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Abstract
The medium field Q-slope for Nb cavities has been stud-

ied in the past as a thermal feedback effect combined
with the nonlinear BCS surface resistance due to current-
induced RF pair-breaking. We are systematically explor-
ing the behavior of the medium field Q-slope with vari-
ous cavity parameters such as wall thickness, residual re-
sistance, bath temperature, Kapitza conductance, RF fre-
quency, RRR, and phonon mean free path. We study cases
involving only the standard (linear) BCS resistance as well
as those including the nonlinear BCS resistance. The sys-
tematic comparison suggests specific experiments to deter-
mine the role of the nonlinear contribution.

INTRODUCTION
One of the limiting factors in the performance of super-

conducting radio-frequency (SRF) cavities is the ability of
the cavity walls to transport heat created at the interior sur-
face of the cavity to the surrounding low-temperature bath.
If this heat is not dispersed sufficiently rapidly, it can sig-
nificantly increase the temperature of the cavity, which, in
turn, will lead to increased heat production; this process
is known as thermal feedback. Since an important goal in
cavity performance is to maximize the accelerating field
while minimizing heating losses, it is important to under-
stand the quantitative relationship between heat production
and the RF fields. This relationship is usually summarized
in the quality factor Q of a cavity, which is the number
of RF cycles it takes to dissipate all the energy stored in
the cavity, and its dependence on the magnitude of the RF
field. The dependence of Q on the RF field strength is often
represented by a dimensionless parameter γ known as the
medium field Q-slope.

In this paper we explore the mechanisms of thermal feed-
back, with standard and nonlinear BCS resistance cases,
and how these mechanisms influence the quality factor of a
cavity. In the first section, we review a common theoretical
model of the heat flow problem and describe a numerical
method for solving the heat flow equations. We also discuss
an approximate analytic solution for the case of standard
BCS resistance from Halbritter [1] and its derivation. The
following section reviews the material properties involved
in the thermal feedback model and presents the particular
forms of material functions used in our calculations. We
then present and discuss the results of numerical calcula-
tions of quality factors for various cavity parameters. After
briefly comparing these numerical results with experimen-
tal data, we summarize our findings for the standard BCS
resistance case. Finally, we discuss the impact of the non-
linear BCS resistance.

Understanding and controlling the medium field Q-slope
is important to future continuous wave (CW) applications
such as the Energy Recovery Linacs (ERL) where cryogen-
ics costs dominate due to CW operation at medium fields
(< 20 MV/m). Previous studies on the medium field Q-
slope have been conducted by Graber [2], Saito [3], Bauer
[4], Ciovati [5], [6], and Visentin [7]. The thermal feedback
effect is discussed in [8] where it is called the ”global ther-
mal instability” (GTI), first discovered for high frequency
(3 GHz) cavities by Graber [2]. A thermal model applied
to a 3 GHz case predicts a medium field Q-slope as well
as a thermal instability at high fields for 3 GHz cavities.
Thermometry results at 3 GHz confirmed the global nature
of the thermal instability [2].

The new aspect of our studies is to explore systematic
trends in the medium field Q-slope with variations in RF
frequency, bath temperature, thermal conductivity, Kapitza
conductance, and wall thickness. Our numerical approach
also takes into account the full temperature dependences of
the thermal conductivity, Kapitza conductance, and surface
resistance.

THEORETICAL MODEL FOR HEAT
TRANSFER

The Quality Factor and the
Medium Field Q-slope

The quality factor Q of a SRF cavity is defined as

Q =
ω0U

P
(1)

where ω0 is the angular frequency of the RF field, U is the
total energy stored in the RF field inside the cavity, and P
is the total power dissipated in the cavity walls [8]. The
stored energy is given by an integral of the magnetic field
H over the volume of the cavity:

U =
µ0

2

∫

V
|H|2 dv (2)

and the dissipated power can be expressed as an integral of
the magnetic field over the interior surface of the cavity:

P =
1
2

∫

S
Rs|H|2 ds (3)

This equation defines the surface resistance Rs, discussed
in Section . If we take Rs to be constant across the surface,
then the quality factor can be written as

Q =
G

Rs
(4)



where G is the geometry constant, defined by

G =
µ0ω0

∫
V |H|2 dv∫

S |H|2 ds
(5)

In this paper, we will be more concerned with the behavior
of the surface resistance than that of the geometry constant.

The dependence of the quality factor on the strength of
the RF field is most often characterized by the medium field
Q-slope, represented by the dimensionless parameter γ, in-
troduced by Halbritter [1]. It is defined via an expansion of
the surface resistance Rs in even powers of the peak sur-
face magnetic field B:

Rs(B) = Rs0

[
1 + γ

(
B

Bc

)2

+ O(B)4
]

(6)

Here, Bc = 0.2 T is the thermodynamic critical field of nio-
bium, and Rs0 is the surface resistance at small magnetic
fields (usually, B = 15 mT is chosen to define Rs0, since,
below this field level, the effects of the low-field Q-increase
become important). For many real cavities [9], it has been
shown that a power series of Rs also contains odd powers
of B; however, Halbritter has shown (as we will review in
Section ) that an increase in the surface resistance due only
to thermal feedback should take the form given in Eq. (6).
From Eqs. (4) and (6), we can see that the decrease in the
quality factor is given in terms of the medium field Q-slope
by

Q(B) =
G

Rs0

[
1− γ

(
B

Bc

)2

+ O(B)4
]

(7)

Values of the Q-slope γ can be measured experimentally
or, as will be done in this paper, estimated from a set of
basic cavity parameters by means of numerical calculation
or analytic approximation.

Heat Flow Equations
Though most SRF cavities have complex curved geome-

tries, their wall thicknesses are generally small in compari-
son with the surface curvature; thus, locally, the cavity wall
can be modeled as a flat slab. Without much loss of gen-
erality, we can take the wall to be an infinite flat slab of
niobium of thickness d. This choice makes the heat trans-
port calculation a one-dimensional problem. As shown in
Figure 1, we take the coordinate z to be the vertical dis-
tance from the top (interior) surface of the cavity. Above
this surface is the vacuum which carries the RF field. The
bottom (exterior) surface of the cavity is located at z = d,
and below this is the liquid helium bath.

In this configuration, the temperature distribution within
the cavity wall can be specified by a function T (z). For 0 <
z < d, we expect the steady-state temperature distribution
T (z) to satisfy the differential equation

d

dz

[
κ(T )

dT

dz

]
= 0 (8)

Figure 1: Schematic of the model of the cavity wall as an
infinite slab of niobium. Above z = 0 is the vacuum which
contains the RF field. Below z = d is the liquid helium
bath.

where κ is the temperature-dependent thermal conductiv-
ity, discussed in Section . The quantity

−κ(T )
dT

dz
≡ q (9)

is the heat flux (power per unit area) in the z-direction; this
relationship essentially defines thermal conductivity. Thus,
Eq. (8) simply expresses the condition that the heat flux
q be constant throughout the thickness of the wall, in ac-
cordance with the fact that no heat is created or absorbed
within the wall in the steady state.

Since Eq. (8) is a second-order differential equation, two
boundary conditions are required to fix a unique solution.
The first of these can be found by equating the heat flux
q(0) at the RF surface to the rate at which heat is being
produced at the surface. The mechanism of heat produc-
tion is essentially Joule heating, caused by surface currents
induced by the RF magnetic field. The power dissipated
per unit area can be expressed as

q =
1
2
Rs(T0)H2 (10)

where H is the peak surface magnetic field, and Rs is the
surface resistance, which, as indicated, is a function of the
temperature T0 ≡ T (z = 0) at the RF surface. The sources
of the surface resistance and its functional form are dis-
cussed in Section . Altogether, the boundary condition at
z = 0 reads

−κ(T0)
dT

dz

∣∣∣∣
z=0

=
1
2
Rs(T0)H2 (11)

The second boundary condition involves the Kapitza
conductance of the niobium-liquid helium interface. When
heat flows across an interface between superfluid helium
and a metallic solid, there is a discontinuity in temperature
at the interface [13]. It has been found that the temperature
difference is related to the heat flux q across the surface by

q = (Td − Tb)Hk(Td, Tb) (12)



where Td is the temperature of the metal at the interface,
Tb is the temperature of the superfluid helium bath, and the
function Hk, known as the Kapitza conductance, is deter-
mined by the nature of the metallic surface. From this, the
second boundary condition can be written as

−κ(Td)
dT

dz

∣∣∣∣
z=d

= (Td − Tb)Hk(Td, Tb) (13)

where Td ≡ T (z = d) is the temperature of the niobium at
the interface.

Together, Eqs. (8), (11), and (13) will render a unique so-
lution for T (z), given the material functions κ(T ), Rs(T ),
and Hk(Td, Tb), the bath temperature Tb, and the magnetic
field magnitude H . The most useful information from the
solution will be the temperature T0 at the RF surface, which
can be used to find the surface resistance and thus the qual-
ity factor of a cavity.

Numerical Solution of Heat Flow Equations
One can obtain a numerical solution to the heat flow

equations by dividing the niobium slab into a series of
small layers and turning the differential equations above
into a set of finite-difference equations. We can take the
slab of thickness d to be divided into N layers of thickness
∆z = d/N and label them with the integers i = 0, 1, 2, . . .
N − 2, N − 1. We can take the temperature Ti in layer i to
be constant throughout the layer. Then, differential equa-
tion (8) can become

d

dz

[
κ(T )

dT

dz

]

i

=
1

∆z

[
κi

Ti+1 − Ti

∆z
− κi−1

Ti − Ti−1

∆z

]

(14)
where κi is the thermal conductivity between layers i and
i + 1 and is found by evaluating κ(T ) at the average tem-
perature of those two layers:

κi = κ

(
Ti + Ti+1

2

)
(15)

Similarly, the boundary conditions (11) and (13) can be
rewritten as

−κ(T0)
dT

dz

∣∣∣∣
z=0

= −κ0
T1 − T0

∆z
=

1
2
Rs(T0)H2 (16)

−κ(Td)
dT

dz

∣∣∣∣
z=d

= −κN−2
TN−1 − TN−2

∆z

= (TN−1 − Tb)Hk(TN−1, Tb) (17)

These equations can be rearranged to yield

T0 =
Rs(T0)H2∆z/2 + κ0T1

κ0
(18)

Ti =
κi−1Ti−1 + κiTi+1

κi−1 + κi
(19)

TN−1 =
κN−2TN−2 + Hk(TN−1, Tb)∆zTb

κN−2 + Hk∆z
(20)

Here, Eq. (19) applies for 1 ≥ i ≥ N − 2. Now, even
though the temperatures on the left hand sides of the above
equations also appear on the right hand sides of these equa-
tions, these N equations can be used to define a recursion
relation on the set of Ti. Given an initial set of Ti, one
can evaluate the right hand sides of the above equations us-
ing this set and thus obtain a new set of Ti through these
equations. If this process is repeated recursively (being
sure to update the values κi each time), the set of Ti will
converge to a numerical solution of the original differential
equation [10]. This iterative solution method has been en-
coded into to a program in the C++ language, and results
obtained from this program are presented below. (The ap-
proach adopted here is identical to that used in an earlier
effort using the FORTRAN program HEAT [10].)

Analytic Approximation for γ

With a little bit of analytic work on the heat flow equa-
tions, we can both justify the quadratic form for Rs(B) in
Eq. (6) and obtain an approximate formula for the Q-slope
γ (in the standard BCS case) first presented by Halbritter
[1]. To proceed, we can recall that the heat flux q in Eq. (9)
must be equal to the same constant for all z; also, this con-
stant q should also be equal to both the heat flux resulting
from the surface resistance in Eq. (10) and that from the
Kapitza conductance in Eq. (12). We can summarize this
with the two equations

H2

2
Rs(T0) = (Td − Tb)Hk(Td, Tb) (21)

(Td − Tb)Hk(Td, Tb) = −κ(T )
dT

dz
(22)

The second of these can be integrated with respect to z to
give

∫ d

0
(Td − Tb)Hk(Td, Tb) dz = −

∫ d

0
κ(T )

dT

dz
dz

⇒ (Td − Tb)Hk(Td, Tb)d = −
∫ Td

T0

κ(T ) dT (23)

Now, we must make some assumptions and approxima-
tions to make progress. First, we assume that the varia-
tions in temperature, i.e. T0 − Tb and Td − Tb, are small
compared with Tb. If this is the case, we can approximate
the thermal conductivity and the Kapitza conductance with
their values at T0 = Tb and Td = Tb; this is convenient
because the bath temperature Tb is known a priori. Mak-
ing this approximation also requires that the Kapitza con-
ductance function be non-zero when its two arguments are
equal. (As we will see below, this is only the case below the
lambda point of superfluid helium, whereas, at higher tem-
peratures, Hk(T, T ) = 0 and this approximation scheme
will breakdown.)

So, assuming we can do so, we replace κ(T ) and
Hk(Td, Tb) in Eq. (23) with the constants κ ≡ κ(Tb) and



Hk ≡ Hk(Tb, Tb) to give

Hkd(Td − Tb) = −κ

∫ Td

T0

dT = κ(T0 − Td) (24)

which allows us to solve for Td:

Td =
HkdTb + κT0

Hkd + κ
(25)

This expression for Td can now be substituted into Eq. (21),
where we also replace Hk(Td, Tb) with Hk, giving

H2

2
Rs(T0) =

κHk

κ + Hkd
(T0 − Tb) (26)

or, defining

α ≡ κHk

κ + Hkd
(27)

we have
H2

2
Rs(T0) = α(T0 − Tb) (28)

At this point, we must use an approximation to the sur-
face resistance Rs(T0). Saying Rs(T0) = Rs(Tb) as we
did for the thermal conductivity and Kapitza conductance
would not suffice, for in that case, Rs(T0) would not de-
pend on the magnetic field. Instead, we can make a linear
approximation to Rs(T0) around Tb:

Rs(T0) = Rs(Tb) +
(

dRs

dT

)

T=Tb

(T0 − Tb) (29)

(One might say that going to first order in ∆T for Rs while
we only went to zeroth order in ∆T for κ and Hk is incon-
sistent; however, for the particular cases we’ll consider, the
variation of Rs with tempature is much more dramatic than
that of κ or Hk, so we are at least somewhat justified.) To
evaluate the derivative in this equation, we must assume an
explicit form for the surface resistance. The major features
of the dependence of Rs on T can be summarized in the
approximate equation

Rs(T ) = R0+RBCS(T ) = R0+C exp
(
− ∆

kBT

)
(30)

Here, ∆ is the superconductor energy gap, which is roughly
constant for T < Tc/2, and R0 and C are constants. From
this, we can evaluate the derivative

(
dRs

dT

)

T=Tb

=
∆

kBT 2
b

RBCS(Tb) (31)

and plug it into Eq. (29) to find

Rs(T0) = Rs(Tb) +
∆

kBT 2
b

RBCS(Tb)(T0 − Tb) (32)

Now, this expression for Rs(T0) can be inserted into
Eq. (28), resulting in

H2

2

[
Rs(Tb) +

∆
kBT 2

b

RBCS(Tb)(T0 − Tb)
]

= α(T0−Tb)

(33)

which can be solved for T0:

T0 =
H2

2

[
Rs(Tb)− ∆

kBTb
RBCS(Tb)

]
+ αTb

α− H2

2
∆

kBT 2
b
RBCS(Tb)

(34)

With this expression for the surface temperature T0

solely in terms of the bath temperature Tb, the magnetic
field H , and material functions, we have (approximately)
solved the problem at hand. To find the surface resistance,
we can simply plug Eq. (34) for T0 into Eq. (28); after a bit
of simplification, one finds

Rs(T0) = Rs(Tb)
[
1− H2

2
∆

kBT 2
b

RBCS(Tb)
1
α

]−1

(35)

If we assume that the quantity subtracted from 1 here is
small (which it should be, since it’s proportional to H2 and
we are looking for the medium field behavior), then we can
use (1−x)−1 ≈ 1+x. Then, after replacing H with B/µ0,
adding in some cosmetic critical fields Bc, and plugging in
Eq. (27) for α, we find Rs(T0) =

Rs(Tb)

[
1 +

B2
c

2µ2
0

∆
kBT 2

b

RBCS(Tb)
(

d

κ
+

1
Hk

) (
B

Bc

)2
]

(36)
This expression has precisely the same form as that in
Eq. (6); we have thus given somewhat of a justification
for the quadratic dependence of Rs on B postulated there.
Identifying Rs(Tb) in Eq. (36) with Rs0 in Eq. (6), the co-
efficient of (B/Bc)2 in Eq. (36) should be identified with
γ in Eq. (6). Thus, we have arrived at an approximate ana-
lytic expression for the medium field Q-slope γ:

γ =
B2

c

2µ2
0

∆
kBT 2

b

RBCS(Tb)
(

d

κ
+

1
Hk

)
(37)

This is the formula for the Q-slope presented by Halbritter
[1].

MATERIAL PROPERTIES

Thermal Conductivity
For the niobium thermal conductivity, we use an analytic

expression presented by Koechlin and Bonin [11]. Their
formula is based on a theoretical model of heat conduction
by electons and phonons and includes constants obtained
from fitting to experimental data. The expression involves
three free parameters: the temperature T , the residual resis-
tivity ratio RRR, and the mean free path of lattice phonons
l. RRR is a commonly used measure of the purity of a
niobium sample and is defined as the ratio of the electrical
resistivity at room temperature to the residual (low temper-
ature limit) resistivity. The phonon mean free path l may
also be influenced by strains and dislocations but, for rel-
atively pure samples, is roughly equal to the average grain
size.



In the normal state (T ≥ Tc = 9.25K), they write the
thermal conductivity as

κn(T,RRR, l) =
[

1
A RRR T

+ aT 2

]−1

+
[

1
DT 2

+
1

BlT 3

]−1

(38)

and, in the superconducting state (T ≤ Tc), as

κs(T,RRR, l) = R(y)
[

1
A RRR T

+ aT 2

]−1

+
[

1
DT 2ey

+
1

BlT 3

]−1

(39)

Here, y is the superconductor energy gap divided by kBT ,
which can be approximated by

y =
∆(T )
kBT

≈ ∆(0)
kBT

[
cos

(
πT 2

2T 2
c

)]1/2

(40)

and the function R(y) is given by

R(y) =
12
π2

[
f(y) + y ln(1 + e−y) +

y2/2
1 + ey

]
(41)

with
f(y) =

∫ ∞

0

z dz

1 + ez+y
(42)

The constants, as found by Koechlin and Bonin, are

A = 0.141 W K−2 m−1 (43)
a = 7.52× 10−7 W−1 K−1 m (44)
B = 4.34× 103 W K−4 m−2 (45)

1/D = 2.34× 102 W−1 K3 m (46)

In the normal state, the electron contribution [the first
of the two brackets in Eq. (38)] dominates the thermal
conductivity, and it increases monotonically with tempera-
ture. However, in the superconducting state, for sufficiently
large phonon mean free paths, the phonon contribution (the
second bracket) can lead to a local maximum in the ther-
mal conductivity as a function of temperature, known as a
phonon peak. The height of the phonon peak increases with
increasing values of l. For all values of l and T , an increase
in RRR produces an increase in the thermal conductivity.
Figures 2 and 3 demonstrate these behaviors with plots of
κ(T ) for various values of l and RRR.

Experience shows that most fine grain Nb has no phonon
peak, due to the phonon mean free path being comparable
to the grain size (< 0.1 mm). Post purified cavities are
expected to have a phonon peak due to grain growth to 1-2
mm. Large grain Nb has a phonon peak which can easily be
depressed by a small amount of strain (< 10%) [12]. How-
ever we can expect that some or all of the phonon peak may
re-appear after 800 C annealing as most cavities receive for
H degassing. Hence there is a large range in the expected
size of the phonon peak for Nb cavities depending strongly
on how the cavity has been prepared.

Figure 2: Thermal conductivity versus temperature for
RRR = 300 and l = 0.1 mm (solid), 0.5 mm (short
dashed), 1.0 mm (medium dashed), and 5.0 mm (long
dashed).

Figure 3: Thermal conductivity versus temperature for l =
0.5 mm and RRR = 100 (solid), 200 (short dashed), 300
(medium dashed), and 500 (long dashed).

Surface Resistance
The surface resistance of a niobium cavity can be written

as a sum of two contributions:

Rs(T ) = R0 + RBCS(T ) (47)

The temperature-independent residual resistance R0 can
arise from any number of sources, such as foreign mate-
rial inclusions or condensed gases, and is typically around
the range 5-20 nΩ [8]. The BCS resistance RBCS arises
from the motion of normal electrons near the RF surface;
it can be calculated from the BCS theory of superconduc-
tivity but generally has a rather complicated form. For the



section on standard BCS resistance, we will use a Pippard
approximation for RBCS [10]:

RBCS(T ) =

(2.78× 10−5 Ω)
ν2

t
ln

(
148t

ν

)
exp

[
−1.81g(t)

t

]

(48)

t =
T

Tc
, ν =

f

2.86 GHz
, g(t) =

[
cos

(
πt2

2

)]1/2

(49)
where f is the frequency of the RF field. Here, we can
see that the BCS resistance increases exponentially with
temperature in the superconducting state.

Kapitza Conductance
Below, we will use three different forms for the Kapitza

conductance Hk, each obtain from fits to experimental data
[13]. The first of these has been obtained from data on
unannealed (UA) niobium interfacing with superfluid he-
lium:

Hk(Td, Tb) =
(

170
W

m2K

) (
Tb

1 K

)3.62

f(t) (50)

where

f(t) = 1 +
3
2
t + t2 +

1
4
t3 , t =

Td − Tb

Tb
(51)

The second comes from measurements on annealed (A)
niobium interfacing with superfluid helium:

Hk(Td, Tb) =
(

200
W

m2K

) (
Tb

1 K

)4.65

f(t) (52)

where f(t) is again given by Eq. (51). Finally, we have
an expression for the heat conductance when the bath tem-
perature has exceeded the superfluid lambda point (2.18 K)
and the helium has begun to nucleate and boil (NB):

Hk(Td, Tb) =
(

1.2× 104 W
m2K

) (
Td − Tb

1 K

)0.45

(53)

So, we have two conductances that apply below 2.18 K,
(UA) and (A), and one that applies above 2.18 K, (NB).
To compare the three formulae, we can plot the heat flux
q = (Td − Tb)Hk(Td, Tb) across the interface as a func-
tion of the temperature difference ∆T = Td − Tb, for each
of the three functions above, all with a bath temperature of
2.18 K. This is shown in Figure 4. It is clear that annealed
niobium results in the best heat conduction to the bath, fol-
lowed by unannealed niobium (for low enough ∆T ). An-
other important feature to note from this figure is that the
nucleate boiling curve has zero slope at ∆T = 0, or in
other words, the heat conductance Hk is zero there. This
means that the analysis in Section that led to a quadratic
Rs(B) and Halbritter’s formula for γ would break down in
the case of nucleate boiling conductance.

Figure 4: Thermal conductance across Nb-LHe interface as
a function of temperature difference for annealed niobium
(solid), unannealed niobium (short dashed), and nucleate
boiling (long dashed).

NUMERICAL RESULTS
Figures 5, 7, 9, 11, 13, 15, and 17 summarize the results

of numerical calculations of Q values in the standard BCS
case for various properties of niobium cavities. In each
figure, one of the following cavity properties is varied while
the others are held fixed at the baseline values given here in
parentheses:

- RF frequency f (1.3 GHz)
- Helium bath temperature Tb (1.8 K)
- Residual resistance R0 (10 nΩ)
- Wall thickness d (3 mm)
- Residual resistivity ratio RRR (300)
- Phonon mean free path l (0.1 mm)

The only exception to this pattern is Figure 17, where Tb

= 2.18 K, the lambda point of superfluid helium, instead of
1.8 K; all other parameters have the baseline values.

Figures 6, 8, 10, 12, 14, 16, and 18 display γ values com-
puted for each of these cases. They were calculated from a
least-squares fit to Eq. (6) of the numerical values obtained
for Rs(B) up to B = 0.1 T. In general, the quadratic fit to
Rs(B) worked very well, with an average of R2 = 0.92.
These figures also display the corresponding γ values com-
puted from Halbritter’s approximate formula in Eq. (37).
It is clear from the figures that this formula is an excel-
lent appoximation for almost all cases; the rms deviation
between Halbritter’s formula and the numerical results is
5.6%. However, in the case of nucleate boiling heat trans-
fer at the Nb-LHe interface, Halbritter’s formula is not ap-
plicable, since Hk = 0 implies γ =∞.

In Figures 5 and 6, we see that the baseline Q values de-
crease and γ increases with increasing RF frequency f , as
is to be expected from the f2 increase of the BCS surface
resistance. Though the Q-slopes shown in these figures
(and others) may seem atypically dramatic when compared



to experimental observation, it is important to note that, in
all these cases, the phonon mean free path l has been set to
0.1 mm, in which case there is no phonon peak in the ther-
mal conductivity, corresponding to fine grain Nb that has
not been post-purified. It is also important to note that the
high field Q-slope phenomena take over above B = 0.1 T,
and thus the medium field Q-slope calculations are prob-
ably relevant above B = 0.1 T only for electropolished
(EP) cavities which have been baked at 100-120 C where
the high field Q-slope disappears [14]. For the higher fre-
quencies shown in Figure 5, we see behavior that resembles
a high field Q-drop, even though only thermal effects have
been considered in these calculations.

Figure 5: Variation of quality factor with magnetic field for
RF frequencies f = 0.6 GHZ (!), 1.3 GHz ("), 2.0 GHz
(#), and 3.0 GHz (×).

Figure 6: Medium field Q-slope values for varying RF
frequency f , calculated numerically (shaded) and from
Halbritter’s approximate formula (unshaded).

The variation of Q and γ with wall thickness d is shown
in Figures 7 and 8. For low magnetic fields, the Q values
are largely independent of d; for higher fields, a smaller
wall thickness improves Q values and thus decreases γ.
An intuitive explanation for this is that bringing the helium
bath closer to the RF surface helps the cooling process.

In Figures 9 and 10, we see a decrease in baseline Q
values and an increase in γ values with increasing residual
resistance R0, due to added heating from the extra surface
resistance. Here, we see a difference in trends between the

Figure 7: Variation of quality factor with magnetic field for
wall thicknesses d = 1 mm (!), 2 mm ("), 3 mm (#), and
4 mm (×).

Figure 8: Medium field Q-slope values for varying wall
thickness d, calculated numerically (shaded) and from
Halbritter’s approximate formula (unshaded).

numerical results and Halbritter’s formula: Halbritter’s for-
mula predicts that γ will be independent of R0, while the
numerical results show it increasing, though very slightly,
with R0.

Figure 9: Variation of quality factor with magnetic field for
residual resistances R0 = 3 nΩ (!), 5 nΩ ("), 10 nΩ (#),
and 20 nΩ (×).

We see in Figures 11 and 12 that the Q-slope is only
slightly improved when RRR is increased. This is consis-



Figure 10: Medium field Q-slope values for varying resid-
ual resistance R0, calculated numerically (shaded) and
from Halbritter’s approximate formula (unshaded).

tent with the fact that, below 2 K, the thermal conductivity
is mostly determined by the value of the phonon mean free
path l, as demonstrated in Figures 2 and 3. In Figures 13
and 14, we see a decrease in baseline Q values and an in-
crease in γ values with increasing bath temperature.

Figure 11: Variation of quality factor with magnetic field
for residual resistivity ratios RRR = 100 (!), 200 ("), 300
(#), and 500 (×).

Figure 12: Medium field Q-slope values for varying resid-
ual resistivity ratio RRR, calculated numerically (shaded)
and from Halbritter’s approximate formula (unshaded).

Figures 15 and 16 show the variation of Q and γ val-
ues with the phonon mean free path l, which, as discussed

Figure 13: Variation of quality factor with magnetic field
for bath temperatures Tb = 1.4 K (!), 1.6 K ("), 1.8 K (#),
and 2.0 K (×).

Figure 14: Medium field Q-slope values for varying bath
temperature Tb, calculated numerically (shaded) and from
Halbritter’s approximate formula (unshaded).

above, can generally be associated with the average grain
size of the niobium sample. It is clear that increasing the
grain size, and thus introducing a larger phonon peak in
the thermal conductivity, will decrease γ values and can
remove medium field Q-slopes that are present in samples
with smaller grain sizes. These results demonstrate that it is
important to know the treatment history of a given sample,
since an estimation of its phonon mean free path is crucial
to analyzing the results of Q and γ measurements.

Finally, in Figures 17 and 18, we have Q and γ values
for the three different thermal conductance functions. As
expected, we see that the annealed niobium has a lower γ
value than the unannealed niobium. The most interesting
point here, though, is that the Q(B) curve for the nucleate
boiling conductance shows more of a linear behavior than
a quadratic one (that is, dQ/dB at B = 0 is not zero, as
it should be according to Eq. (6)), hence the huge γ value.
However, this is not all that unexpected, since, as noted
above, the derivation of the quadratic form for Q(B) in
Eq. (6) breaks down when Hk(T, T ) = 0, as is the case for
the nucleate boiling conductance.



Figure 15: Variation of quality factor with magnetic field
for phonon mean free paths l = 0.05 mm (!), 0.1 mm ("),
0.5 mm (#), 1.0 mm (×), and 5.0 mm (+).

Figure 16: Medium field Q-slope values for varying
phonon mean free path l, calculated numerically (shaded)
and from Halbritter’s approximate formula (unshaded).

Figure 17: Variation of quality factor with magnetic field
for thermal conductances of unannealed niobium (!), an-
nealed niobium ("), and nucleate boiling helium (#).

Figure 18: Medium field Q-slope values for varying ther-
mal conductance, calculated numerically.

COMPARISON WITH EXPERIMENT
The first general observation we can make when compar-

ing the above theoretical and numerical results with exper-
imental data is that the thermal feedback model with stan-
dard BCS resistance generally underestimates the medium
field Q-slope for frequencies below 2.5 GHz. Figure 19
summarizes the results of several measurements of γ values
compiled by Ciovati [15]. The cavities represented here lie
well within the range of cavity parameters considered in the
previous section, yet these experimental γ values are cen-
tered around 2 or 3 while those calculated from our model
are mostly less than 1. A likely cause for this discrepancy
is the nonlinear BCS resistance, which we discuss below.

Figure 19: Values of the medium field Q-slope taken from
measurements compiled by Ciovati [15]. Each value shown
here is the average of a set of values obtained from mea-
surements on a set of similar cavities. The cavities have
frequencies 804 MHz (SNS), 1.5 GHz (CEBAF), and 1.3
GHz (TESLA).

In spite of this difference in scales, one can still com-



pare the general trends predicted by our model with those
seen in experiment. The predicted increases in γ with in-
creasing frequency and wall thickness and with decreasing
phonon mean free path are all consistent with experimen-
tal trends [15]. However, one trend predicted by our model
is strongly contradicted by experiment; while our results
show γ increasing with increasing bath temperature, ex-
perimental results show the opposite. Figure 20 shows γ
values obtained from measurements on a CEBAF single-
cell cavity at bath temperatures 1.37 K and 2.0 K; here, the
higher bath temperature leads to the lower γ value. Also
shown in the figure are the results of numerical simulula-
tions we ran with parameters matching those of the CEBAF
cavity; in our model, the higher bath temperature leads
to the higher Q-slope. This is a significant disagreement
between our thermal feedback model and experiment that
needs to be addressed further. There is no indication that
the inclusion of nonlinear BCS resistance in our model will
resolve this discrepancy.

Figure 20: Comparison between data from a CEBAF cavity
(light gray) and numerical simulation (dark gray).

For higher frequencies (> 2.5 GHz), the results of the
standard BCS model are found to be surprisingly close to
those of experimental measurements. Figure 21 shows a
plot of Q vs B from measurements on a 3.9 GHz TESLA
cavity [4] along with the results of a numerical simula-
tion with matching cavity parameters. In the medium field
range, the curves agree fairly well, with the simulation giv-
ing Q values only slightly higher than the data. This agree-
ment is surprising in that, here and in other cases involv-
ing high frequency, the nonlinear BCS theory below is not
needed to bring the simulations closer to experimental data.
This agreement was also observed by Graber at 3 GHz [2].

Another interesting agreement between the numerical re-
sults and experiment can be found in the nucleate boiling
regime. In Figure 17 above, we saw that numerical sim-
ulations predicted a linear (dQ/dB )= 0 at B = 0), not
quadratic, dependence of Q on B. As mentioned above,
this is consistent with the fact that Halbritter’s approxima-
tion and the quadratic form it implies cannot be applied to
the nucleate boiling case because the thermal conductance
goes to zero as the temperature difference across the Nb-

Figure 21: Measurement of Q as a function B for a 3.9
GHz TESLA cavity ($) [4] compared with the results of a
numerical simulation with matching cavity parameters (!).

LHe interface goes to zero. The linear behavior seen in our
numerical results has also been observed experimentally by
Ciovati [6], as shown in Figure 22.

Figure 22: Measurements of Q vs B on a CEBAF cavity
by Ciovati [6]. The T = 2.2 K curve (in yellow) is in the
nucleate boiling regime and clearly shows a more linear
than quadratic dependence of Q on B. (c.f. Figure 17.)

SUMMARY FOR THERMAL FEEDBACK
WITH STANDARD BCS RESISTANCE

Though the standard BCS thermal feedback theory
seems to underestimate the medium field Q-slope, it has
demonstrated the general trends to be expected in thermal
feedback effects, except possibly for the dependence of γ
on the bath temperature, where theory and experimental
data clearly disagree. This disagreement presents an inter-
esting puzzle that warrants further investigation. Another
such puzzle is presented by the unexpected agreement be-
tween our model and experiment found at high frequen-
cies. One concrete result of this analysis has been a thor-
ough confirmation of the agreement between Halbritter’s
approximate formula for γ and the results of numerical cal-



culations of γ.

NONLINEAR BCS RESISTANCE
There is an intrinsic nonlinear correction to the surface

resistance Rs which results from the pair-breaking effect
of the supercurrent density induced by the RF field [16].
The pair breaking is manifested via a change of the elec-
tron energy spectrum in a current-carrying superconductor,
E(k) = E0(k) + vspF , where vs = J/en is the super-
current velocity, n is the number density of superelectrons,
E0(k) is the quasi-particle spectrum at J = 0, and pF is the
Fermi momentum. The increased density of normal elec-
trons corresponds to a decreased gap ∆(vs) = ∆−pF |vs|.
Solving the kinetic equation for the distribution function of
quasi-particles in a superconductor in a strong rf field al-
lows a calculation of the current-induced RF pair breaking
in the clean limit for Type II superconductors. The non-
linear surface resistance is found to increase quadratically
with RF field as follows [17]:

Rs =

[
1 + C

(
∆

kBT

)2 (
H

Hc

)2
]

Rs0 (54)

C =
π2

384

[
1 +

ln 9
3 ln(4.1kBT∆ ξ2/!2ω2λ2)

]
(55)

Here H is the RF field, Hc the thermodynamic critical field,
ξ the coherence length, λ the penetration depth, ω = 2πf ,
and Rs0 the standard BCS resistance. The contribution of
the logarithmic term in the brackets for Nb at 2K and 2GHz
is less than 8%, which allows a simpler approximate ex-
pression:

Rs
∼=

[
1 +

π2

384

(
∆

kBT

)2 (
H

Hc

)2
]

Rs (56)

For Nb at 2.0 K, the factor C(∆/kBT )2 ≈ 2.
The simple quadratic dependence is only valid for small

H , typically below 40 mT at 2 K. The pair-breaking non-
linearity becomes more pronounced when H > (T/Tc)Hc

[18]. The full dependence is given by

Rs =
4RBCSeβ0

β3
0(2πβ0)1/2

(57)

β0 =
vspF

kBT
=

π

23/2

H

Hc

∆
kBT

(58)

and is shown in Figure 23 for H from 0 to ≈ 160 mT for
Nb at 2 K. In this case the BCS nonlinearity can double Rs

at H0 ≈ 100 mT as compared to RBCS .
The nonlinear BCS surface resistance discussed so far is

for the clean limit (le + ξ) only (here, le is the electron
mean free path). Taking into account impurity scattering is
a much more complicated problem but the nonlinearity in
surface resistance is generally expected to decrease in the
dirty limit [16].

Figure 23: Increase of BCS resistance due to pair-breaking
at high supercurrent density β0 [18].

Once again we show the trends for the medium field Q-
slope for changes in RF frequency, bath temperature, RRR,
phonon mean free path (phonon peak), residual resistance,
and wall thickness. For more accurate values of the stan-
dard BCS resistance we use the results from Halbritter’s
program (the SRIMP version at Cornell) instead of the Pip-
pard approximation in Eq. (48). Figures 24-29 compare
the Q vs H curves for BCS and nonlinear BCS due to vari-
ations in one of the following cavity properties while the
others are held fixed at the baseline values given here:

- RF frequency f (1.3 GHz)
- Cavity wall thickness d (3.0 mm)
- Residual resistance R0 (5 nΩ)
- Kapitza conductance Hk (annealed Nb)
- Residual resistivity ratio RRR (300)
- Helium bath temperature Tb (1.8 K)
- Phonon mean free path l (1.3 mm)
- Geometry facor G (280 Ω)

Note that this baseline set of parameters is somewhat dif-
ferent from the first set of baseline parameters used for the
standard BCS case above in order to provide some new in-
formation. For example, the baseline phonon mean free
path chosen here is 1.3 mm which will correspond to a
small phonon peak in the thermal conductivity, as opposed
to the previous baseline case of 0.1 mm phonon mean free
path with no phonon peak. As a result, the medium field
Q-slopes for the standard BCS case here are much smaller.
As for the standard BCS cases, the medium field Q-slope
changes more weakly with changes in wall thickness, RRR,
and residual resistance.

As expected, the nonlinear BCS resistance greatly in-
creases the medium field Q-slope over the BCS case. The
strongest Q-slopes are expected for high frequencies and
small phonon mean free paths. Figures 30 and 31 show
the strong increase in the gamma values between the stan-
dard BCS and nonlinear BCS cases, and also the trends in
gamma values for changes in phonon mean free path and rf
frequency, the two strongest dependencies.

To compare these results with experimental data, we



Figure 24: Variation of the cavity Q with RF surface mag-
netic field for RF frequencies between 800 MHz and 3900
MHz. In each case Q vs H curves are given for BCS and
nonlinear BCS cases (in color).

Figure 25: Variation of the cavity Q with RF surface mag-
netic field for cavity wall thickness between 1 mm and 4
mm. In each case Q vs H curves are given for BCS and
nonlinear BCS cases (in color).

have run simulations using the nonlinear BCS resistance
and matching the cavity parameters for measurements on
two Cornell cavities [19], [4]; the results are shown in Fig-
ures 32 and 33. In Figure 32 we see that the numerical re-
sults and experimental data argee quite well in the medium
field range; for higher fields, however, the nonlinear BCS
results show a stronger Q-slope than the data. In Figure
33, the agreement is even better in the medium field range;
for higher fields here, the data shows a strong high field
Q-slope that cannot be reproduced by the nonlinear BCS
effects.

Figure 26: Variation of the cavity Q with RF surface mag-
netic field for residual resistance between 1 nΩ and 10 nΩ.
In each case Q vs H curves are given for BCS and nonlin-
ear BCS cases (in color).

Figure 27: Variation of the cavity Q with RF surface mag-
netic field for RRR between 100 and 700. In each case Q
vs H curves are given for BCS and nonlinear BCS cases
(in color).

CONCLUSIONS
The medium field Q-slope depends on a large number of

physical parameters: RF frequency, bath temperature, ther-
mal conductivity (especially the magnitude of the phonon
peak), Kaptiza conductance, wall thickness, electron mean
free path (which changes due to mild baking) and resid-
ual resistance. Some of these parameters are not very well
known for each cavity or even for each test, in particular
the Kaptiza conductance due to baking conditions or the
phonon mean free path (due to residual strains). Accu-
rate modeling of the data requires a good knowledge of the
physical parameters of the cavity, some of which are often
not known to the level of detail necessary. Therefore it is
useful to study the trends.



Figure 28: Variation of the cavity Q with RF surface mag-
netic field for bath temperatures between 1.5 and 2 K. In
each case, Q vs H curves are given for BCS and nonlinear
BCS cases (in color).

Figure 29: Variation of the cavity Q with RF surface mag-
netic field for phonon mean free paths between 0.1 and 5
mm. In each case Q vs H curves are given for BCS and
nonlinear BCS cases (in color).

There are two striking trends in thermal feedback: one
for frequency dependence and the other for phonon mean
free path dependence. Post purified cavities and large grain
cavities with higher thermal conductivity generally show
reduced slopes primarily due to the appearance of stronger
phonon peak in the thermal conductivity. For high fre-
quency cavities the quadratic frequency dependence of the
BCS surface resistance eventually results in a thermal in-
stability well below the rf critical field (Figure 24). This
has been predicted and observed as GTI in 3 GHz cavities.
GTI has also been observed in 3.9 GHz [4] and for a 2.8
GHz cavity operating in the TE mode [6]. At low frequen-
cies, however, the thermal feedback effect with standard
BCS alone is much smaller and does not generally lead to
a global instability. The absence of a global thermal insta-

Figure 30: Gamma values for BCS and nonlinear BCS for
various phonon mean free paths.

Figure 31: Gamma values for BCS and nonlinear BCS for
various RF frequencies.

bility for low frequency was one of the original important
reasons for selecting a frequency near 1 GHz for the linear
collider [20].

Inclusion of the nonlinear BCS contribution improves
the fit to the medium field Q-slope for the 1.5 GHz cav-
ity; however inclusion of the stronger high field behavior
as shown in Figures 30 and 31 overestimates the medium
field Q-slope as compared to the data. Similarly, for the 2.8
GHz case the nonlinear BCS quadratic term alone yields
too strong a Q-slope as compared to the data. In general
inclusion of the nonlinear BCS resistance often makes the
medium field Q-slope stronger than the observed Q-slope
[4].



Figure 32: Q vs Eacc from measurements on a 1.3 GHz
Cornell cavity [19], compared with the results of numerical
calculations using the nonlinear BCS resistance.

Figure 33: Q vs Epk from measurements on a 1.5 GHz
Cornell cavity [4], compared with the results of numerical
calculations using the nonlinear BCS resistance.
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