Coating and Testing Nb₃Sn Cavities Fiona Wohlfarth Mentor: Sam Posen Advisor: Matthias Liepe ## Overall Agenda - Coating single cell Niobium cavities - Testing the cavities - Surface analysis ## What is SRF? ### **Superconducting Radio Frequency** -The low electrical resistivity of a superconducting material allows an RF resonator to obtain an extremely high quality factor. **Superconductors:** consists of small amounts of AC electrical resistance when cooled below a critical temperature (T_c) . Superconductors are significant in the construction of particle accelerators. ### BACKGROUND ON Nb₃Sn ### What we know: Nb has a relatively high quality factor (Q_0) and is used by many labs. - A high Q_0 means that there's a lower rate of energy loss relative to the stored energy within the system. ### Nb₃Sn is NEW to this program!!!!! Nb_3Sn has a higher critical temp (~18K, where as Nb has a T_c of ~9K)-- so it has an *even higher* Q_0 . Higher Q_0 means a high frequency of 1.3 GHz can operate near the boiling temp of liquid He (4K), rather than the inconvenient and costly 2K (used for Nb). ### BACKGROUND ON Nb₃Sn # Why Nb₃Sn? - Cheaper to run refrigeration systems. - Higher superheating field. Higher superheating field Higher accelerating gradients Higher gradients Fewer cavities Fewer cavities \rightarrow Shorter accelerators **Shorter Accelerators** SAVES \$\$\$\$\$\$\$ ### Coating the Cavity ## What is needed? **Niobium Cavity** Tin samples Furnace capable of extreme temperatures. Once these are inserted and the cavity is resting on top of it, the furnace is heated to $^{\sim}1300\,^{\circ}\text{C}.$ #### Testing the cavities By resting a series of temperature-sensing resistors on the cavity and then submerging it in liquid helium, the t-maps for testing are calibrated. Once calibrated, a field is put through the cavity and we can record how the cavity responds through t-mapping. ### Surface Analyses **Transmission Electron Microscopy (TEM):** transmitting electrons through a thin object and forming an image based upon the interaction of the electrons. By cutting out an incredibly small cross-sectional area from witness samples, the TEM can then be performed on it. Looks at tin layer thickness, surface roughness, etc. ### **Overall Goals** - Successfully coat/test cavity - Study Q-slope and determine possible reasons for its behavior. - Mess with Matlab to analyze t-maps ## QUESTIONS? (don't feel obligated...)