.15±0.08 0.12±0.07 0.1±0.07 0.72

0.995–1 Obs. 1 0 0 0 0 1

CF NN bin Exp. Bkg. 1.84±0.29 1.81±0.29 1.79±0.28 1.76±0.28 1.74±0.28 8.93

0.7–0.76 Obs. 1 3 2 4 1 11

CF NN bin Exp. Bkg. 1.93±0.3 1.9±0.3 1.87±0.29 1.85±0.29 1.82±0.28 9.37

0.76–0.85 Obs. 2 3 2 0 2 9

CF NN bin Exp. Bkg. 1.3±0.24 1.28±0.24 1.26±0.24 1.25±0.23 1.23±0.23 6.32

0.85–0.9 Obs. 0 0 2 0 0 2

CF NN bin Exp. Bkg. 0.85±0.2 0.84±0.19 0.83±0.19 0.82±0.19 0.81±0.19 4.15

0.9–0.94 Obs. 0 3 2 2 1 8

CF NN bin Exp. Bkg. 0.72±0.18 0.71±0.18 0.7±0.18 0.69±0.17 0.68±0.17 3.49

0.94–0.97 Obs. 0 1 0 0 1 2

CF NN bin Exp. Bkg. 0.41±0.14 0.4±0.14 0.4±0.14 0.39±0.14 0.38±0.13 1.98

0.97–0.987 Obs. 1 0 0 0 1 2

CF NN bin Exp. Bkg. 0.18±0.1 0.18±0.09 0.18±0.09 0.17±0.09 0.17±0.09 0.88

0.987–0.995 Obs. 0 0 0 0 0 0

CF NN bin Exp. Bkg. 0.2±0.12 0.2±0.12 0.19±0.12 0.18±0.11 0.17±0.11 0.94

0.995–1 Obs. 0 0 0 0 0 0
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Figure A.1: The NN output as a function of di-muon invariant mass fitted
to a first order polynomial for the OS+ and OS– sample.
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