"Simple Heat" Thermal Modeling of X-ray Heat Load

Rich Hilliard, Tompkins Cortland Community College, CHESS

Cornell University Cornell High Energy Synchrotron Source

Heat Loading

- Destroys samples
- Degrades equipment
- Disrupts experiment
- Laue Diffraction
- ERL: higher HL densities

SHELIUM necessary

Interface: Optics & Cooling - Skip the empirical - Automate to save time

Water v. Liquid Nitrogen

Cornell University Cornell High Energy Synchrotron Source

HeatBump MATLAB

SimpleHeat Python 3

PyQt

SIP

XOP 2.3 from ESRF

Manuel Sanchez del Rio and Roger J. Dejus

Interpolation guard is now implemented. The previous work well, working on now. Created a new class and re function to deal with this error.

Version 1.2

A speed boost was added while filtering (instead of u search to find mu values, a binary search is now used in python from 300s to 5s

Version 2.0

Multiprocessing added. This update later included "ov half the cores are finished, a new dispatch occurs. I cut by a factor of N, now it is cut by 1.5N (N=number

There were a series of numerical errors, which includ +t, when multiple slices were implemented. There was power values when the slices were (100,10)mm,(110)mm, mmx11.

This was due to reference errors, and fixed by using The write_slice_to_table function was rehauled, in or changes as due to rectangle_grid.

There are still some index naming errors, these are on will be fixed in next release.

Inner loop optimization has been added. This cuts dow less indexing.

Memory errors are present, for a 102x102 matrix (100x source_flux array is about 396 MB. Broke my laptop. N

Version 2.1

There were several unnecessary deep copies of $\ensuremath{\mathsf{s_flux}}$ removed.

In the filter_flux function, s_flux gets edited and d recovered.

Attempted numpy handling, does not work on laptop. Wi use unofficial binaries.

Fixed a series of bugs, finally got good results. The smooth function, while the power is properly disconti the composition of two bugs, not changing the width a build?matrix, and a series of other computation error

Version 2.1.2 Mathematica output Fixing the "both" dialog in adv other optimizations/tests Source Tompkins Cortland Community College Version 3.0 Importing and Exporting run data Importing and Exporting source data SRCCS 2013

Cornell University Fixed other Cornell High Energy Synchrotron Source

6)

Tuesday, June 25, 2013

P	heatloadmatrix		🖻 backend_worker 🔀				
	312 313 314 315 316 317	for	<pre>p in range(0,len(fl mat=flt[p][0] matthick=float(flt[f=open("mu_data\\"+ edata=pickle.load(f f.close()</pre>	t)): p][1])/10000 #here is the mat+".pkl","rb"))	conversion from micron to c flux thr		0
	318		elem_energy=[i[0] f	or i in edata]			
	320 321 322		<pre>for i in range(0,le fi=f_flux[i] for j in range(</pre>	<pre>0,len(f_flux[0])):</pre>	fi	ters	0
	323		tlj=tl[j] #I=IØ*e^(-n	u#t)			
	325 326 327		mua=[-1*mu3 for m in ra fij[m]*	<pre>(elem_energy,elem_flux,ea inge(0,len(ea)): =math.exp(mua[m]*(matthic</pre>	[m]) for m in range(0,len(ea <))	200	
	328 329 330 331 332 333	if	<pre>self.print_matrix_su print_sum_matrix_by if len(self.thickne</pre>	ms: _layer(f_flux, 'filter_fluss) > 1: x(f_flux, 'filter_flux f_	ux f_flux') flux')		
	334	ret	urn f_flux				
	335			10.			
	337 der	gen	returns x axis energ	v values. Xx is a testing	element, any element can be	used to generate the divisions."""	
	338 339 340 341	sda pic ret	ta=pickle.load(open(kle.dump(sdata,open(urn [i[0] for i in s	"mu_data\\Xx.pkl","rb")) "pickle\\energy_axis.pkl" data]	,"wb"))		
	343⊜ def 344 345⊖ 346 347	run #ne #if #	(self): function wrapper, fo ver called directly, path.exists("mathem rmtree("mathematic	<pre>rmerly heat_load_matrix() called by qt matica_output"): ca_output")</pre>			Ú.
		F	HIL UNIVER			"Simple Hea	at"
C	7. ~1 ~1			Cornell University Cornell High Energy	/ Synchrotron Source	Richard Hillia Tompkins Cortland Community Colle SRCCS 20	rd ge 13

Energy absorptions (deposition) by position

	1.38E-02	5.00E-10	0.000275	3/4245/209.82/4	
	1.42E-02	5.00E-10	0.000275	3730961075.1052	
	1.46E-02	5.00E-10	0.000275	3719047975.4146	
	1.5E-02	5.00E-10	0.000275	3706709400.6318	
	1.54E-02	5.00E-10	0.000275	3693936428.3188	
	1.58E-02	5.00E-10	0.000275	3680719671.1716	
	1.62E-02	5.00E-10	0.000275	3667049372.151	
	1.66E-02	5.00E-10	0.000275	3652915303.2702	
	1.7E-02	5.00E-10	0.000275	3638306721.682	
	1.74E-02	5.00E-10	0.000275	3623212425.9597	
	0.0178	5.00E-10	0.000275	3607620702.2968	
	0.0182	5.00E-10	0.000275	3591519200.0875	
15	0.0186	5.00E-10	0.000275	3574895084.1892	
	1.9E-02	5.00E-10	0.000275	3557734896.0493	
m)	1.94E-02	5.00E-10	0.000275	3540024504.9856	
N)	0.0197999995	5.00E-10	0.000275	3521749165.7196	
/	0.0199999995	5.00E-10	0.000275	3512419377.7762	
	0.02	5.00E-10	0.000275	3917773690.9992	
n I	0.0	3.00E-05	0.000275	3652915303.2702	
	5.00E-10	3.00E-05	0.000275	3923924010.5976	
	0.0002000005	3.00E-05	0.000275	3923875642.9012	
	6E-04	3.00E-05	0.000275	3923585659.5539	
	0.001	3.00E-05	0.000275	3923005490.3892	
	1.4E-03	3.00E-05	0.000275	3922134831.656	
	1.8E-03	3.00E-05	0.000275	3920973110.4305	
	0.0022	3.00E-05	0.000275	3919519708.0866	
	2.6E-03	3.00E-05	0.000275	3917773690.9992	
	0.003	3.00E-05	0.000275	3915734057.2794	
•	0.0034	3.00E-05	0.000275	3913399566.3163	
İY	0.0038	3.00E-05	0.000275	3910768834.6291	
	0.0042	3.00E-05	0.000275	3907840312.9626	
	0.0046	3.00E-05	0.000275	3904612168.4708	
	0.005	3.00E-05	0.000275	3901082484.8228	
	0.0054	3.00E-05	0.000275	3897249139.509	
	5.8E-03	3.00E-05	0.000275	3893109790.1345	
	6.2E-03	3.00E-05	0.000275	3888661912.3773	
	6.6E-03	3.00E-05	0.000275	3883902771.6882	
	7E-03	3.00E-05	0.000275	3878829445.7088	
	7.4E-03	3.00E-05	0.000275	3873438809.1768	
	7.8E-03	3.00E-05	0.000275	3867727496.0524	
	0.0082	3.00E-05	0.000275	3861691939.3909	
	8.6E-03	3.00E-05	0.000275	3855328361.1577	
C	9E-03	3.00E-05	0.000275	3848632722.8406	"Simple Heat"
Cornell U	niversity				Richard Hilliard
Cornell H	ligh Energy Synchrot	Tompkins	Tompkins Cortland Community College		

Brick Matrix (3)= 1 Cornell University

rd Hilliard Tompkins Cortland Community College **SRCCS 2013**

Tuesday, June 25, 2013

Reflection / Projection

 $\Theta = 90^{\circ}$

 $\Theta \neq 90^{\circ}$

"Publishability"

- Integration of the existing code (Debug, multiple platforms)
- Finish GUIs
- Output formatting features
- User procedure
- SPECTRA

Cornell University Cornell High Energy Synchrotron Source

<u>Acknowledgements:</u> Jim Savino, Aaron Lyndaker, Ben Oswald, Ron Huang

Cornell University Cornell High Energy Synchrotron Source