Corning Community College

Microcosmic Math

A simple math application

 for elementary-particle physicsFrom the discovery of the nucleus to that of the quark, the simple mathematical properties of elementary objects have been used to reveal unexpected physical structure at unimaginably (?!) small distance scales.

Jim Crittenden

Laboratory for Elementary-Particle Physics Cornell University

What is the meaning of "elementary" ?

"Elementary" is an expression of ignorance !
(and therefore time-dependent)
(About $1 / 1000$ of a human hair diameter)

Hofstadter (1953)
(Nobel Prize, 1961)

Present limit of our knowledge:

$$
\left(\simeq \frac{1}{1000}{ }^{10^{-18} \mathrm{~m}} \text { Proton radius }\right)
$$

limited by presently attainable particle energies (i.e. limited by available technology)

Ernest Rutherford (1871 - 1937)

,,All science is either physics or stamp-collecting"
(Nobel prize for Chemistry 1908)

Rutherford's Experiment

The Apparatus for Measuring α-Scattering on Gold Foils

$$
\left(E_{\alpha} \simeq 0.005 \mathrm{GeV}\right)
$$

The Data Acquisition System

Hans Geiger and Ernest Rutherford count α-Particles in Manchester
,, Geiger and Marsden found, for example, that a small fraction of the α particles, about 1 in 20,000, were turned through an average angle of 90°..." E. Rutherford, Phil. Mag. Vol. xxi (1911) 669

Scattering Experiments

Differential Cross Section per Unit Solid Angle

$$
d \sigma=F(\theta, \phi) d \Omega \quad \text { where } d \Omega=d(\cos \theta) d \phi
$$

,,Probability of single deflexion through any angle"
(E. Rutherford, Phil. Mag. Vol. xxi (1911) 669)

Example: Scattering on a hard sphere

$$
\begin{aligned}
& \frac{d \sigma}{d \Omega}=R^{2} / 4 \\
& \sigma=\int \frac{d \sigma}{d \Omega} d \Omega=\pi R^{2}
\end{aligned}
$$

"Geometrical"
Cross Section
If incident flux known, then scattering rate gives the cross section
Units: 1 barn $\left(100 \mathrm{fm}^{2}\right) \simeq$ Cross section of the largest nucleus

Scattering on a Heavy Point Charge (Rutherford Scattering)

Rutherford's Scattering Formula

$$
\frac{d \sigma}{d \Omega} \propto \frac{\left(Q_{1} Q_{2}\right)^{2}}{p^{4} \sin ^{4} \theta / 2}
$$

Momentum transfer: $q=p \sin \theta / 2$

$$
\frac{d \sigma}{d\left(q^{2}\right)} \propto \frac{1}{q^{4}}
$$

The Discovery of "Inner Space" !

,"It seems certain that these large deviations of the α particle are produced by a single atomic encounter."
,,A simple calculation shows that the atom must be a seat of an intense electric field in order to produce such a large deflexion at a single encounter."

- E. Rutherford (1911)
"It was quite the most incredible event that has ever happened to me in my life. It was almost as incredible as if you fired a 15-inch shell at a piece of tissue paper and it came back and hit you."
- Transcript of one of his last lectures

Niels Bohr's Atomic Model (1913)
 The atom is empty!

$$
a_{0}=\frac{\frac{\text { The Bohr Radius }}{\hbar^{2}}}{e^{2} m_{e}} \simeq 50,000 \mathrm{fm}
$$

From Atom to Proton

Elastic Electron-Proton Scattering

$$
e+p \rightarrow e+p \quad\left(E_{e}=0.2 \mathrm{GeV}\right)
$$

Robert Hofstadter, Stanford (1953)
Nobel Prize for Physics 1961

Finding
The form factor $F(q)$ falls steeply with q
("Dipole Form Factor" : $\left.F(q) \propto \frac{1}{\left(m^{2}-q^{2}\right)^{2}}\right)$

The charge of a proton is of finite extent !
 \Rightarrow Proton radius: $R_{p}=0.8 \mathrm{fm}$

The Spectrometers

Two Spectrometers in End-Station A

Math Career Day
11 October 2007
Corning Community College Jim Crittenden

Deep Inelastic Electron Scattering

$$
\begin{gathered}
e+p \rightarrow e+X \\
\text { An "inclusive" reaction: } \frac{d \sigma}{d q^{2}} \propto \frac{1}{q^{4}} F(q, x)
\end{gathered}
$$

"Before these results were obtained it had been assumed that the inelastic-continuum cross sections would decrease as rapidly as the elastic cross sections when the momentum transfer was raised." -Kendall und Panofsky, Sci. Am., Vol. 224 (1971)

$F(q, x)$ is nearly independent of q !

Last Year's Nobel Prize for Physics

The Nobel Prize in Physics 2004
"for the discovery of asymptotic freedom in the theory of the strong interaction"

David J. Gross
Kavli Institute for Theoretical Physics, University of California Santa Barbara, CA, USA
b. 1941

H. David Politzer

California Institute of
Technology
Pasadena, CA, USA
b. 1949

Frank Wilczek
Massachusetts Institute of
Technology (MIT)
Cambridge, MA, USA
b. 1951

The strong interaction can be described as a quantum field theory as for the electromagnetic force, where the electric charge is replaced by a color charge. (1973)

"Asymptotic Freedom"

The strength of the reaction increases with the distance between the color charges (?!)

This is like no other known force!
It's why Rutherford-type scattering was observed for strongly-bound quarks !!

What is the meaning of "elementary" ?

"Elementary" is an expression of ignorance !
(and therefore time-dependent)
(About $1 / 1000$ of a human hair diameter)

Hofstadter (1953)
(Nobel Prize, 1961)

Present limit of our knowledge:

$$
\left(\simeq \frac{1}{10^{-18} m} \text { Proton radius }\right)
$$

limited by presently attainable particle energies (i.e. limited by available technology)

Present-Day Energy Frontier

The "Large Hadron Collider" (LHC) in Switzerland at the European Organization for Nuclear Research

17 miles in circumference, commissioning 2008
Extends the previous energy limit by a factor of 7

Math Career Day

11 October 2007

Corning Community College Jim Crittenden

A Plan for the Future

The International Linear Collider

22 miles long, now in engineering phase
Investigates LHC energy region, but with electron-positron interactions

