"Simple Heat" Thermal Modeling of X-ray Heat Load

Rich Hilliard, Tompkins Cortland Community College, CHESS

Cornell University
Cornell High Energy Synchrotron Source

Heat Loading

- Destroys samples
- Degrades equipment
- Disrupts experiment
- Laue Diffraction
- ERL: higher HL densities

"IS HELLIUM necessary?",

Interface: Optics \& Cooling
 - Skip the empirical
 - Automate to save time
 Water
 V.
 Liquid Nitrogen

HeatBump MATLAB

SimpleHeat Python 3

XOP 2.3 from ESRF

Cornell University
Cornell High Energy Synchrotron Source Tompkins Cortland Community College

0 saved sets. Current set has 2 columns,
for p in range(0, len(flt)):

mat=flt[p][0]

matthick=float(flt [p][1])/10000 where is the conversion from micron to centimeter
f=open("mu_data
"+mat+".pkl", "rb")
edata-pickle.load(f)
f.close()
elem_energy=[i[0] for i in edata]
elem_flux=[i[1] for i in edata]
for i in range(0, len(f_flux)):
fi-f_flux[i]
for \mathbf{j} in range(0 , len(f_flux[0])):
fijofi[j]

flux thru multiple

 filters$$
\text { \#I-I0*e^(}-m u * t)
$$

mua=[-1*mu3(elem_energy, elem_flux, ea[m]) for m in range(0,len(ea))]
for m in range (0, len(ea)):
fij[m]*-math.exp(mua[m]*(matthick))
if self.print_matrix_sums:
print_sum_matrix_by_layer(f_flux, 'filter_flux f_flux')
if len(self.thickness) > 1:
print_sum_matrix(f_flux, 'filter_flux f_flux')
return f_flux
def generate_energy_axis(self):
"""returns x axis energy values. Xx is a testing element, any element can be used to generate the divisions."""
sdata=pickle.load(open("mu_data
Xx.pkl", "rb"))
pickle.dump(sdata,open("pickle
energy_axis.pkl", "wb"))
return [i[0] for \mathbf{i} in sdata]
def run(self):
"""function wrapper, formerly heat_load_matrix()"""
\#never called directly, called by qt
\#if path.exists("mathematica_output"):
\# rmtree("mathematica_output")

> Energy absorptions (deposition) by position

Brick Matrix

5.00E-10 5.00E-10 5.00E-10 5.00E-10 5.00E-10 5.00E-10 5.00E-10 $5.00 \mathrm{E}-10$ 5.00E-10 5.00E-10 5.00E-10 $5.00 \mathrm{E}-10$ $5.00 \mathrm{E}-10$ 5.00E-10 5.00E-10 5.00E-10 5.00E-10 3.00E-05 $3.00 \mathrm{E}-05$ 3.00E-05 3.00E-05
0.0002753730961075 .1052 0.0002753719047975 .4146 0.0002753706709400 .6318 0.0002753693936428 .3188 0.0002753680719671 .1716 $0.000275 \quad 3667049372.151$ 0.0002753652915303 .2702 $0.000275 \quad 3638306721.682$ 0.0002753623212425 .9597 0.0002753607620702 .2968 0.0002753591519200 .0875 0.0002753574895084 .1892 0.0002753557734896 .0493 0.0002753540024504 .9856 0.0002753521749165 .7196 0.0002753512419377 .7762 0.0002753917773690 .9992 0.0002753652915303 .2702 0.0002753923924010 .5976 0.0002753923875642 .9012 0.0002753923585659 .5539 0.0002753923005490 .3892 $0.000275 \quad 3922134831.656$ 0.0002753920973110 .4305 0.0002753919519708 .0866 0.0002753917773690 .9992 0.0002753915734057 .2794 0.0002753913399566 .3163 0.0002753910768834 .6291 0.0002753907840312 .9626 0.0002753904612168 .4708 0.0002753901082484 .8228 $0.000275 \quad 3897249139.509$ 0.0002753893109790 .1345 0.0002753888661912 .3773 0.0002753883902771 .6882 0.0002753878829445 .7088 0.0002753873438809 .1768 0.0002753867727496 .0524 0.0002753861691939 .3909 $\begin{array}{ll}0.000275 & 3855328361.1577 \\ 0.000275 & 38486327228406\end{array}$
"Simple Heat" Richard Hilliard
Tompkins Cortland Community College
SRCCS 2013

Reflection / Projection

$$
\Theta=90^{\circ}
$$

$\theta \neq 90^{\circ}$

"Publishability"

- Integration of the existing code (Debug, multiple platforms)
- Finish GUls
- Output formatting features
- User procedure
- SPECTRA

Cornell University
Cornell High Energy Synchrotron Source

Acknowledgements: Jim Savino, Aaron Lyndaker, Ben Oswald, Ron Huang

