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Chapter 1

Studies of Electron Cloud Growth
and Its Mitigation

1.1 Local EC Build-Up and Mitigation Studies

1.1.1 Special Features of the CESRTA EC Program

The CESRTA program is almost certainly the single most comprehensive effort to measure and
characterize the EC, and to assess techniques for its mitigation, in e+e− storage rings to date
[1]. Mitigation techniques studied include low-emission coatings such as TiN, amorphous carbon
and diamond-like carbon on aluminum chambers; grooves etched in copper chambers; clearing
electrodes; and more. Combined with an extensive array of instrumentation and diagnostic tools
such as retarding-field analyzers and shielded-pickup detectors, much has been learned to date about
the physics governing the buildup of electron clouds. While some of these diagnostics instruments
had been employed in previous studies elsewhere in various combinations, the CESRTA program
includes all of them in a single storage ring, with measurements analyzed by the same group of
researchers. In addition, several pre-existing simulation codes have been augmented, cross-checked,
and in some cases debugged, and applied to the analysis of the data.

The flexibility of the beam manipulation at CESRTA affords the unique and valuable possibility of
studying the electron cloud formation and dissipation with a beam consisting of an almost arbitrary
fill pattern and bunch intensity. This flexibility allows, in principle, to tease out the contributions
to the electron cloud due to photoemission from that due to secondary electron emission. This
is a consequence of the fact that short bunch trains (typically fewer than 10 bunches) lead to an
electron cloud dominated by photoemission, while long bunch trains (say, more than 40) lead to
an electron cloud typically dominated by secondary electron emission (unless the peak value of the
SEY is unusually low, say < 0.9). In addition, an isolated “witness bunch” can be placed at varying
distances from the end of the train, thus affording the possibility of studying the dissipation of the
electron cloud as a function of time.

In addition, the beam energy can be varied in the range ∼ 2 − 5 GeV, which provides a powerful
handle on the synchrotron radiation intensity and hence on the photoelectron creation rate. As if the
above features were not enough, the instrumentation installed at CESRTA allows the measurement
of the electron cloud density bunch by bunch, which provides yet another handle to disentangle the
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intensity of the photoelectrons from the secondaries, as well as a more detailed and time-resolved
analysis of the build-up of the EC density.

1.1.2 Overview

The buildup of high densities of low-energy electrons produced by the intense synchrotron radiation
in electron and positron storage rings has been under active study since it was identified in the
mid-90’s in the KEK Photon Factory (PF) when operated with a positron beam [2]. While this
phenomenon did not present an operational limitation at the PF under nominal conditions, the
observation raised immediate concerns for both B Factories, then under design, and triggered
significant simulation efforts [3] aimed at quantifying the phenomenon and designing mitigation
techniques. Several years later, as the luminosity performance in the B Factories was pushed
towards its specified goal, the electron cloud became at some point the most significant limitation.
Mitigating this effect at both B Factories then became essential to reach, and then exceed, the
design performance [4].

Almost concurrently with the above-mentioned developments at the PF and the B Factories, con-
cerns arose in 1995-96, based on prior experience at the ISR, that electrons might spoil the LHC
vacuum [5]. Early 1997 calculations showed that the LHC would be subject to an ECE [6], chiefly
because the beam emits copious synchrotron radiation upon traversing the dipole bending magnets,
in analogy with e+e− storage rings. Indeed, the LHC is the first proton storage ring ever built in
which synchrotron radiation is significant: although the critical photon energy is only ∼ 44 eV
at 7 TeV beam energy (as opposed to several keV in typical e+e− storage rings), this value is
well above the work function of the chamber metal, hence photoemission inside the chamber is
unavoidable. A straightforward calculation yields an estimate of 0.4 photons emitted per proton
per dipole magnet traversal, also at 7 TeV beam energy. Although ∼50% of these photons have
energies below the work function of the metal, the remaining 50% lead to a substantial number
of photoelectrons. Further calculations [6, 7], including the effects of secondary electron emission,
quickly revealed the possibility of a substantial ECE. In the case of the LHC, the primary concern
from the ECE is the power deposited by the electrons on the beam screen as they rattle around
the chamber under the action of the beam; this power must be dissipated by the cryogenic system
if the LHC superconducting magnets are to work according to specifications. Since the cryogenic
system was designed before the prediction of the ECE in the LHC, a significant “crash program”
was launched in 19971 to better estimate the power deposition, to identify the conditions under
which the cooling capacity might be exceeded, and to devise mitigation mechanisms if necessary [8].
As part of this effort, the ECE has been experimentally studied at the SPS and the PS at the high
beam intensities required for nominal LHC operation (recent experience at the LHC has confirmed
the expectation of a significant ECE, even though the beam energy is presently only 3.5 TeV [9]).
This crash program at the LHC was almost certainly the single most comprehensive effort to under-
stand the electron cloud in a hadron machine, and was comparable in scope to the present program
at CESRTA for an e+e− machine.

The above-mentioned ECE’s are related to previously observed electron- proton dynamical effects
such as beam-induced multipacting (BIM), first observed at the CERN proton storage ring ISR [10]
when operated with bunched beams. Closely related to BIM is trailing-edge multipacting observed
at the LANL spallation neutron source PSR [11], where electron detectors register a large signal

1The website http://ab-abp-rlc.web.cern.ch/ab-abp-rlc-ecloud/ provides documentation and software tools
related to this effort.
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during the passage of the tail of the bunch even for stable beams. All ECEs in e+e− as well as
in hadron storage rings have precursors in the e-p instabilities for bunched and unbunched beams
first seen at BINP in the mid-60s [12].

The interest generated by the observations at the PF published in 1995 triggered a series of ded-
icated workshops the most recent of which was held at Cornell in 2010 [13]. The similarities of
the ECE’s in e+e− and hadron storage rings is evidenced by the simultaneous and comparable
participation, since 1997, of both communities in these workshops. Phenomena related to electron
cloud buildup have been reported (and in some cases been a performance- limiting factor) at the
Advanced Photon Source at ANL [14], BEPC [15], the Spallation Neutron Source at ORNL [16],
the Relativistic Hadron Collider at BNL [17], the Proton Storage Ring at LANL [18], the DAΦNE
Φ-factory at the INFN-LNF in Frascati [19], PEP-II at SLAC [20, 21], the Tevatron Main Injector
at FNAL [22], the CERN Proton Synchrotron [23] and Super Proton Synchrotron [24] and the
LHC [9].

The enhanced understanding of electron cloud physics has identified the phenomenon as a primary
potential limiting factor in the operation of damping rings for future e+e− linear colliders [25–27].
The determining physical phenomena governing the characteristics of the clouds are the generation
of photoelectrons, their trajectories in the transient and ambient electric and magnetic fields, and
the secondary electron yield properties of the vacuum chamber. Thus the RF structure of the beams,
their intensities, the shape and dimensions of the vacuum chambers, and especially the surface
physics properties of those chambers affect the production of electrons by incident electrons, and
are therefore important factors in the rates of buildup and decay. A variety of mitigation techniques
have been experimentally studied and implemented in operating beamlines, such as grooves on the
chamber surface of the LHC arcs, the TiN coating in the PEP-II ring [28] and at the Spallation
Neutron Source, and weak solenoidal magnetic fields at both B Factories [21, 29].

The CESRTA program is almost certainly the single most extensive project for the study of mitiga-
tion techniques in e+e− storage rings to date, including mitigation techniques based on low-emission
coatings such as TiN, amorphous carbon and diamond-like carbon on aluminum chambers; grooves
etched in copper chambers; clearing electrodes; and more. Combined with an extensive array of
instrumentation and diagnostic tools such as retarding-field analyzers and shielded-pickup detec-
tors, much has been learned to date about the physics governing the local buildup of electron
clouds.

In essentially all cases of practical interest, it is the secondary electron emission process that
dominates the build-up of the electron cloud because this process leads to a compounding effect
of the electron density under the action of successive bunches traversing the chamber: the more
electrons are present in the chamber, the more electrons are generated upon striking the chamber
walls. The CESRTA facility affords the unique and valuable possibility of studying the electron
cloud formation and dissipation with a beam consisting of an almost arbitrary fill pattern and
bunch intensity. This flexibility allows to tease out the contributions to the electron cloud due to
photoemission from secondary electron emission. Short bunch trains (say, fewer than 10 bunches)
lead to an electron cloud dominated by photoemission, while long bunch trains (say, more than 40)
lead to an electron cloud dominated by secondary electron emission. As if this flexibility were not
enough, CESRTA also allows the measurement of the electron cloud bunch by bunch, which provides
another way to disentangle the two above-mentioned effects: the formation of the electron cloud
at the beginning of the train is dominated by photoemission, while secondary emission dominates
the formation towards the tail. In addition, an isolated “witness bunch” can be placed at varying
distances from the end of the train, thus affording the possibility of studying the dissipation of the
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electron cloud as a function of time.

1.1.3 Simulation Program

A broad-based program of developing, comparing and benchmarking electron cloud buildup sim-
ulation codes was initiated in the CESRTA collaboration in 2008 and continues today. We have
used CESRTA input parameters as input to the simulation codes ECLOUD [30, 31], CLOUD-
LAND [32, 33], POSINST [20, 34], WARP/POSINST [35] and PEHTS [36], and compared the
results against measurements. By iterating this process, we are able to pin down parameters that
are not well known and thereby make more reliable extrapolations to the future ILC damping
rings. The main (indeed, the only) parameters that are not well known are those pertaining to
the electronic surface properties, ie. photon reflectivity, photoemission and secondary electron
emission.

1.1.3.1 EC Build-Up Modeling

Essential components of the codes are photoelectron generation models, time-sliced calculations of
macroparticle dynamics including beam kicks, the space charge force from the cloud itself, and the
Lorentz forces of ambient magnetic fields, and the the model describing the various components
of the secondary yield (SEY). The ECLOUD and POSINST models use two-dimensional approx-
imations for the electric fields and have successfully reproduced a variety of coherent tune shift
measurements, as well as local RFA and shielded-pickup measurements. These 2D codes are rela-
tively fast, and are generally successful in predicting the features of the electron cloud in regions
of the ring that are essentially 2D, namely field-free regions and long magnets, especially dipoles.
The CLOUDLAND [37] and WARP/POSINST [38] codes are 3D and therefore far more computa-
tionally expensive, and have been used to model the electron cloud in essentially 3D regions such
as quadrupole, sextupole and wiggler magnets, providing information on the long-term trapping of
electrons. In addition, it should be pointed out the ECLOUD and POSINST are build-up codes,
assuming the beam is a prescribed function of space and time and therefore does not respond to
the electron cloud. CLOUDLAND and WARP/POSINST, in addition to being 3D, have the op-
tion of describing the beam fully dynamically, so that the beam and the electron cloud respond
to their mutual simultaneous influence. in quadrupole, sextupole and wiggler magnets, providing
information on the long-term trapping of electrons.

1.1.3.2 Photoelectron Models

The components of the photoelectron generation model are the azimuthal location distribution
of photoelectrons produced on the wall of the vacuum chamber, the angular function governing
their initial momentum direction, and their kinetic energy spectrum. The code benchmarking
project revealed that reconciliation of the time structure of density buildup in the ECLOUD and
POSINST codes for CESRTA conditions required a modification of the ECLOUD model for the
angular distribution to match that employed by POSINST. The simple model implemented at
present uses a single energy-independent value for the quantum efficiency, ignores the incident
photon energy spectrum and generates an ad-hoc photoelectron energy distribution which must be
re-tuned for each set of beam conditions under study.
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While the modeling for the coherent tune measurements proved to be rather insensitive to the
assumed photoelectron energy distribution (see Section ??), the local RFA measurements, and es-
pecially the time-resolved shielded-pickup pulse shapes have been shown to impose strict constraints
on the photoelectron generation model. These results are described in Sect. 1.2.2 below.

On the other hand, the modeling of the coherent tune shift measurements depends critically on the
azimuthal location distribution of the produced photoelectrons. As the bunch current increases, the
contribution from the dipole regions begins to dominate the total tune shift, since the cloud electrons
are trapped on field lines near the vertical plane of the beam. If photon reflection were to be ignored
in the model, this dominant contribution would not contribute at all, since no photoelectrons would
be produced on the top or bottom of the beampipe. The CESRTA cloud modeling effort thus
required a substantial effort to develop a photon transport model, as described in Section ??.

1.1.3.3 Photon Transport

In this section, we present four examples of SYNRAD3D photon transport simulations using CESRTA
lattices and vacuum chambers.

Example 1: Photon Emission in a Dipole As the first example, we consider the CESRTA
ring with a 5.3 GeV positron beam, and use SYNRAD3D to simulate photon emission only in the
arc dipole at B12W. The vacuum chamber is a simple ellipse (dimensions 9 cm horizontal by 5 cm
vertical), and the scattering is purely specular. The photons are generated only in the upstream
end of this dipole but propagate downstream and can scatter.

In Fig. 1.1, we show a collection of photon trajectories, projected onto the bend plane. Photons
generated by the beam in B12W strike the B12W vacuum chamber a short distance downstream.
Some are absorbed here, but most scatter and strike the vacuum chamber further downstream, in
B13W. More are absorbed here, but many others scatter again.

These photon trajectories in three dimensions are shown in Fig. 1.2. Photons from the source (on
the right) propagate and strike the vacuum chamber. Blue dots represent absorption sites. For this
simple example, in which the photon source is localized longitudinally, the absorption site locations
tend to be clumped in several clusters (at the location of downstream dipoles), with decreasing
intensity as we get further from the source.

Other features of the photon scattering and absorption process are shown in Fig. 1.3 and Fig. 1.4.

In Fig. 1.3(left), a histogram of the number of reflections is presented. Many photons suffer no
reflections, that is, they are absorbed as soon as they hit the vacuum chamber, but most are
reflected several times before being absorbed. The mean number of reflections is 5.4.

In Fig. 1.3(right), a histogram of the energy of all absorbed photons is presented. This is strongly
peaked at zero but has a long tail out to at least 5 keV.

In Fig. 1.4, a two dimensional histogram of the number of photons vs. location of the absorption
site along the vacuum chamber perimeter is presented. This is is peaked at the outside edge of the
vacuum chamber, where the direct photon strikes occur, but there is long tail extending around
the entire surface of the vacuum chamber, due to the reflected photons.
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Figure 1.1: Photon trajectories from B12W: projections onto bend plane. The red dots at the
lower right are the photon source (the radiating beam in a section of the dipole). Black lines are
photon trajectories, and blue dots are photon absorption sites. The green lines in the lower right
are the edges of the vacuum chamber in B12W; the red lines are the edges in a straight section,
and the green lines on the left are the edges of the vacuum chamber in the next dipole, B13W. The
geometry has been distorted for purposes of illustration.
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Figure 1.2: Photon trajectories from B12W in three dimensions. The photon source is on the right.
Black lines are trajectories, and blue dots are photon absorption sites. The transverse geometry
has been distorted from an ellipse to a circle, and the longitudinal dimension has been rectified and
divided by 10, for purposes of illustration.
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Figure 1.5: Distribution of photon absorption sites vs. longitudinal position, for different magnetic
environments. The origin for the longitudinal coordinate is the center of the L0 straight section.
The ring circumference is about 760 m.

Example 2: Photon emission throughout the Ring, elliptical vacuum chamber, no
diffuse scattering For the second example, photon emission throughout the CESRTA ring from
a 2.1 GeV positron beam is simulated. (The lattice name is 2085mev_20090516). The vacuum
chamber is again a simple ellipse, and the scattering is purely specular.

In Fig. 1.5, the distribution of photon absorption sites around the ring is shown, sorted by the type of
magnetic environment in which the absorption occurs. This information is important for simulations
of electron cloud growth, which is strongly influenced by the magnetic environment.

The wigglers in the L0 straight section are responsible for the large peaks near s = 0. The large
peaks near s = ±130 m are due to wigglers in the arcs near these locations. The small peaks in
the arcs are due to the regular CESRTA dipoles.

In Fig. 1.6, we present the photon intensity distribution (in photons/meter/radian) vs. polar
angle (measured around the vacuum chamber, with zero angle corresponding to the radial outside
direction), averaged over each type of magnetic environment.

In the wigglers, most of the photons come from the radiation fans in an upstream wiggler region, so
there are strong peaks on both edges of the vacuum chamber. In the bends, most of the radiation is
from direct strikes from upstream dipoles, so there is only a strong peak on the radial outside edge,
together with a long tail, due to scattering. In the quadrupoles and drifts, there are two peaks, with
the higher one at the radial outside, and a distribution between the peaks due to scattering.
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Figure 1.6: Photon intensity distribution (in photons/meter/radian) vs. polar angle (measured
around the vacuum chamber, with zero angle corresponding to the radial outside direction), av-
eraged over each type of magnetic environment. A 9 cm (horizontal) by 5 cm (vertical) elliptical
vacuum chamber profile is assumed throughout the ring, and all scattering is specular. Top-bottom
symmetry is assumed.
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Figure 1.7: Photon intensity distribution (in photons/meter/radian) vs. polar angle (measured
around the vacuum chamber, with zero angle corresponding to the radial outside direction), aver-
aged over each type of magnetic environment. A realistic model for the CESRTA vacuum chamber
throughout the ring is used. All scattering is specular. Top-bottom symmetry is assumed.

Example 3: Photon emission throughout the ring, realistic vacuum chamber, no diffuse
scattering For the third example, photon emission throughout the CESRTA ring from a 2.1 GeV
positron beam is simulated again, with a realistic vacuum chamber profile. The scattering is purely
specular, as in the previous example.

In Fig. 1.7, we present the photon intensity distribution (in photons/meter/radian) vs. polar
angle (measured around the vacuum chamber, with zero angle corresponding to the radial outside
direction), averaged over each type of magnetic environment.

Compared to the previous example, the photon intensity on the top and bottom of the chamber
(polar angles of π/2 and 3π/2) is substantially suppressed, while the radiation striking the radial
inside edge of the vacuum chamber (polar angle near π) is enhanced. This is primarily due to the
local shape of the vacuum chamber at the strike point of the direct synchrotron radiation. For the
elliptical chamber, the wall is curved at the radiation strike point, which, for a finite sized radiation
stripe, enhances scattering out of the median plane. For the real CESRTA chamber, for most of the
ring, the wall is vertical at the radiation strike point (see Figure ??), so that scattering out of the
median plane is limited.

Example 4: Photon emission throughout the ring, realistic vacuum chamber, diffuse
scattering included. For the fourth example, photon emission throughout the CESRTA ring
from a 2.1 GeV positron beam is simulated again, with a realistic vacuum chamber profile. In this
case, diffuse scattering is included, using the parameters and model described in Sect. ??.
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Figure 1.8: Photon intensity distribution (in photons/meter/radian) vs. polar angle (measured
around the vacuum chamber, with zero angle corresponding to the radial outside direction), aver-
aged over each type of magnetic environment. A realistic model for the CESR vacuum chamber
throughout the ring is used, and diffuse scattering is included. Top-bottom symmetry is assumed.

In Fig. 1.8, we present the photon intensity distribution (in photons/meter/radian) vs. polar
angle (measured around the vacuum chamber, with zero angle corresponding to the radial outside
direction), averaged over each type of magnetic environment.

Compared to the previous example, the photon intensity on the top and bottom of the chamber
(polar angles of π/2 and 3π/2) is now much higher, and is comparable to that seen in Example 2.
This is due to the out-of-plane diffuse scattering, which results in substantial amounts of radiation
scattering out of the median plane. In addition, the radiation striking the radial inside edge of the
vacuum chamber (polar angle near π) is also increased.

1.1.3.4 RFA Modeling

In principle, a single RFA voltage scan, in which data is collected while the retarding voltage is
varied (see Section ??), gives a great deal of information about the local behavior of the electron
cloud. In practice, however, it is a highly nontrivial task to map a data point from a voltage scan
to any physical quantity, such as cloud density. Typically, this gap is bridged through the use of
cloud simulation programs, which track the motion of cloud particles during and after the passage
of a bunch train (Section 1.1.3.1). Generally speaking, there are two ways to obtain a predicted
RFA signal from a cloud simulation program: by postprocessing the output of the program, or by
integrating an RFA model into the actual code. Both methods are discussed below.
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Drift RFA Simulations The simplest method for simulating the output of an RFA for a
given set of beam conditions is post-processing the output of a cloud simulation program, such
as POSINST [34] or ECLOUD [39]. More specifically, these codes can output a file containing
information on each macroparticle-wall collision, and one can perform a series of calculations on
this output to determine what the RFA would have seen had one been present.

A basic postprocessing script does the following:

• Determine if the macroparticle has hit in the azimuthal region where one of the RFA collec-
tors exists.

• Calculate an efficiency (probability of passing through the beam pipe hole) based on the in-
cident angle and energy of the particle.

• Choose an energy “bin” for the particle based on its transverse energy.

• Deposit the final charge (equal to the macroparticle charge times the overall RFA efficiency)
into the appropriate and collector and energy bin

• To replicate an RFA measurement at a given retarding voltage, add up all the signal in bins
with higher energy than the voltage.

Note that by proceeding in this way one implicitly assumes that the presence of the RFA has no
effect on the development of the cloud. This assumption is probably justified for a drift RFA, but
may not be in the presence of a magnetic field. The latter case is discussed below.

Bench measurements of RFA efficiency have shown an enhancement of the signal at low retarding
voltage due to the production of low energy secondary electrons inside the beam pipe holes [40].
An example bench measurement is shown in Fig. 1.9. It was taken using a monoenergetic beam of
200eV electrons, but shows a large increase in the signal at positive retarding voltage, where these
low energy secondaries are guided into the RFA. We have developed a specialized particle tracking
simulation to quantify this effect. It uses a monte carlo method to calculate the average efficiency
for an incident electron, as a function of energy and angle, including beam pipe hole secondaries.
Fig. 1.10 shows the effect of this enhancement for two different incident energies. This is included
in the analysis as an additional charge added to the simulated RFA signal at zero retarding voltage.
We are currently doing more rigorous bench measurements to fully quantify this effect.

In a drift region, qualitative agreement between data and (post-processed) simulation can generally
be obtained without fine tuning of the simulation parameters. For example, Fig. 1.11 shows the
measured and simulated (with POSINST [34]) RFA signal for voltage scan done under a typical set
of beam conditions. The plots give collector signal as a function of collector number and retarding
voltage. Here the data and simulation are similar both in general shape and magnitude. Getting
closer quantitative agreement, however, requires a more systematic approach; see Section 1.1.4.2
for details.
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Figure 1.9: Bench measurement of RFA efficiency, showing an enhancement at low energy.
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Figure 1.10: Simulated RFA efficiency vs incident angle, including secondary electrons produced in
the beam pipe holes. The geometric efficiency (not including secondaries) is shown for comparison.
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Figure 1.11: Comparison of data (left) and un-optimized simulation (right), Aluminum drift RFA.
Beam conditions are 45 bunches of positrons at 1.25mA/bunch, 14ns spacing, 2.1GeV.
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Figure 1.12: Simulated RFA efficiency vs incident angle for a CESR dipole RFA, with a 790G
magnetic field. This corresponds to operation at 2.1GeV.

Dipole RFA Simulations Simulations have also been done for an RFA located inside a CESR
dipole (see Section ??), using the same method described above. Simulated efficiency curves for
different incident energies are shown in Fig. 1.12. The simulation gives a very high efficiency for
low energy electrons, due to their small cyclotron radius.

Fig. 1.13 shows a typical example of a simulation done for a dipole RFA. The results are again
roughly consistent with the data, except at low energy (Vret = 0). Here, the simulation significantly
overestimates the signal observed by the RFA. One possible explanation for this discrepancy is an
over-counting of the effect of individual macroparticles in the simulation. If a macroparticle collides
with the vacuum chamber wall in the area covered by the RFA and creates a signal there, it should
lose a corresponding amount of charge. However, this cannot be accomplished with a postprocessing
method. In a dipole region, a single macroparticle will move up and down along the same field
line, potentially striking the RFA area several times. The postprocessing script will treat each of
these collisions separately, and obtain a spuriously high signal. This effect will be become worse as
the macroparticle becomes more tightly constrained along the field line (i.e. as its cyclotron radius
becomes smaller). So we expect it to be worse for low energy electrons (as in Fig. 1.13), and for
high magnetic fields (as we will see in the section on wiggler simulations).

Quadrupole RFA Simulations Some preliminary simulations have been done for the quadrupole
RFA installed in CESR. The simulations generally reproduce the behavior, discussed in section 1.1.4.1,
where the majority of the signal is concentrated in one collector. Interestingly, they also give
some indirect evidence that the cloud can become trapped in the quadrupole for long periods of
time.

Fig 1.14 shows the signal in collector no. 10 for a voltage scan done with a 45 bunch train of
positrons at 1mA/bunch. Also plotted are simulations done in ECLOUD [39] of these conditions.
If one does a simulation for only one beam revolution period (2.56µs), the simulated signal is too
low at all energies by over an order of magnitude. However, if one continues the simulation for
multiple turns, one finds that the data and simulation start to get closer. By 19 turns, they are in
very good agreement at high energy, and within a factor of 2 at low energy. This implies that the
cloud is building up over several turns, and that the RFA is sensitive to this slow buildup.
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Figure 1.13: Comparison of data (left) and un-optimized simulation (right), Aluminum dipole
RFA. Beam conditions are 45 bunches of positrons at 1.25mA/bunch, 14ns spacing, 2.1GeV.
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Figure 1.14: Quadrupole RFA simulation showing long term cloud buildup: 45 bunches,
1mA/bunch, e+, 5.3 GeV, 14ns
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Figure 1.15: Resonant enhancement in wiggler data, 45 bunches, 1.25 mA/bunch, e+, 2.1GeV.
Note that there are 12 collectors, so collector 6 is one of the central ones. Also note that the grid
signal is divided by 12.

Wiggler RFA Simulations One major disadvantage of using a postprocessing RFA model is
that one cannot accurately model any interaction between the RFA and the cloud. For an example
of such an interaction, see Fig. 1.15. It shows a voltage scan done with an RFA in the center
pole of a wiggler (approximated by a 1.9 T dipole field). Here one can see a clear enhancement in
the signal at low (but nonzero) retarding voltage. Since the RFA should simply be collecting all
electrons with an energy more than the magnitude of the retarding voltage, the signal should be a
monotonically decreasing function of the voltage. So the RFA is not behaving simply as a passive
monitor. Furthermore, the spike in collector current is accompanied by a corresponding dip in the
grid current, suggesting that the grid is the source of the extra collector current.

We believe this spurious signal comes from a resonance between the bunch spacing and retarding
voltage. To understand this, consider an electron which collides with the retarding grid and gener-
ates a secondary. Because electrons are so strongly pinned to the magnetic field lines in a 1.9T field,
this electron is likely to escape through the same beam pipe hole that the primary entered. In other
words, the motion of the electrons is approximately one-dimensional. An electron ejected from the
grid will gain energy from the retarding field before it re-enters the vacuum chamber. If it is given
the right amount of energy, it will be near the center of the vacuum chamber during the next bunch
passage, and get a large beam kick, putting it in a position to generate even more secondaries.
The net result is a resonance condition for the retarding voltage that is inversely proportional to
the square of the bunch spacing, since the shorter the bunch spacing, the more kinetic energy an
electron needs to arrive at the beam in time for the next bunch passage [41]. Fig. 1.16 shows that
this dependence is (roughly) present in the data, though the low energy spike in the 4ns data is
not predicted by this model.

Motivated by these measurements, we have incorporated into POSINST a model of the RFA
geared toward reproducing the geometry of the devices installed in the vacuum chambers of the
CESRTAwigglers. The motion of the electrons within the RFA, including the electrostatic force
from the retarding field, is tracked using a special routine. The grid is modeled realistically, and
secondary electrons can be produced there, with the same secondary yield model used for nor-
mal vacuum chamber collisions. The peak secondary electron yield and peak yield energy can be
specified separately for the grid.

Because the actual retarding field is included in this model, the retarding voltage must be specified
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Figure 1.16: Resonant spike location at different bunch spacings, 1x45x1.25 mA e+, 5GeV. Only
the signal in the central collector is plotted

Figure 1.17: POSINST simulation showing resonant enhancement, 1x45x1.2 mA e+, 2.1GeV,
14ns, central collector

in the input file, and a separate simulation must be run for each voltage desired. Fig 1.17 shows
the result of running this simulation for a series of different retarding voltages, for one set of beam
conditions. Notably, the simulation reproduces the resonant enhancement seen in the data, at
approximately the same voltage ( 10V for 14ns spacing).

The resonant enhancement is present in much of the wiggler data, so an integrated RFA model will
be needed to obtain a more complete understanding of the cloud behavior in a wiggler magnet.
This effect is also present to a lesser extent in our dipole data, indicating that a postprocessing
model may not be sufficient there either.

1.1.4 EC Mitigation Observations and Comparison with Simulations

1.1.4.1 Measurements

We have used RFAs to probe the local behavior of the cloud in different magnetic field elements,
and in the presence of different mitigation schemes. Table 1.1 gives a list of the various RFA types
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Table 1.1: RFA styles deployed in CESR

Type Magnetic Field Grids Collectors

APS Drift 2 1
Insertable I Drift 2 5
Insertable II Drift 3 11

Thin Drift, Dipole 1 9
SLAC Dipole 3 17
Quad Quadrupole 1 12

Wiggler Wiggler 1 12

Table 1.2: Common beam conditions for electron cloud mitigation studies

Parameter Typical Values Units

Number of bunches 9, 20, 30, 45 -
Bunch current .75, 1.25, 2.8, 3.8, 10 mA
Bunch spacing 4, 14, 280 ns

Species Electron, positron -
Beam energy 2.1, 4, 5.3 GeV

discussed in this section. Most of the data presented here is one of two types: “voltage scans,” in
which the retarding voltage is varied while beam conditions are held constant, or “current scans,” in
which the retarding grid is set to a positive voltage (typically 50V), and data is passively collected
while the beam current is increased.

At CESRTA, we have been able to study the electron cloud under a wide variety of beam conditions,
varying the number of bunches, bunch current, bunch spacing, beam energy, and species. As
described in Section 1.1.4.2, this is very helpful for independently determining the photoelectron
and secondary electron properties of the instrumented chamber. Table 1.2 lists some of the more
common (but by no means only) beam parameters used for electron cloud mitigation studies with
RFAs.

Drift Data Many of our earliest detailed measurements were done with “Insertable I” style RFAs
(Table 1.1). Fig 1.18 shows an example of a voltage scan done with one of these RFAs, in typical
CESRTAbeam conditions. It plots the RFA response as a function of collector number and retarding
voltage. Roughly speaking this is a description of the transverse and energy distribution of the
cloud. In this example, the signal is fairly broad across all five collectors, indicating that the cloud
density is not strongly peaked around the beam. It also falls off quickly with retarding voltage,
indicating that the majority of cloud particles have low energy. The RFA signal is expressed in
terms of current density in nA/mm2, normalized to the transparency of the RFA beam pipe and
grids. In principle, this gives the time averaged electron current density incident on the beam pipe
wall. The beam conditions are given as “1x45x1.25 mA e+, 14ns, 5.3 GeV.” This notation, which
will be used throughout this section, indicates one train of 45 bunches, with 1.25mA/bunch (1mA
= 1.6× 1010 particles), with positrons, 14ns spacing, and at beam energy 5.3GeV.

Fig 1.19 compares a current scan measurement done with two adjacent RFAs, one in a bare Copper
chamber, and one in a TiN coated Copper chamber. Here we compare the average collector current
density in the two detectors, as a function of beam current, and find that it is lower in the coated
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Figure 1.18: RFA voltage scan with an insertable segmented drift RFA in a Cu chamber, 1x45x1.25
mA e+, 14ns, 5.3 GeV
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Figure 1.19: Comparison of insertable drift RFAs, 1x20 e+, 5.3GeV, 14ns

chamber by a factor of two.

“Thin” style RFAs (Table 1.1) were developed to fit inside the aperture of a CESR dipole, but they
have also been deployed in drift regions. These RFAs have since been replaced by “Insertable II”
style detectors, which have more collectors and can support higher voltages. Example measurements
done with both of these RFA styles, in a TiN coated chamber, can be found in Fig. 1.20.

We have installed RFAs in arc drift sections adjacent to the 15E and 15W quadrupoles in CESR.
The photon flux for a positron beam at 15W is about twice that of 15E, and vice versa for an
electron beam. Measurements have been taken at both locations with TiN and amorphous carbon
coatings, as well as with an uncoated aluminum chamber. In addition, a chamber with diamond-like
carbon (DLC) coating has recently been installed at 15E. By comparing measurements taken at the
same location in CESR, we ensure the comparisons can be made under identical beam conditions,
including photon flux. Figs. 1.21 through 1.23 compare the RFA signal with each of these coatings
for typical sets of CESRTAbeam conditions. We have generally found that data taken with 20
bunches of positrons at high current shows the biggest difference between the different chambers.
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Figure 1.20: Example voltage scans with thin (left) and insertable (right) style drift RFAs in the
same location. Both are TiN coated, beam conditions are 1x45x1.25mA, 5.3GeV, 14ns.
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Figure 1.21: Comparison of different beam pipe coatings, 15E (left), and 15W (right) drift RFAs.
Plots show average collector signal vs beam current for 20 bunches of positrons with 14ns
spacing, at beam energy 5.3GeV. Note that the aluminum chamber signals are divided by 3.

It is under these conditions that we expect to be most sensitive to the peak secondary electron
yield (δmax).

All coated chambers show a sizeable reduction in signal when compared to uncoated aluminum.
After extensive processing, both TiN and amorphous carbon coated chambers show similar miti-
gation performance. The details of the small difference between 15E and 15W (where in one case
TiN appears slightly better and in the other amorphous carbon does) require further analysis to
understand fully.

Diamond-like carbon may perform better than other coatings at very high beam current. It should
be noted that bench measurements of the Secondary Electron Yield (SEY) of DLC have found that
the material can retain charge if bombarded with a sufficiently high electron flux, thus modifying
the apparent SEY performance (Section 1.1.6). This effect may also be influencing the in situ
measurements presented here.

We have also installed a NEG coated chamber in our L3 straight region. This chamber is in-
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Figure 1.22: Comparison of different beam pipe coatings, 15E (left), and 15W (right) drift RFAs.
Plots show average collector signal vs beam current for 20 bunches of electrons with 14ns
spacing, at beam energy 5.3GeV. Note that the aluminum chamber signals are divided by 3.
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Figure 1.23: Comparison of different beam pipe coatings, 15E (left), and 15W (right) drift RFAs.
Plots show average collector signal vs beam current for 9 equally spaced (280ns) bunches of
positrons, at beam energy 5.3GeV. Note that the aluminum chamber signals are divided by
3.
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Figure 1.24: NEG RFA comparison, 1x20 e+, 5.3GeV, 14ns

Figure 1.25: Typical Al dipole RFA voltage scans: 1x45x1.25mA e+, 5.3GeV, 14ns. Left: SLAC
chicane RFA; Right: CESR dipole RFA

strumented with three single collector RFAs, located at different azimuthal positions. Fig. 1.24
compares the current measured by one of these RFAs on several different dates, corresponding to
different states of activation and processing of the NEG coating. It was observed that both activa-
tion and initial processing reduced the signal measured by this RFA. After a CESR down (during
which the NEG was activated again), the signal rose somewhat, but it processed back down to
its minimum value after a few months of beam time. The other two detectors showed a similar
trend.

Dipole Data RFA data have been taken in the presence of a dipole field, both in a standard
CESR dipole (the “Thin” style in Table 1.1), and in a specially designed chicane which was built
at SLAC [42]. The field in the chicane magnets is variable, but most of our measurements were
done in a nominal dipole field of 810G. Of the four chicane chambers, one is bare Aluminum, two
are TiN coated, and one is both grooved and TiN coated. The grooves are triangular with a depth
of 5.6mm and an angle of 20◦. Fig. 1.25 shows a retarding voltage scan done with both the CESR
dipole and Aluminum chicane RFAs. In both cases, one can see a strong multipacting spike in the
central collector.
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Figure 1.26: Dipole RFA mitigation comparison, 1x20 e+, 5.3GeV, 14ns

Figure 1.27: Bifurcation of peak cloud density in a Al dipole: 1x20 e+, 5.3GeV, 14ns

Fig. 1.26 shows a comparison between three of the chicane RFAs. We found the difference between
uncoated and coated chambers to be even stronger than in a drift region. At high beam current, the
TiN coated chamber shows a signal smaller by two orders of magnitude than the bare Al chamber,
while the coated and grooved chamber performs better still.

For high bunch currents, we have observed a bifurcation of the central multipacting peak into two
peaks with a dip in the middle. This is demonstrated in Fig 1.27, which shows the signal in all 17
RFA collectors vs beam current. Bifurcation occurs when the average energy of electrons in the
center of the beam pipe is past the peak of the SEY curve, so that the effective maximum yield is
actually off center. The higher the bunch current, the further off center these peaks will be.

By varying the strength of the chicane magnets, we can also study the behavior of the cloud at
different dipole magnetic field values. Fig. 1.28 shows an example of RFA data taken as a function
of magnetic field strength. The most prominent feature of the data is regularly occurring spikes
or dips in all three plotted chambers. These correspond to “cyclotron resonances,” which occur
whenever the cyclotron period of cloud electrons is an integral multiple of the bunch spacing [43].
For 4ns bunch spacing we expect them every 89 Gauss, which is what is seen in the data. Another
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Figure 1.28: RFA signal as a function of chicane magnetic field: 1x45x1mA e+, 5GeV, 4ns.
Cyclotron resonances are observed every 89G. Note that the Aluminum chamber signal is divided
by 20.

interesting feature of this measurement is that these resonances appear as peaks in the RFA signal
in the Aluminum chamber, but as dips in the coated chambers. This aspect of the data is discussed
below.

Because the properties of the electron cloud can change over the course of nanoseconds, it is
interesting to investigate its behavior as a function of bunch spacing. At CESRTAwe have taken
RFA data with bunch spacings varying from 4ns to 112ns.

Fig. 1.29 shows the signal in the central collector of two dipole RFAs as a function of bunch spacing.
The left plot is for the Aluminum SLAC chicane RFA; the right is for the CESR dipole RFA (see
Fig. 1.25). The SLAC chamber has a half-height of 4.4cm, while the CESR RFA has a half-height
of 2.5cm.

For the SLAC RFA, we observe two distinct peaks in the positron data, at approximately 14ns
and 60ns. The electron beam data shows almost no signal before 36ns, and is peaked around the
same place as second the positron peak. The enhancement of the signal at 60ns could be due to
a resonance between the bunch spacing and the cloud development (often called a “multipacting
resonance”). This effect will be enhanced by the dipole field, which renders the motion of the
electrons mostly one dimensional.

A very simple model for a multipacting resonance is that if the time for a typical secondary electron
to travel to the center of the beam pipe is equal to the bunch spacing, this electron will be kicked
strongly by the beam, and is likely to produce more secondary electrons. In reality, peak secondary
production will occur when this electron is given an amount of energy corresponding to the peak
of the SEY curve. However, for aluminum the SEY is greater than 1 well into the keV range, so
an electron anywhere near the beam is a candidate to produce more secondaries. Thus we expect
the “resonance” to be somewhat broad.

If we ignore the time for the kicked electron to travel to the beam pipe wall (which will be small if
the kick is strong), the resonance condition is simply tb = a/vsec, where tb is the bunch spacing, a
is the chamber half-height (i.e. the distance from the wall to the beam), and vsec is a characteristic
secondary electron velocity. For a 1.5eV electron, this peak will occur at 61ns. The fact that there
is a finite width to the secondary energy distribution will further smear out the peak.
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Figure 1.29: Central collector signal in a dipole RFA as a function of bunch spacing, for a 20
bunch train with 3.5mA (5.6 × 1010 particles) per bunch, at 5.3 GeV. Left: SLAC chicane RFA,
right: CESR dipole RFA

The lower energy peak in the positron data could be a higher order multipacting resonance, where
it takes two bunches to set up the resonance condition. Here we consider the case where the first
bunch gives some additional energy to the electron, so that it makes it to the center of the chamber
in time for the second bunch. If we again neglect the time for the kicked electron to reach the beam
pipe wall, the resonance condition becomes:

tb,2 = a−r1
vsec

= r1
v2

(1.1)

v2 = vsec + 2cNbre
r1

(1.2)

Here r1 is the distance from the electron to the beam during the first bunch passage, v2 is the
velocity of the electron after it is kicked by the first bunch, Nb is the bunch population and re is the
classical electron radius. Solving for tb,2 gives us Eq. 1.3, where we have defined k ≡ 2cNbre.

tb,2 =
k + 3avsec −

√
k2 + 6kavsec + a2v2sec
4v2sec

(1.3)

For a 1.5eV secondary electron, tb,2 is 11ns, somewhat less than the 14ns that is observed. A more
sophisticated model (which would include, among other things, the time for the kicked electron to
reach the wall) may yield a more accurate result. Note that this resonance condition applies only
to positron beams, so only one peak is predicted for the electron data (which is what we find).
Overall, a multipacting scenario with a 1.5eV peak secondary energy is approximately consistent
with the SLAC chicane data, for both the positron and electron beam data.

The predictions for our CESR dipole (Fig. 1.29, right) would then be tb = 34ns and tb,2 = 4ns.
The former is higher than what is observed, though the latter is consistent with the data. A better
fit would be for an 8eV electron, then tb = 15ns and tb,2 = 3ns. It is also possible that a more
sophisticated model would fit the CESR dipole data better.
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Figure 1.30: Quadrupole RFA voltage scan: 1x45x1.25mA e+, 5.3GeV, 14ns
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Figure 1.31: Quadrupole mitigation comparison, 1x20 e+, 5.3GeV, 14ns

Quadrupole Data Another development at CESRTAhas been the incorporation of an RFA into
a quadrupole chamber. This RFA wraps azimuthally around the chamber, from about 70 to 150
degrees (taking zero degrees to be the source point). A typical quadrupole RFA measurement is
shown in Fig. 1.30. We find that the collector that is lined up with the quad pole tip (no. 10) sees
a large amount of current, while the rest of the collectors see relatively little. This suggests that
the majority of the cloud in the quad is streaming between two pole tips.

Fig. 1.31 shows a comparison of a bare Aluminum (both processed and unprocessed) quadrupole
chamber with the TiN coated chamber that has replaced it. In this comparison only collector 10
is being plotted. The signal in the TiN chamber was found to be reduced by well over an order of
magnitude.

One potential side effect of the cloud mirroring between the quad pole tips is that it may become
trapped for a long time. As seen in Fig. 1.32, for a positron beam we do not observe a strong
dependence on bunch spacing, though there does seem to be a modest enhancement around 14ns.
The data for an electron beam is even more surprising, actually showing a monotonic increase with
bunch spacing. Both of these measurements point to a timescale for cloud development in the quad
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Figure 1.32: Signal in a quadrupole RFA as a function of bunch spacing, for the same beam
conditions as in Fig. 1.29. The collector which is in line with the quad pole tip is plotted.

that is much longer than 100ns.

Wiggler Data The L0 straight section of CESR has been reconfigured to include six supercon-
ducting wigglers, three of which are instrumented with RFAs (see Section ??). Each wiggler has
three RFAs: one in the center of a wiggler pole (where the field is mostly transverse), one in between
poles (where the field is mostly longitudinal), and one in an intermediate region. Fig. 1.33 shows a
typical voltage scan done in the center pole RFA of a Cu wiggler chamber, for a 45 bunch train of
positrons at 1.25mA/bunch, 14ns spacing, and 2.1 GeV. The signal is fairly constant across all the
collectors at low retarding voltage, but does become peaked at the center at high energy. There is
also an anomalous spike in current at low (but nonzero) retarding voltage; we believe this is due to
a resonance between the bunch spacing and retarding voltage (see Section 1.1.3.4).

As with the drift RFAs, cycling the location of the different wigglers has allowed us to compare the
RFA response with different mitigation techniques at the same longitudinal position in the ring. We
have tested chambers with bare Copper, TiN coating, triangular grooves, TiN coating on grooves,
and a clearing electrode. Fig. 1.34 shows an example voltage scan from the grooved chamber; it
is interesting to note that the RFA is sensitive to the grooved structure. The grooves have 2mm
depth and 20◦ angle.

Fig. 1.35 compares the average collector current (in the center pole RFA) vs beam current for
different mitigation schemes, at both the 2WA and 2WB locations. These locations have slightly
different photon fluxes, but as the TiN coated chamber has been installed in both, it can be used
(roughly) as a reference. Note that TiN coating by itself does not appear to lead to a reduction
in the wiggler RFA current relative to bare copper. Grooves do lead to an improvement, and TiN
coated grooves are better still. The chamber instrumented with a clearing electrode shows the
smallest signal by a wide margin, improving on TiN by approximately a factor of 50. The electrode
was set to 400V for this measurement.

Very little dipole radiation is expected to reach the downstream vacuum chambers in the L0 straight,
but they will be illuminated by radiation from the wigglers. Therefore, by varying the field in the
wiggler magnets, we can vary the number of photons striking the wall at a given point along
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Figure 1.33: Cu wiggler RFA measurement: 1x45x1.25mA e+, 2.1GeV, 14ns

Figure 1.34: Grooved wiggler RFA measurement: 1x45x1.25mA e+, 2.1GeV, 14ns
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Figure 1.35: Wiggler RFA mitigation comparison: 1x45 e+, 2.1GeV, 14ns. Left: 2WA location,
right: 2WB location. The 2WB location is further downstream in the wiggler straight, and therefore
has a slightly higher photon flux.
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Figure 1.36: Wiggler ramp measurement: 1x45x.75mA e+, 2.1GeV, 14ns

the straight. This will also vary the number of photoelectrons produced there, so electron cloud
diagnostic devices located in L0 can provide an indirect measurement of the properties of the wiggler
photons.

Fig. 1.36 shows the signal in three center-pole wiggler RFAs as a function of wiggler field strength.
We observe a “turn on” of the signal in each detector at a specific wiggler field value. Note that
the detectors that are further downstream (i.e. those with a higher s value) turn on first. This is
because as the wiggler field is increased, the radiation fan becomes wider. The farther downstream
a detector is, the less wide the fan must be for photons to hit at that location. This measurement
can help us understand the scattering of photons in L0, since only photoelectrons produced on the
top or bottom of the beam pipe can initiate the build-up of the part of the cloud detected by the
RFA.

During normal operation, essentially no signal is observed in longitudinal field detectors, because
there are no electrons with sufficient energy to cross the field lines. Fig. 1.37 shows the signal in a
longitudinal field RFA (in the uncoated Copper wiggler), as a function of magnetic field strength.
The signal is effectively gone by 1000 Gauss, well below the 1.9T full field value.

Mitigation Summary In terms of the effectiveness of mitigation types, several qualitative com-
ments can be readily made:

• We have found beam pipe coatings (TiN, amorphous carbon, diamond-like carbon, and NEG)
to be effective at mitigating the cloud in drifts.

• TiN coating was also found to be effective in a dipole and quadrupole; using a grooved and
coated chamber in a dipole is even more effective.

• In a wiggler, a clearing electrode appears to be the most effective mitigation technique.

A systematic study to obtain more quantitative information about the different chambers, in par-
ticular their primary and secondary electron yield properties, is discussed in the next section.
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Figure 1.37: Wiggler ramp measurement in longitudinal field region: 1x45x.75mA e+, 2.1GeV,
14ns

1.1.4.2 Comparison with Simulation

The large quantity of RFA data obtained during the CESRTAprogram necessitates a systematic
method for detailed analysis. The goal is, given a set of voltage scan data, to find a set of simulation
parameters that bring data and simulation into as close to agreement as possible.

A chi squared analysis has been employed to accomplish this. In short, we want to minimize χ2,
as defined in Eq. 1.4. Here y a vector containing the difference between the data and a nominal
simulation, X is the Jacobian matrix, and β is the a vector contiaing the change in each of the
parameters under study. W is a diagonal matrix whose elements are 1

σ2
i
, where σi is the error on

data point i. Note that both the data and simulation can contribute to this error. The value of
β which will minimize χ2 is given in Eq. 1.5. Once a new set of parameter values is obtained, the
process can be repeated with this new set as the “nominal” values. This method will generally
need to be iterated a few times before it converges on the actual minimum value of χ2.

χ2 = (y −Xβ)T W (y −Xβ) (1.4)

β = (XT W X)−1 XT W y (1.5)

There are many subtleties in the precise definitions of the terms in Eq. 1.5. For the RFA analysis,
the points in the vector y come from voltage scan data. To determine the parameters independently,
one should use several different voltage scans, which cover a wide range of beam conditions. Since a
voltage scan is actually a measurement of the integrated energy spectrum, once should differentiate
the signal to obtain a set of independent data points. These points may not individually have
enough signal to be meaningful, so one can group them together (i.e. make energy “bins” of
varying width) to get one element of the y vector.

The choice of which simulation parameters to fit is also essential. There are many parameters that
characterize the production of secondary electrons in POSINST [34], but a few stand out as being
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especially important. Among them are:

• dtspk, the peak true secondary electron yield

• P1epk, the low energy elastic yield

• P1rinf, the rediffused yield at infinity

• E0epk, the energy at which peak secondary production occurs

• powts, the “shape parameter,” which determines the rise and fall of the SEY curve

• pangsec, the angular distribution of secondary electrons

• enpar and pnpar, which determine the energy distribution of secondary electrons

In general, primary photoelectrons are less well understood than secondary electrons. Some impor-
tant primary emission parameters include:

• queffp, the quantum efficiency

• ek0phel and eksigphel, the peak energy and width of the photoelectron energy distribution

• refleff, the photon reflectivity

Generally speaking, dtspk and queffp need to be included in the fitting procedure to get good
agreement with the RFA data. Other strong parameters include P1epk, P1rinf, and powts, but
they are highly correlated with each other (i.e. have similar effects on the RFA simulation), so only
one of the three is needed.

The starting points for several SEY parameters (dtspk, E0epk, powts), were chosen based on
fits to the in-situ SEY measurements in CESR (Section 1.1.6).

We have found that in order to have any RFA signal for a high current electron beam, one needs
to produce some high energy photoelectrons. Currently this is accomplished by using a Lorentzian
photoelectron energy distribution (rather than the default Gaussian distribution), with a low peak
energy (ek0phel = 10eV), but a large width (eksigphel = 150 eV). However, the drift RFA data
does not seem to constrain the exact shape of the distribution. Measurements with a shielded
pickup detector (Section 1.2.2) provide a method to probe these parameters in more detail.

The photon flux and reflectivity at the RFA are fixed, based on a 3 dimensional simulation of photon
production and reflection in the CESRTAvacuum chamber (Section ??). Photoelectron parameters
were allowed to be different for different beam energies and species, because the photon energy
spectrum at any given location in CESR will be different for the two species. Plans are underway
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Table 1.3: List of beam conditions used for one round of fitting, and which parameter(s) they help
determine

Bunches Bunch current Species Bunch Spacing Beam Energy Parameter(s)

45 2.3 e+ 14 2.1 dtspk
20 2.8 e+ 4 4 dtspk
20 7.5 e+ 14 2.1 dtspk
20 2.95 e+ 14 4 dtspk
45 2.67 e+ 14 5.3 dtspk
45 1.25 e+ 4 5.3 dtspk
45 2.89 e- 4 5.3 dtspk, queffp
20 2.6 e- 14 2.1 queffp
45 0.8 e- 14 5.3 queffp
45 0.75 e+ 14 5.3 queffp
45 0.75 e- 14 2.1 queffp, P1epk
9 3.78 e+ 280 2.1 queffp, P1epk
45 0.75 e+ 14 4 queffp, P1epk
9 3.78 e- 280 2.1 P1epk
9 3.78 e- 280 5.3 P1epk
9 3.78 e+ 280 4 P1epk
9 4.11 e+ 280 5.3 P1epk

to develop a model for photoelectron production which takes into account the energy of the incident
photon.

In order to get a good fit to the data, one should choose parameters which have a strong effect on
the simulations, and are relatively independent of each other. We have found that a reasonable
fit can be obtained with as little as three parameters- typically the true secondary yield (dtspk),
elastic yield (P1epk), and quantum efficiency (queffp). The true secondary yield has the strongest
effect on data taken with short bunch spacings, high bunch currents, and positron beams. The
elastic yield, meanwhile, is best determined by data with large bunch spacing, while the quantum
efficiency prefers low beam current. Table 1.3 gives a list of data sets used in one round of fitting,
and indicates which parameter is most strongly associated with it.

Several sources of error must be taken into account when constructing the error matrix (W in
Eq. 1.4). They include:

• Noise in the measurements (typically quite small)

• Statistical errors in simulations. This is a major source of error. It can be reduced by
increasing the number of macroparticles used in the simulation, at the cost of increased the
run time.

• A general error of 10% was added to account for systematic uncertainties in the data. One
such uncertainty is unevenness in bunch currents along the train, which is not accounted for
in the simulation.

• We have observed a slow drift of baseline (zero current value) in measurements, on the order
of ∼ 2% of full scale. This amounts to ∼20nA on the lowest gain setting, and ∼.02nA on the
highest one.
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• An extra 20% error was added to signal in the simulation caused by beam pipe hole secon-
daries, to account for uncertainty in the modeling of this phenomenon.

• Since the gradient for Jacobian matrix (X) is determined by simulation, it will also have an
associated error. This cannot be included in the W matrix, because it will be different for
each parameter. However, it can still be calculated, and its effect on the final parameter
errors can be estimated.

We have found that, in general, one can obtain a reasonable fit to the data with only three (well
chosen) parameters. As mentioned above, one good set consists of the true secondary yield, elastic
yield, and quantum efficiency. Using more parameters does allow for a slightly better fit, at the
cost of uniqueness and clarity.

Fig. 1.38 shows some of the results of the parameter finding method for an uncoated aluminum drift
chamber. The plots compare the data and simulation for the signal across the 9 RFA collectors at
three different retarding voltages. Overall there is good agreement between data and simulation
for a wide variety of beam conditions.

In principle, errors on the final parameter values are readily obtainable during the course of the
analysis. The covariance matrix for the parameters is (XT W X)−1. Standard errors on each
parameter can be derived from the diagonal elements of the covariance matrix, and the correlations
between each parameter from the off-diagonal elements. However, it should be noted that this
analysis will only seek out the nearest local minimum in parameter space. It is always possible that
a better fit can be achieved with a different set of values, especially if one uses many parameters
in the fit. Therefore, these errors should be understood as the width of the local minimum, rather
than an absolute determination of the uncertainty in the parameter. Nonetheless, the ability of
this method to achieve a good fit for data taken under a wide variety of beam conditions strongly
implies that the PEY and SEY models used are reproducing reality to a reasonable degree.

The best fit values and confidence intervals for an Aluminum chamber are shown in Table 1.4. This
chamber was installed in the 15W location (see Section 1.1.4.1), and the fit used the data taken
during May 2010 (listed in Table 1.3). The values listed for the error bars also include an estimate
of the uncertainty introduced by errors in the Jacobian matrix, which is added in quadrature to the
standard error. Table 1.5 lists the best fit values for the 15E amorphous Carbon coated chamber,
using the same data sets. Finally, Table 1.6 gives the values for a TiN coated chamber, installed
at 15W during December 2010. As mentioned above, the starting point for all the listed SEY
parameters were taken from fits to measured in-situ data. It is worth noting that this analysis
indicates a very low secondary yield for both coated chambers.

One somewhat strange result of this analysis is that the quantum efficiency at 2.1GeV was found
to be quite low for positron beams at 15E, and electron beams at 15W. The value for the other
species, and for 4 and 5.3GeV, are all consistent with each other. The anomalous value is quoted
separately from the other best fit values. This discrepancy appeared for both the 15W Al chamber
and the 15E carbon coated chamber (it did not appear for the 15W TiN chamber, because no
2.1GeV electron beam data was used in the fit). It is most likely a reflection of the incompleteness
of our photon and photoelectron modeling.

Summary A systematic method for fitting RFA simulation to data has been presented, and best
fit values for PEY and SEY parameters of some materials have been given. Future work on this
topic includes:
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Figure 1.38: Comparison of RFA data and simulation, using best fit parameters. The plots show
the signal across the 9 RFA collectors at three different retarding voltages.
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Table 1.4: Best fit parameters- 15W aluminum chamber

Parameter Description Base Value Final Value

dtspk Peak true secondary yield 1.37 1.74 ± .02
P1epk Elastic yield at E = 0 .5 .43 ± .01
P1rinf Rediffused yield at E = ∞ .2 .2
E0epk Peak yield energy 280eV 280eV
powts Shape parameter 1.54 1.54
queffp Quantum efficiency, 2.1 GeV, e- .1 .034 ± .004
queffp Quantum efficiency, other .1 .111 ± .006

Table 1.5: Best fit parameters- 15E amorphous carbon coated chamber

Parameter Description Base Value Final Value

dtspk Peak true secondary yield .76 .55 ± .02
P1epk Elastic yield at E = 0 .5 .29 ± .02
P1rinf Rediffused yield at E = ∞ .2 .2
E0epk Peak yield energy 300eV 300eV
powts Shape parameter 1.77 1.77
queffp Quantum efficiency, 2.1GeV, e+ .1 .021 ± .003
queffp Quantum efficiency, other .1 .081 ± .017

Table 1.6: Best fit parameters- 15W TiN coated chamber

Parameter Description Base Value Final Value

dtspk Peak true secondary yield .73 .54 ± .01
P1epk Elastic yield at E = 0 .5 .36 ± .01
P1rinf Rediffused yield at E = ∞ .2 .2
E0epk Peak yield energy 370eV 370eV
powts Shape parameter 1.32 1.32
queffp Quantum efficiency .1 .068 ± .007
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• Repeating the analysis for other surface types

• Repeating the analysis for RFAs in magnetic fields, including dipoles, quadrupoles, and wig-
glers

• Comparing with other local cloud measurements, such as shielded pickups

• Incorporating a more complete description of photoelectron emission

The end result of this analysis will be a detailed and self-consistent description of the in situ primary
and secondary emission properties of the materials under investigation.

Investigations into Modelling the Chicane Cyclotron Resonance Measurements The
cyclotron resonance measurements described above corroborated the earlier SLAC measurments
made under very different beam conditions [42, 43]. The electron cloud modeling program POSINST
successfully modeled the SLAC measurements, showing that the resonant cloud buildup enhance-
ments observed for the uncoated aluminum vacuum chamber can follow from higher energy electrons
striking the bottom and top of the vacuum chamber at more grazing angles [43]. We have under-
taken similar modeling studies with the ECLOUD program package, extending them to describe the
resonant suppression mechanism observed in the TiN-coated chamber which is shown in Fig. 1.28.
Figure 1.39 shows the ECLOUD result around the first cyclotron resonance (n=1, B=89 G) in 2 G
steps for the case of an uncoated aluminum chamber. This simple model defines each collector
signal by the impact position of electrons on the top of the vacuum chamber. The collector current
is derived by the collector area, a transparency factor of 15%, and the size of the time interval.
No kinematic RFA acceptance function is applied, nor is any interaction between the RFA and the
cloud taken into account. Collector signal sums are accumulated over a time span of 360 ns, the
first half of which comprises 45 4-ns-spaced bunches populated with 1.44E10 2 GeV positrons. A
secondary yield value of 2.0 is assumed, as is an elastic yield of 1.0. No rediffused component in
the secondary yield is included in the model. The sum of the 17 collector signals clearly show the
resonant behavior. The individual collector contributions show that the central collectors (collector
7-11) signal varies little with magnetic field, while the resonant effect is clear in the outer collectors.
Figures 1.40 and 1.41 show how the increased signal on resonance arises. The upper plots show the
secondary yield as a function of incident electron energy, while the lower plots show the distribution
of incident energies. On resonance there is a class of electron with increased energies, resulting in
higher yields since for this bunch population the cloud energies are generally below the peak energy
of the secondary yield curve (300 eV). In addition, the spread in true secondary yields near the
peak energy is larger. This spread shows the range of incident angles, since the peak yield value of
2.0 is increased by a factor of up to 1.5 at more grazing incidence. The resonance is enhanced by
the circular shape of the vacuum chamber in the chicane, since the beam kicks from the centered
beam are radial. A model with an elliptical vacuum chamber showed no resonant behavior since
the incident angles were more grazing both on and off resonance.

This simple explanation for the resonant RFA signals is apparently contradicted by the resonance
suppression exhibited in a TiN-coated chamber (see Fig. 1.28) under the same beam conditions.
Since the cloud electron energy distribution and incident angles must be very similar, we investi-
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Figure 1.39: ECLOUD model for the RFA signals measured with the SLAC RFA in the PEP-II
chicane for a 45-bunch train of 2 GeV positrons. The sum of the 17 collector signals is shown in
green in the upper left plot as a function of the ratio of bunch spacing to dipole magnetic field as
the field is varied in 2 G steps around the resonant value of 89 G. The central collector signal is
shown in the upper right plot. The signals from the remaining 16 collectors are shown in left-right
symmetric pairs. This result showing the resonant enhancement of the RFA signal was obtained
with a secondary yield model appropriate for an uncoated aluminum chamber.
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Figure 1.40: Population of the modeled
secondary yield curve for the case of an
uncoated aluminum chamber and a chicane
magnetic field value of 129 G, halfway be-
tween the first and second cyclotron reso-
nances for the 4-ns bunch spacing.

Figure 1.41: Population of the modeled
secondary yield curve for the case of an
uncoated aluminum chamber and a chicane
magnetic field value of 89 G, which corre-
sponds to the first cyclotron resonance for
the 4-ns bunch spacing.

gated the possibility of a secondary yield curve decreasing with energy below the peak yield. We
chose a value of 1.0 for the elastic yield at low incident energy and a value of 0.5 for the peak
true secondary yield. The result, shown in 1.42, demonstrates that the resonant suppresion effect
can be modeled in this manner. Figures 1.43 and 1.44 show the corresponding secondary yield
population curves. Further modeling studies showed the transition from resonant suppression to
enhancement observed in the PEP-II data [42] in the same field scan over multiple resonances can
also be reproduced. However, there is no independent empirical evidence for such behavior in the
secondary yield for a TiN-coated chamber. The in situ measurements of TiN-Al samples described
below have measured true secondary yield values near 1.0, not 0.5. And the shielded pickup mea-
surements of cloud lifetime described in Sect. 1.2.2 clearly exclude values for the elastic yield great
than 0.1. Further modeling studies will be needed to understand the physical basis for the resonant
suppression.

1.1.4.3 Conclusions

1.1.5 Vacuum Performance Issues

1.1.6 In-situ SEY Studies

We used the in-situ SEY station described in Section ?? to take measurements on samples roughly
once a week. Measurements were done on samples coated with SEY-reducing films and bare metal
samples.
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Figure 1.42: ECLOUD model for the resonant suppression observed in the TiN-coated chamber
in the PEP-II chicane. This result was obtained under the assumptions of a peak secondary yield
of 0.5 and an elastic yield value of 1.0.
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Figure 1.43: Population of the modeled sec-
ondary yield curve for the case of a TiN-
coated aluminum chamber and a chicane
magnetic field value of 129 G, halfway be-
tween the first and second cyclotron reso-
nances for the 4-ns bunch spacing.

Figure 1.44: Population of the modeled sec-
ondary yield curve for the case of an TiN-
coated aluminum chamber and a chicane
magnetic field value of 89 G, which corre-
sponds to the first cyclotron resonance for
the 4-ns bunch spacing.

1.1.6.1 Secondary Electron Yield

The SEY is defined as

SEY = ISEY /Ip , (1.6)

where Ip is the current of the primary electrons incident on the sample and ISEY is the current
of the secondary electrons expelled by the bombardment of primary electrons. The SEY depends
on the energy and angle of incidence of the primary electron beam. The primary current Ip is
measured by firing electrons at the sample with the electron gun and measuring the current from
the sample with a positive bias voltage. A high positive biasing voltage of ∼150 V is used to
recapture secondaries produced by the primary beam, so that the net current due to secondaries is
zero.

The current ISEY due to secondary electrons is measured indirectly. The total current It is measured
by again firing electrons at the sample, but with a low negative bias (∼ −20 V) on the sample
to repel secondaries produced by the primary electron beam, and also to repel secondaries from
“adjacent parts of the system that are excited by the elastically reflected primary beam” [28]. Since
It is effectively the sum of Ip and ISEY (It = Ip + ISEY , with ISEY and Ip having opposite signs),
we calculate SEY as

SEY = (It − Ip)/Ip . (1.7)

Some SEY systems include a third electrode for a more direct measurement of ISEY , for example
the system at KEK [44]. Our in-situ setup cannot accommodate the extra electrode, so we cannot
use the more direct method; we must use the indirect method described above.
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Figure 1.45: Left: Data acquisition schematic. Right: 9 grid points where the SEY is measured.

1.1.6.2 Data Acquisition System

An electrical schematic of the system is shown in Figure 1.45. The current on the sample is
measured during three separate electron beam energy scans. Each scan automatically steps the
electron gun energy from 20 eV to 1500 eV in increments of 10 eV. For each energy, the focusing
voltage is set to minimize the beam spot size on the sample, based on previous measurements. This
process is controlled by a LabVIEW interface we developed [45] incorporating existing software
from Kimball Physics and Keithley. The first scan is done with a 150 V biasing voltage on the
sample to measure Ip, with gun settings for Ip ≈ 2 nA. This measurement is taken between grid
points 5 and 9 to avoid processing the measurement points with the electron beam during the Ip
measurement.

The second scan steps through the same gun energies with a bias voltage of −20 V on the sample
to measure It. At each gun energy, the beam is rastered across all 9 grid points while the program
records the current for each point.

To minimize error due to drift in the gun output current, we take a second Ip scan after the It scan.
The two Ip sets are averaged and the SEY is calculated at each energy. Identical measurements are
performed on the 45◦ system and the horizontal system.

1.1.6.3 Results

In-situ measurements have been done on bare aluminum, titanium nitride, and amorphous carbon
surfaces. Additional SEY measurements have been done on diamond-like carbon (DLC) surfaces,
but no measurements on DLC samples have been done in-situ yet.
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Figure 1.46: Repeated measurements of SEY as a function of energy for TiN-Al samples in the
horizontal station (left) and the 45◦ station (right).

Aluminum Samples with TiN Coatings Aluminum samples with titanium nitride coatings
provided by M. Pivi (SLAC National Accelerator Laboratory) were installed in CESR in both the
horizontal and 45◦ stations from January to August 2010 and their SEYs were measured roughly
once a week. These results are summarized in Figure 1.46. There is a peak in the SEY for an
incident electron energy near 400 eV. A significant decrease in the SEY is evident between the
first round of measurements and subsequent measurements. As the SEY decreases, there is a slight
upward shift in the energy at which the peak in the SEY occurs, as indicated by the dotted lines
in Figure 1.46.

The value of the SEY peak and the energy Emax at which the peak occurs are useful metrics
for tracking the SEY behavior as a function of exposure. The beam conditioning behavior of the
samples is illustrated in Figure 1.47, which shows the peak SEY and Emax for the center grid
point as a function of accumulated dose. The bottom axis indicates the electron beam current
integral in ampere·hours; the top axis indicates the calculated SR dose to the vacuum chamber
wall in photons per meter. Neither of these values includes a contribution from the positron beam,
because the dominant source of SR for the SEY stations is the electron beam. The SR photon
dose in Figure 1.47 accounts for direct SR from the beam onto the chamber wall at the location of
the SEY stations: it represents the “source term” and does not attempt to include the effects of
scattering of photons (or production of photo-electrons). The dose calculation does not differentiate
between the horizontal and 45◦ stations, even though the 45◦ station does not receive direct SR
and the stations’ distance from the bending magnet is not exactly the same.

As can be seen in Figure 1.47, the “fresh” sample in the horizontal setup began with a peak SEY of
almost 1.8 and reached a minimum SEY peak of just under 1. At this point the sample remained
under ultra-high vacuum (high 10−9 torr) for 2 weeks without exposure to beam. Under these
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Figure 1.47: Dependence of SEY peak (left) and Emax (right) on dose for TiN-Al samples in the
horizontal and 45◦ stations.
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conditions, the SEY increased by about 1%. After that, the sample was exposed to nitrogen gas
for 1 hour and then the system was pumped down again. The measured peak SEY increased from
1 to 1.12 after exposure to nitrogen. The sample was once again processed in CESR for about 10
weeks, with weekly SEY measurements; the peak SEY decreased to about 1.

The “fresh” sample in the 45◦ station started with a peak SEY of just above 1.7 and reached a
minimum SEY peak of around 1.2. After that the sample in the 45◦ was left under ultra-high
vacuum in the SEY system for 2 weeks, the peak SEY increased from 1.2 to 1.4. At that point we
have realized that the miniature hot filament vacuum gauge of the system had been left on, and
that this could explain why the peak SEY of the fresh sample after it reached a peak SEY of about
1.2 was increasing by few percent every week instead of decreasing as the horizontal sample had
been by a 1 to 2 percent per week. At that point, we have turned the miniature hot filament gauge
off and processed the sample in CESR for about 10 weeks. The peak SEY decreased to about 1.2,
as can be seen in the 45◦ “contaminated” curve in Figure 1.47. In a separate check, we have found
that the emission from a hot-filament vacuum gauge can contaminate the sample and causes the
SEY to increase.

Aluminum Alloy Samples In August 2010, aluminum alloy samples (Al6061-T6) were installed
in the in-situ systems. The results are summarized in Figure 1.48. The sample in the horizontal
setup began with a peak SEY of 2.5 for the center grid point, and reached a minimum SEY
peak of around 1.6 after 3 ampere·hours of exposure. The sample in the 45◦ station began with
a peak SEY of 2.25 in the center and reached a peak SEY of 1.6 after the same exposure. At
this point the horizontal SEY system was removed because of a malfunction and the spare SEY
system with a new Al6061-T6 sample was installed in the horizontal position. This new Al6061
sample had an initial SEY of about 2.9 and, after processing in CESR for about 6 weeks, the peak
SEY decreased to 1.9. The peak SEY of the 45◦ sample decreased from 1.6 to 1.5 during these 6
weeks of processing in CESR. The peak SEY value of 1.5 was achieved after 20 ampere·hours of
exposure. There was very little change in the SEY (a slight increase was observed) with additional
exposure up to 120 ampere·hours. Similarly, the second sample in the horizontal system had a
nearly constant peak SEY (with a slight increase) after 50 ampere·hours of exposure, up to about
100 ampere·hours.

The difference in the initial SEY between aluminum samples is presumably due to differences in
the initial surface condition. The Al6061-T6 samples were installed “as received” after cleaning in
an ultrasonic bath with alcohol to remove oil residues from machining. The initial peak SEY of
bare aluminum samples can vary a lot depending on the surface oxide layer.

Amorphous Carbon-Coated Samples In November 2010, the samples were replaced with
amorphous carbon-coated samples provided by S. Calatroni and C. Yin Vallgren (CERN). The
substrates were Al6061 (installed in the horizontal station), copper (installed in the 45◦ station)
and stainless steel (not installed in CESR, but measured in an off-line SEY system). The peak
SEY of the samples as a function of dose in CESR is shown in Figure 1.49. As can be seen, the
peak SEY of both samples is hardly affected by the exposure to the beam.

Initial Measurements on Diamond-Like-Carbon-Coated Samples We have done initial
SEY measurements on samples with diamond-like carbon (DLC) coatings on aluminum. The DLC
samples were provided by S. Kato (KEK). We have not yet installed any DLC samples in CESR;
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Figure 1.48: Dependence of SEY peak (left) and Emax (right) on dose for Al6061-T6 samples in
the horizontal and 45◦ stations.
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Figure 1.49: Dependence of SEY peak (left) and Emax (right) on dose for amorphous carbon-coated
samples in the horizontal and 45◦ stations. [Need to make this plot consistent with other
plots and use vector graphics]
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Figure 1.50: SEY as a function of incident electron energy for a diamond-like carbon-coated alu-
minum sample. The blue circles correspond to a “continuous” scan in energy (5 seconds for each
energy, with all 9 grid points; Point 5 is shown). The red squares correspond to a “discrete” scan
in energy (3 to 4 minutes waiting period with the electron beam deflected away from the point of
interest before each measurement; only Point 9 was measured).

we have only measured the SEY in the off-line system so far. The measured SEY as function of
beam energy for one of the DLC samples is shown in Figure 1.50 (blue circles). The SEY is strongly
distorted due to charging of the DLC-coated surface by the electron beam. To measure the true
SEY, we waited a long time (3 to 4 minutes) between each increment in the electron beam energy
to allow the surface to discharge and did the scan with a beam current of about 0.5 nA. The results
are shown in Figure 1.50 (red squares). As can be seen, the delay time produces a significant change
in the measured SEY.

1.1.6.4 Discussion

Our results shows that the initial 80% to 90% decrease in the peak SEY occurs within the first 2
weeks of processing, with a total photon dose of 1022 photons/m. This is true for both the horizontal
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and the 45◦ systems. After the rapid SEY decrease in the first 2 weeks, the peak SEY decreases
about 1 to 2% per week with processing for both the TiN-Al samples and the bare Al6061 samples.
On average the peak SEY decreases with increasing beam dosage, D, proportional to D−0.030 for
both the bare aluminum and the TiN-coated aluminum samples.

At this point we do not have enough data to draw any conclusions about the difference in processing
between samples placed in the horizontal system and the 45◦ system. For the TiN-Al, the sample
placed in the horizontal system reached a lower SEY value: a peak SEY of 1 compared to 1.2 in the
45◦ system. For the bare Al6061 samples, one set of samples reached the same peak SEY of 1.6.
A third sample in the horizontal system started at a higher initial SEY value of 2.9 and reached
a minimum peak SEY of 1.9 after an additional 6 weeks of processing in the horizontal system.
For comparison, in studies done at PEP-II, a bare Al6063 sample was processed in PEP-II beam
line had an initial peak SEY of 3.5 and reached a peak SEY of 2.4 after processing [46]. These
measurements suggest that, for bare aluminum samples, the initial value of the peak SEY varies
from sample to sample and the final value of the peak SEY after processing depend on the initial
value.

The amorphous carbon-coated samples had initial peak SEY values of about 1. They showed almost
no change in the peak SEY either in the horizontal or the 45◦ system.

We observed small, consistent differences in the peak SEY corresponding to the angle θ between
the incident electron gun beam and the normal to the sample surface. We have θ = 20◦ for points 1,
2, and 3; θ = 25◦ for points 4, 5, and 6; and θ = 30◦ for points 7, 8, and 9 (see Figure 1.45). Higher
SEYs were observed at points with larger θ. An example is shown in Figure 1.51 for one of the
amorphous carbon-coated samples (a stainless steel sample). The measurements for θ = 0 were done
at CERN by S. Calatroni and C. Yin Vallgren on a different sample. These measurements indicate
that, at Emax = 300 eV, the SEY dependence on incident angle θ is exp [1− 0.45 cos(θ)].

Our observation that the SEY depends on angle of incidence is qualitatively consistent with the
observations that, as the primary electron angle goes from normal incidence toward grazing inci-
dence, the SEY increases; this has been reported in recent secondary emission studies [28] as well
as early experiments [47].

1.1.6.5 SEY Studies Summary and Future Plans

For TiN-Al samples and bare Al6061 alloy samples, we observed that the main processing occurred
within the first 2 weeks, with a total photon dose of 1022 photons/m, while, after that, the SEY
decrease was about 1% per week. For Al6061, we observed that the SEYs after processing are lower
than the minimum SEY value of 2.4 for Al6063 reported by SLAC [46].

We are able to observe a small dependence of the SEY on the angle of the incident electron beam.
This indicates that the statistical errors are small enough for us to be able to resolve differences of
a few percent.

We are working on mitigating the effects of the current drift of the electron gun. The drift causes
a systematic error of around 2 to 4% in the calculated SEY. One method we are investigating is
to measure Ip for a given gun energy, and then change the bias voltage to measure It at the same
energy, before stepping to the next energy and repeating the process. However, we must account
for the discharging time of the capacitance of the SEY system and cables when we switch the
biasing voltage from 150 V to −20 V (and vise-versa), which can dramatically distort our current
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Figure 1.51: Angular dependence of SEY as a function of incident electron energy for amorphous
carbon-coated stainless steel sample.
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readings. The discharging of the system can be on the order of minutes. In our present method,
the biasing voltage is only switched twice, adding just a few minutes to the measurement time.
However, the method we are investigating switches the bias voltage at every energy—with 150 gun
energy changes per scan, the measurement time may be prohibitively long. We are investigating
modifications to minimize the stray capacitance and take fewer energy points.

We plan to compare the Al6063 and Al6061 alloys to better understand the large difference in the
peak SEY achieved after processing. Other future work will include the study of other material
samples, including samples cut from an extruded, aged (30+ years) 6063 aluminum CESR chamber.
In addition, we plan to measure the SEYs of materials coated in non-evaporable getter (NEG) thin
film, and continue to study amorphous/diamond-like carbon samples.

We plan to check the reproducibility of the results on TiN-Al samples and do additional checks for
systematic effects. We are designing additional experiments to determine whether SR bombardment
or electron cloud bombardment is the main source of processing.

1.2 Other Methods to Characterize EC Build-Up

While the RFAs provide the largest number of detectors at CESRTA, other techniques for measuring
the electron cloud density are being used at a subset of locations. TE Wave and Shielded Pickup
detectors provide data that is complimentary to that of RFAs. The Shielded Pickups have a
geometry that is similar to that of an RFA, but are designed to measure time resolved signals,
while the RFAs measure integrated current. The TE Wave technique - where the periodic electron
cloud modulates a carrier transmitted through the beampipe - is sensitive to the cloud density in
the center of the pipe, while both the RFA and Shielded Pickups measure the cloud current that is
normal to the pipe surface. The comparison of data taken using these complimentary techniques
should result in consistent measurements and modeling.

1.2.1 TE Wave Studies

Two versions of TE wave measurements were made at CESRTA. Initial measurements were based
on the transmission of microwaves between two points in the accelerator, using the beampipe as
a waveguide. In the course of taking this data, it became clear that a different interpretation of
the signals was needed in most cases - due to the presence of resonances in the frequency response
of the beampipe. This resulted in the recent development of TE wave resonant measurements
where the beampipe and its reflections are treated as a resonant cavity. Both techniques will be
discussed in the sections below. The transmission technique would be most relevant for regions of an
accelerator where there are few reflections; the resonant technique for regions where the reflections
are significant. These sections also show the historical development of TE wave studies.

1.2.1.1 TE Wave Transmission Measurements

Improvements to the theoretical model The theoretical model of the TE wave measurement
proposed by Caspers et al. in [48] only took into account the phase delay induced by the electron
cloud on a propagating TE wave. Moreover, changes in the cloud density were supposed to have a
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simple sinusoidal evolution. Under such a hypotheses the modulation sidebands amplitude, relative
to the carrier SBc, is simply given by

SBc =
∆Φ

2
(1.8)

if ∆Φ is the modulation index, with only one upper and one lower sideband present for low in-
dex modulation, which is always the case with cloud densities normally encountered in particle
accelerators. In the course of our experimental work, we encountered situations were amplitude
modulation, and more in general simultaneous phase and amplitude modulations, were present.
Additionally, the purely sinusoidal modulation model turned out to be an excessive abstraction in
most cases, so that an effort to generalize the theory proved to be necessary. We summarize the
result of our effort in the following subsections.

AM/PM modulation To increase the measurement sensitivity, it is good practice to choose
the TE wave frequency in correspondence of a peak maximum in the beampipe transmission func-
tion. In most cases those peaks correspond to standing waves trapped by discontinuities in the
vacuum chamber [49], may contain a simultaneous amplitude modulation component. The general
formulation for an AM/PM modulation is reported in Ref. [50]. If the standing wave has a narrow
resonance (high quality factor Q0), the modulation indexes are given by

∆M =
Q2

0
2

(
ωp

ωres

)4
∆Φ = Q0

(
ωp

ωres

)2 (1.9)

where ∆M = ∆Φ2/2 is the amplitude modulation index and ωres is the center frequency of the
resonance. In the hypothesis ωp << ωres the modulation sidebands amplitude can be written
as

SBc ≈ ∆Φ

[
1 +

1

2

(
∆Φ

2

)2
]
|F (ω)| (1.10)

where |F (ω)| is the Fourier transform of the cloud normalized density. In the case of a sinusoidal
modulation we can compare Eqs. 1.8 and 1.10 and see that the corrective term in brackets accounts
for the AM/PM modulation.

Time evolution of the electron cloud density From Eq. 1.10 one can easily see that the
temporal evolution of the electron cloud density is described by the function F (ω) in the frequency
domain, which being the transform of a periodic function will be composed of discrete lines separated
by the ring revolution frequency ωrev. In practical cases one usually observes a number of sidebands,
even for small modulation depths, as shown in Fig. 1.52. A fairly good approximation can be
obtained assuming that rise and fall times of the EC density are much shorter than the bunch
train length, but still at least comparable with the bunch spacing. In such a case, a rectangular
modulating function with duty factor equal to the train length divided by the machine length, can
obviously be seen as a more accurate representation than a sinusoidal one.
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Figure 1.52: Cancellation of modulation sidebands due to different bunch train lengths. Suppressed
modulation sidebands due to the rectangular modulation function are indicated for various train
lengths.

This hypothesis can find a degree of experimental verification by looking at the sidebands with
different train lengths. Figure 1.52 shows a detail of measurements in a dipole region of CESRTA
with bunch trains of different lengths equal to one fourth, one fifth and one sixth of the ring
circumference. One can see that correspondingly every fourth, fifth and sixth beam harmonic
is suppressed. The general properties of the Fourier transform point out how this behavior is
evidence of a strong rectangular modulation component. In such a case we can modify Eq. (1.8),
by introducing a correction factor that takes into account the rectangular nature of the modulation
and we have

∆ϕ =
1

2
· SBc

π

sin(tbωrev/2)
(1.11)

where tb is the bunch train length. Applying Carson’s Bandwidth Rule [51] an approximate evalu-
ation of the EC density rise and fall times (tr) is given by

tr ≈
2

3

2π

ωrev ·NSB
(1.12)

where NSB is the number of visible sidebands.

Beampipe attenuation compensation Experimental data showed a substantial difference in
signal attenuation for different frequencies even on a relatively narrow frequency span such as
the 390 kHz between TE wave frequency and first modulation sidebands. These differences need
to be compensated in order to correctly evaluate the modulation depth. It is worth stressing
that we frequently measured differences of several dB, which would easily cause significant errors
if unaccounted for. Furthermore, the attenuation can change substantially with varying beam
conditions, due principally to thermal effects, so that a continuous monitoring is necessary.

The relative amplitude of upper and lower sidebands (USB and LSB, respectively) have to be
corrected for the difference in transmission function of the measuring system at the carrier and
USB and LSB frequencies. This can be done with separate measurements, but we have recently
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Figure 1.53: Example of sidebands measurement in the wiggler straight. 45-bunch positron train
of 60 mA total beam current with 14 ns bunch spacing, with reference modulation sidebands (1
mrad modulation depth at 410 kHz).

introduced a calibration phase modulation of known index at a frequency close to the e-cloud
modulation frequency, so that the transmission function is about equal to that for the nearby
modulation sidebands. In this case, the reference phase modulation index at 410 kHz was chosen
to be 1 mrad, which should generate sidebands at -66 dBc. We observe lower values from which
it is possible to infer the attenuation, with respect to the carrier frequency, at the USB and LSB
frequencies (390 kHz). We calculate a correction factor equal to −66.0 − (−64.9) = − 1.1 dB
for the LSB and, analogously, +6.4 dB for the USB. The corrected value for the LSB is -49.2 dBc
and -48.3 dBc for the USB. It is worth noticing that, while before correction the two sidebands
were rather different (6.6 dB), after the correction is applied their values are almost identical, as
expected. An example of sideband measurement in the wiggler straight (L0) is shown in Fig.1.53,
where we are measuring the sidebands generated by a 45-bunch positron train of 60 mA total
current in a TE wave traveling along the Eastern half of the L0 wiggler straight.

As previously stated, being able to continuously monitor the transmission function at the frequen-
cies of interest is quite important during some experiments when beam and/or machine conditions
undergo large variations. In such cases the transmission changes due mostly to thermal effects can
disrupt the measurement as shown in Fig.1.54: While ramping the wigglers magnetic field, the
emitted synchrotron radiation increase can change the beampipe transmission function at the side-
bands frequency so that USB and LSB amplitudes actually appear to diverge during the experiment
until the correction is applied.

To estimate the EC density from the sidebands measured in Fig.1.53, we can use the average of
the two sidebands -48.8 dBc.

1.2.1.2 TE Wave Resonance Measurements

TE wave resonance measurements treat the beampipe and its reflections as a resonant cavity. Data
is generally taken by exciting and receiving at the same detector - so that the value of L used in
the transmission technique would be zero, making that interpretation invalid.

As originally proposed, the TE wave technique was based on transmission and reception of mi-
crowaves from one point in the accelerator to another using the beampipe as a waveguide. Button
detectors, normally used as part of the beam position monitor (BPM) system are used to couple
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Figure 1.54: Sideband levels relative to the carrier during wiggler ramp in the L0 straight with
(solid lines) and without (dashed) correction applied.

microwaves in/out of the beampipe. In the presence of a plasma (the electron cloud), transmitted
microwaves will be phase shifted and the EC density measured [50, 52–54].

However, in applying this technique to the data at CESRTA it was noticed that transmission through
the beampipe does not have a flat frequency response. In fact, the large variations in response
suggest the presence of resonant excitation of the beampipe rather than single pass transmission.
This interpretation was confirmed by the response when exciting and receiving at the same location,
where very large resonances are often seen.

Reflections and Standing Waves The beampipe at CESRTA was not designed to be a waveg-
uide. In devices such as vacuum pumps, longitudinal slots were used to provide a reasonable vacuum
connection, while minimizing the effect of beam-induced fields. However, these longitudinal slots
present an obstacle to the propagation of a TE waves. A simple example was found at 43E in
CESRTA where a BPM coupler/detector is located between two ion pumps (with slots). The re-
sponse shown in Fig. 1.55 is consistent with a waveguide of length L having a cutoff frequency fc
and n half wavelengths in the distance L between the pumps [49, 55].

The effect of dielectrics and plasmas on the resonant frequency of a cavity is well established [56].
The effect of small dielectrics on resonant frequency is very useful in mapping the fields of ac-
celerating cavities and plasma densities are routinely measured using resonant cavities [56, 57].
Perturbation techniques provide the following approximation for the shift in resonant frequency
due to a dielectric in a resonant cavity [58].

∆ω

ω
=

∫
V

(1− εr)E2
0 dV

2

∫
V
E2

0 dV

(1.13)

The effective dielectric constant of a plasma has real and imaginary parts. The imaginary part
gives a change in the Q of the resonance, the real part a change in its frequency. For low density
plasmas (ω2

p � ω2) with a small collision frequency (ν � ω) and no magnetic field, the real part
of the dielectric constant of a plasma can be written as [57]
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Figure 1.55: Sketch of 43E at CESRTA where a BPM Detector is located between two ion pumps
with longitudinal slots. The measured resonances follow the expected f2 = f2c +

(
nc
2L

)2
of a rectan-

gular cavity.

εr =

1−
ω2
p

ω2
(

1 + (υ/ω)2
)
 . (1.14)

The plasma frequency ωp is related to the electron cloud density by ne = ω2
pε0m/e

2 [56]. Let the
collision frequency be vanishingly small ν → 0. The change in resonant frequency becomes

∆ω

ω
=

e2

2ε0meω2

∫
V
neE

2
0 dV∫

V
E2

0 dV

. (1.15)

The resonant frequency shift is proportional to the local electron cloud density weighted by E2
0 . If

there are high local densities where the cavity electric field is zero, they will not have an effect on
∆ω . If the density is uniform, ∆ω is independent of the details of the electric field, since the same
integral appears in the numerator and denominator [51]. An EC density of 1012(m−3) would give
a frequency shift of about 20 kHz.

With a train of bunches in the storage ring, the electron cloud will grow and decay each time the
bunch train passes a given point - at the revolution frequency frev (390kHz at CESRTA ). The
quantity ∆ω is the modulation in the resonant frequency of the waveguide cavity produced by the
electron cloud. We now need to determine the effect that this modulation has on the observed
signals.

Effect on Signals For most of the TE Wave measurements made at CESRTA the resonant
beampipe is driven at a fixed frequency and its response measured with a spectrum analyzer. The
steady state solution for a driven oscillator is given in the following equations and illustrated in
Fig. 1.56.



D
R
A
F
T

56 Chapter 1. Electron Cloud Growth and Mitigation

x(t) = Ansin(ωt+ φn) (1.16)

An = Q
A

[(ω2
n − ω2)2 + ω4]1/2

(1.17)

φn = tan−1Q
(ω2
n − ω2)

ω2
(1.18)

Figure 1.56: Steady state amplitude and phase response as the cavity resonant frequency changes
from ω0 to ω1

To obtain a rough estimate of the EC density, a number of approximations will be made: that
the steady state solution above applies, the drive frequency ω is close to resonance (this results
primarily in phase modulation), the phase modulation, from Eq. (1.18) using the measured Q
of about 3000, is small and a cw modulation would give a ratio of the first sideband to carrier
amplitude of 1

2∆φ. Also, the phase modulation is not sinusoidal but modulated by the EC density,
so a further approximation needs to be made. Let the duration of the EC density and its effect
on the phase be of fixed amplitude for the length of the bunch train and zero otherwise. Given
these crude approximations, Fig. 1.57 is a plot of the EC density measured in the wiggler region
at 2 GeV during a wiggler ramp. The stored beam was a positron 45 bunch train spaced at 14 ns
with a total current of 35 mA.

Figure 1.57: Estimate of EC density during a ramp of wigglers

One concern with this approximation is that the beampipe cavity has damping time of about 500 ns.
So the duration of the cloud and the damping time of the cavity are of the same magnitude. We
are working on a more correct analysis that would include transient effects. For example, a step in
the resonant frequency of the cavity at t = 0 would be described by
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x(t < 0) = A0sin(ωt+ φ0) (1.19)

x(t ≥ 0) = A1sin(ωt+ φ1) + e−γt[A0sin(ω1t+ φ0)−A1sin(ω1t+ φ1)]. (1.20)

For t � 0, the exponential vanishes and only the first term (steady state) remains. In the steady
state solutions for t < 0 and t � 0 there is a difference both in the amplitude A0 → A1 and in
phase φ0 → φ1. But, especially near the resonant frequency, the amplitude change will be quite
small and the phase difference will dominate the signal.

The two terms in the brackets are at the new resonant frequency ω1. For small changes in amplitude
and phase this term will be close to zero and decays exponentially with time. To get a better sense
of its effect, suppose that the drive frequency ω is between the old and new resonant frequencies.
Then the amplitudes A0 and A1 will be nearly equal.

Using the A0 ≈ A1 and the trig identity sin(a)− sin(b) = 2[cos(a+b2 )sin(a−b2 )],

x(t) = A1sin(ωt+ φ1) + e−γt[A0sin(ω1t+ φ0)−A1sin(ω1t+ φ1)]

≈ A1sin(ωt+ φ1) +A1e
−γt[sin(ω1t+ φ0)− sin(ω1t+ φ1)]

≈ A1sin(ωt+ φ1) + 2A1e
−γt[cos(ω1t+

(φ0 + φ1)

2
)sin(

(φ0 − φ1)
2

)]

= A1sin(ωt+ φ1)− 2A1e
−γt[cos(ω1t+

(φ0 + φ1)

2
)sin(

(φ1 − φ0)
2

)]

≈ A1

{
sin(ωt+ φ1) − [φ1 − φ0]e−γtcos(ω1t+

(φ0 + φ1)

2
)

}
. (1.21)

So the term that contains the new resonant frequency is multiplied by the phase difference be-
fore/after the change in resonant frequency, which is small. So the change in signal will be primarily
that of a phase (and amplitude) shift.

The expression of Eq. (1.21) is more or less of the form Asin(x) +Bcos(x). This should be worked
out in detail, but for the moment: for ω ≈ ω1 and ignoring the fact that the phase terms are not
quite equal,

≈ A1

{
sin(ωt+ φ1) − [φ1 − φ0]e−γtcos(ω1t+

(φ0 + φ1)

2
)

}
≈≈ A1sin[ωt+ φ1 − (φ1 − φ0)e−γt]

= A1sin[ωt+ φ1(1− e−γt) + φ0e
−γt]. (1.22)

With all of these approximations, this looks like a rotation of the phase angle from φ0 to φ1 over
the damping time. This will have the effect of adding transitions to both the rising and trailing
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edges of the phase modulation shown in Fig. 1.56, and have a corresponding effect on the Fourier
transform of the modulation.

1.2.1.3 TE Wave Alternative Techniques

Finally, we give some other examples of measurements connected to alternative techniques we are
developing.

The Cutoff Resonance Bench measurements were made using WR284 waveguide which has a
cutoff frequency very similar to the beampipe of CESRTA near 2 GHz. A 4 meter long section was
driven near its longitudinal center using buttons similar in geometry to those in CESRTA. Using
metal blocks near the waveguide ends to generate reflections, cavity modes were excited. The
∆f ∝ E2 of these modes were plotted vs. longitudinal position using a dielectric bead, making use
of Eq. (1.13) and observing the shifts in resonant frequencies. For measurements with a uniform
waveguide, the resonances showed E2 varying as multiples of half wavelengths, including the lowest
n = 1 mode.

Figure 1.58: For bead pull measurements, a thin monofilament line varies the position of a dielectric
bead in WR284 waveguide. The center flange has BPM-like buttons that are used to couple
microwaves in/out of the waveguide.

However, a slight modification of the flange used at the drive point resulted in a significant change
in the bead pull measurement of the lowest resonance as shown in Fig. 1.62. The inside width of
the drive point flange was made 3 mm wider than the waveguide. This portion of the flange is
about 2cm long. The lowest ‘n = 1’ resonance was then shifted slightly below the cutoff frequency.
But rather than a half-sine wave, it has a response consistent with an exponential decrease in E,
as with an evanescent wave.

If excited in this mode, the response to EC density will occur over a distance of only about two
meters and provide a very localized measurement, following Eq. (1.15). This can be a great ad-
vantage, especially when trying to cross calibrate with other localized EC density measurement
techniques.

There are many details about this cutoff mode that we need to understand. Primarily, we need to
be able to tell - without performing a bead pull experiment in the storage ring - whether or not we
have excited this resonance vs. the usual half wave n = 1 cavity mode. One indication should be
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Figure 1.59: Sketch of straight drive flange Figure 1.60: Multiple half-wavelength res-
onances are observed in a section of WR284
waveguide.

the effect on the sequence of resonant frequencies and the extent to which they are different from
f2 ∝ n2. For example, the n = 1 resonance should be lower than normally expected.

At present, an extensive archive of resonant BPM measurements is available and efforts are under-
way (Ref [49, 51, 55]) for a full theoretical model of the relationship between sidebands amplitude
and electron cloud density in these conditions.

TE Magnetic Resonance During measurements in the chicane in the L3 region we observed a
strong enhancement in the modulation sidebands in correspondence of the upper hybrid resonance,
when propagating a TE wave polarized with its electric field normal to the chicane magnetic
field.

Figure 1.63 shows the change in modulation sideband amplitude when the chicane magnetic field
is changed so that the TE wave frequency corresponds to the upper hybrid frequency ωuh =√
ω2
p + ω2

cycl for the electron cloud plasma. Because in all practical situations, for a wave above

cutoff, ωp << ωcycl making the evaluating the plasma frequency from the upper hybrid frequency
measurement problematic, we are currently studying the phenomenon for waves below cutoff. Pre-
liminary results give us the hope of being able to effectively turn on and off transmission between
two BPMs by applying a relatively small dipole magnetic field to the portion of vacuum chamber
between them. This could be easily achievable by employing external air-coil magnets, for instance.
At that point, the evaluation of the electron cloud density in that region would essentially reduce
to the measurement of a resonance peak.
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Figure 1.61: Sketch of drive flange modifica-
tion.

Figure 1.62: The cutoff resonance was observed
using a modified drive flange in a measurement
with WR284 waveguide.

Figure 1.63: Modulation sideband amplitude near the upper hybrid resonance at two different
frequencies. Red and green traces correspond to opposite direction of propagation of the TE wave.

1.2.1.4 TE Wave Modeling

1.2.2 Shielded Pickup Studies

1.2.2.1 Measurements

Time-resolved shielded-pickup measurements provide time structure information on cloud develop-
ment, in contrast to the time-integrated RFA measurements [59]. However, they have relatively
primitive energy selection, since they have no retarding grid and position segmentation is more
coarse, the charge-collecting electrodes being of diameter 18 mm. Data has been recorded with bi-
ases of 0 and ±50V relative to the vacuum chamber. The studies described here address exclusively
the data a with bias +50 V in order to avoid contributions to the signal from secondary electrons
escaping the pickup. Such secondaries generally carry kinetic energy insufficient to escape a 50 V
bias. This choice of bias obviously provides sensitivity to cloud electrons which enter the port holes
with low kinetic energy. The front-end readout electronics comprise RF amplifiers with 50 Ω input
impedance and a total voltage gain of 100. Digitized oscilloscope traces are recorded with 0.1 ns
step size.
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Two Bunch Data The data shown in Fig. 1.64 was taken with two bunches of equal positron
currents, 36ns apart. With a ring revolution period of 2.5 µs, the cloud has presumably fully
decayed by the time of the arrival of the first bunch. This first bunch produces a fairly small signal
in the detector. The signal from the second bunch is much larger, not because it has produced
more photoelectrons, but because its electric field kicks electrons that were produced by the first
bunch into the detector.

Figure 1.64: Shielded pickup signal from two
bunches of positrons spaced at 36 ns

Figure 1.65: The signal from two bunches of
electrons spaced at 20 ns

Another feature of the plot in Fig. 1.65 is the presence of what is presumed to be a small direct
beam signal. The geometry of the detector holes give reasonably good (but not complete) isolation
from the electromagnetic field of the beam. This signal provides a convenient fiducial that can be
used to measure the time-of-flight of cloud electrons.

For example, notice that the peak of the signal from the first bunch occurs about 15 ns after its
direct beam signal. Given the detector geometry, most of these electrons must be coming from the
floor of the beampipe, a distance of 5 cm, which would require an energy of roughly 30 eV.

After the passage of the second positron bunch in Fig. 1.64, the cloud electrons enter the detector
almost immediately. Since this is a positron beam, the electrons kicked into the detector must
come from below the beam height in the chamber, at least 2.5 cm from the detector. These initial
electrons must have energies of many hundreds of eV and originate close to the beam.

Fig. 1.65 is the signal produced by two electron bunches spaced at 20 ns. Notice that the signal
from the first bunch is not visible (except for the direct beam signal) and that the signal from the
second bunch has a faster rise time than that of a positron beam.

Two Bunches with Different Spacings The much larger signal after the passage of the second
bunch suggests that this signal is dominated by cloud electrons that are already in the pipe and
are being kicked into the detector. This kick has an effective duration that is set by the sum of
the length of the bunch and the size of the button, about 120 ps. So the second bunch signal is
effectively a sample of the electron cloud in the chamber at the time of the second bunch’s transit.
Following this idea, pairs of bunches with equal currents were injected with different spacings. The
result was a mapping of the electron cloud density produced by the first bunch as a function of
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Figure 1.66: Overlay of two bunch data with spacings in multiples of 4 ns at 2.1 GeV with an
aluminum chamber

time as the second bunch samples the cloud. In Fig. 1.66, a number of these measurements are
plotted on the same time scale, showing the decay of the cloud.

Single Bunch with Solenoid When the solenoid surrounding the shielded pickup is energized,
there is a noticeable effect on the detector signal that generally depends on the sign of the magnetic
field. The four plots in Fig. 1.67 show the signal vs. solenoid field for 15E, 15W, both with positron
and electron beams. In the top left plot of Fig. 1.67 there is a large signal when the sign of the
magnetic field positive. This positive magnetic field is such that primary electrons produced at
the outside wall would be directed upward into the detector. It is likely that this signal is due
to the synchrotron light stripe in the mid-plane of the beampipe producing a concentration of
photoelectrons along that stripe. The magnetic field that gives the largest signal, -14 G, can be
used to estimate the electron energy at approximately 150 eV.

So when used with a solenoid, the 15E detector seems to function as a crude spectrometer with an
electron bunch. However, data from positrons at 15E or either beam at 15W is inconsistent with
this simple interpretation. So while there is hope that the use of a solenoid field can give useful
information about electron energies, there are inconsistencies in data interpretation that need to
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Figure 1.67: Pickup signal vs. solenoid field with a single bunch

be resolved through more careful modeling.

1.2.2.2 Shielded Pickup Modeling

Sensitivity to Photoelectron Energy Distribution The upper row of Fig. 1.68 shows ex-
amples of shielded pickup signals for two bunches of 5.3 GeV positrons (left) and electrons (right)
separated by 14 ns. The population of the first bunch is 1.3x1011 while that of the trailing bunch
varies up to a similar value. The trailing bunch accelerates cloud particles into the detector,
producing the second signal. The arrival time and structure of the earlier signal corresponds to
photoelectrons produced at the time of bunch passage on the lower chamber wall. The kick from
the positron bunch accelerates such photoelectrons toward the detector, whereas in the case of an
electron beam the signal electrons must carry sufficient kinetic energy to overcome the repulsion of
the beam bunch.

The lower row of Fig. 1.68 shows an initial attempt to model the case of two 1.3E11e bunches using
the electron cloud simulation code ECLOUD [39]. The calculation of cloud kinematics including
space charge forces and beam kicks determines arrival times, momentum vectors and charges of
the macroparticles reaching the upper surface of the chamber at the positions of the pickups. This
early attempt at simulating the observed signals included a rather crude model of the port hole
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Figure 1.68: Upper row: shielded pickup signals produced by two 5.3 GeV positron (left) and
electron (right) bunches separated by 14 ns. The leading bunch population is 1.3E11e . The
population of the second bunch varies up to a similar value. Lower row: initial ECLOUD model
results exhibiting discrepancies with the measured signals which are quite dramatic in the case of
the electron beam.
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Figure 1.69: Low- and high-energy regions of the photoelectron energy distributions used to model
the measured signals shown in Fig. 1.68. The original low-energy distribution shown in blue results
in dramatic discrepancy with the signals observed in the case of an electron beam. The modified
distribution shown in red provides good agreement with the observed signals.

acceptance, leading to poor approximation of the magnitude of the signal, but it was sufficient to
diagnose the obviously discrepancy with the observed signals. The positron case shows moderate
time structure differences, but the modeling of the electron beam kick exhibited a dramatic dis-
crepancy. The arrival times of the observed signals indicate photoelectron production on the lower
wall of the chamber, which is effected in the simulation via a reflectivity parameter distributing
20% of the photoelectrons uniformly in azimuth. The prompt signal from each electron bunch cor-
responds to photoelectrons produced on the upper wall repelled into the detector during the bunch
passage. The photoelectrons produced on the lower wall in the ECLOUD simulation are similarly
reabsorbed, and these are the ones needed to produce the observed signal! In other words, the
measurement shows that photoelectrons of sufficient energy to overcome the repulsion of the beam
bunch must be present. The photoelectron energy distribution in this original default model is
common to many successful simulations of a wide variety of experimental observations [39, 60, 61],
namely a gaussian with average and rms values of 5 eV limited by truncation to positive values.
Figure 1.69 compares such a distribution (blue) to a power-law modification adequately reproduc-
ing the observed signal shapes (red). Low-energy and high-energy regions are shown normalized
on logarithmic scales to illustrate the dramatically higher energies needed.

This new high-energy distribution was determined by matching single-bunch models to the mea-
sured signals for various electron bunch currents as shown in Fig. 1.70. The measured signals for
a single bunch of 5.3 GeV electrons are shown in the left column. A bunch current of 1 mA corre-
sponds to a bunch population of 1.6x1010. The model successfully reproduces the increase of signal
magnitude with bunch current. While some time structure discrepancies remain, the improvement
relative to the results shown in Fig. 1.68 is remarkable. The overall normalization of the modeled
signals is proportional to the assumed reflectivity value, which in this case was 20%. In addition,
the model also exhibits a prompt signal arising from photoelectrons produced nearby the detector
repelled into it during the passage of the bunch, increasing with bunch current similarly to the
observed signals.
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Figure 1.70: Comparison of measured single bunch signals for various electron bunch currents (left
column) to the ECLOUD model (right column) after improving the modeled photoelectron energy
distributions.
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Detailed Photoelectron Energy Modeling using Bunch Current Scans A detailed model
of the photoelectron kinetic energy distribution for photoelectrons produced by reflected photons
can be obtained by exploiting SPU data recorded for different bunch current levels. The early
SPU signal from the leading bunch for a positron beam is largely due to photoelectrons produced
on the bottom of the vacuum chamber. This is the closest production point where the beam kick
attracts the photoelectrons toward the SPU. Thus the size and shape of the leading bunch signal
is determined by the reflected photon rate, azimuthal distribution, the quantum efficiency for pro-
ducing photoelectrons, the kinetic energy distribution of the photoelectrons and the strength of the
attractive beam kick for a positron beam. In particular, the arrival time distribution determines
the shape. By modeling the shape for different strengths of beam kick, we can extract the photo-
electron energy distribution. An example of such an analysis is shown in Fig. 1.71. Note that the
signal begins just a few nanoseconds after bunch passage even for weak beam kicks, indicating that
high-energy photoelectrons were produced (hundreds of eV).

This level of modeling accuracy was achieved with a photoelectron energy distribution, consisting
of the sum of two power law distributions each parameterized by values of P1, P2, and E0:

f(Epe) ∝
EP1
pe(

1 +
Epe

E0

)P2
(1.23)

where the parameter E0 is related to the value of the energy at the maximum of the distribution
Epeak by

E0 = Epeak
P2 − P1

P1
(1.24)

The high-energy component (22%) has a peak energy of 80 eV and an asymptotic power of 4.4
(P1 = 4, P2 = 8.4). Its contribution to the signal is shown as yellow circles in Fig. 1.72. The
low-energy component (78%) has a peak energy of 4 eV and an asymptotic power of 2 (P1 = 4,
P2 = 6). It’s contribution to the signal is shown as pink triangles. The model with the combined
energy distribution is shown on three horizontal scales in Fig. 1.73. Note that these comparisons
are complicated by the fact that the cloud development for a single photoelectron component is
unrealistic. The approximate validity of the superposition shows that space charge forces are weak,
as is any contribution from photoelectrons produced at the primary source point on the outside
wall of the chamber.

This analysis presents an opportunity to relate the obtained photoelectron energy distribution to
the incident synchrotron energy spectrum and thus derive an estimate of the energy dependence
of the quantum efficiency. For example, the power law contributions have been determined in this
manner for 2.1 GeV positron beams, showing that the high-energy tails are greatly reduced [62].
These studies also allow us to draw qualitative conclusions on the photoelectron energy distributions
for various coatings, as described below in the section on vacuum chamber comparisons under under
the same beam conditions and radiation environment.

Since these studies pertain to photoelectrons produced by reflected synchrotron radiation photons,
the incident photon energy spectrum is a convolution of the critical energy at the source and the
energy dependence of the reflection process. Detailed work on modeling reflected photon trajectories
is underway [63, 64].
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Figure 1.71: Modeled and measured leading
SPU signals for bunch currents of 1, 2, 3 and
4 mA/bunch. The dramatically varying am-
plitudes and shapes are successfully repro-
duced by tuning the modeled photoelectron
energy distribution as described in the text.

Figure 1.72: Two power-law contributions
to the modeled photoelectron energy distri-
bution. The yellow circles show the contri-
bution to the signal from the high-energy
photoelectron component, and the magenta
triangles the low-energy contribution. The
combined result is shown in blue.

Figure 1.73: Modeled photoelectron energy spectrum resulting from the weighted contribution of
the two power laws
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Figure 1.74: Modeled and measured leading SPU signals with differing distributions for the
parameter ESEY ranging from 0.4 to 1.0. For values greater than 0.8, a late tail appears in the
signal, inconsistent with the measured signal.

Constraints on the Production Energy Distribution for Secondary Electrons Long
after the photoelectrons from the bottom of the beampipe have produced the peak of the leading
bunch signal, secondary electrons produced by photoelectrons from the primary source point in
the horizontal midplane on the outside wall of the chamber begin to enter the shielded pickup
detector. Their arrival times depend on many characteristics of the model, such as the photoelectron
energy distribution for direct (unreflected) photons, their production angular distribution, and, in
particular, the energy and production angle distribution of the secondaries. The ECLOUD code
provides for a variety of secondary energy distribution parameterizations, many of which could be
excluded by studies such as the one shown in Fig. 1.74. For the best parameterization,

f(Esec) ∝ Esec exp(−Esec/ESEY) (1.25)

an upper bound was obtained on the parameter ESEY, which determines the falling exponential
slope. A high-energy tail produces a late signal inconsistent with the measured signals.
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Figure 1.75: Modeled and measured 14-ns witness signals with values for the parameter ESEY rang-
ing from 0.4 to 1.0. For values less than 0.8, the signal shape is distorted in a manner inconsistent
with the measured signal.

The signal from a witness bunch following 14 ns after the leading bunch also has a contribution
from reflected photons similar to the one that dominates the leading bunch signal. However, it
includes additionally a much larger contribution from secondary cloud electrons accelerated into
the SPU detector by the witness-bunch kick. Those present near the vertical plane containing the
beam below the horizontal midplane at the time the witness bunch passes can arrive even earlier
than the photoelectrons from the bottom of the beampipe. Figure 1.75 shows that if the secondary
energy distribution does not include sufficiently high energies, the modeled 14 ns witness bunch
signal shape is distorted and inconsistent with the measured signal.

Remarkably, the two constraints on the secondary electron production kinetic energy distribution
described above restrict the ESEY parameter to a narrow range of values around 0.8 eV.
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Cloud Lifetime Studies Using Witness Bunches While the awareness of the sensitivity of the
shielded pickup measurements to the parameters of photoelectron production was largely motivated
by inadequacies of the model discovered in its application to recent measurements, the original
intended use of these time-resolved cloud measurements was to provide a quantitative estimate
of the elastic yield parameter in the secondary electron yield model. A similar investigation was
performed at RHIC [65]. The basic concept is that the mature cloud long after passage of any
beam bunch is dominated by low-energy electrons which suffer predominantly elastic interactions
with the vacuum chamber wall. The elastic yield parameter describes the ratio of outgoing to
incoming macroparticle charge in probabilistic models [34], and carries a value typically 0.5-0.7,
determining the decay time of the cloud density, typically around 100 ns. High-energy electrons
of more than 100 eV, produced by synchrotron radiation, beam kicks, or the rediffused component
of the secondary yield process, undergo primarily the so-called “true” secondary yield process, in
which the produced secondary carries only a few electron volts of kinetic energy, resulting in the
dominance of low-energy electrons late in the cloud development.

Figure 1.76 shows an ECLOUD secondary yield population curve typical of the shielded pickup
signal simulations.The true secondary yield maximum at 400 eV ranges from a minimum of 0.9 to
a maximum of 1.5 owing to the dependence on incident angle. At low energy the yield value is
dominated by the elastic interactions with the chamber wall. This case exhibits an elastic yield
parameter of 0.55.

The witness bunch experimental method consists of generating a cloud with a leading bunch, then
accelerating cloud electrons into the shielded pickup detector with a trailing bunch at various delay
times. Table 1.7 shows the witness bunch data sets which were recorded from March, 2010 through
June, 2011. Additional data sets with delay times restricted to 14 ns and 84 ns at bunch currents
of 1, 2, 4, 6, and 8 mA were also taken for systematic checks of the modeling.

The magnitude and time structure of the signal from the leading bunch is determined by the
reflective properties of the vacuum chamber and by the energy-dependent quantum efficiency, as
described in the preceding section. The signal induced by the witness bunch has a contribution
similar to that of the leading bunch added to the contribution from the existing cloud kicked into
the detector. The latter contribution is sensitive to the cloud density and the spatial and kinematic
distributions of the cloud electrons. Figure 1.77 shows the results of six sets of simulations with
various values for the elastic yield parameter δ0. In each of the six plots, eleven two-bunch (5.3 GeV,
4.8E10e positrons each) pickup signals are superposed, whereby the delay of the witness bunch varies
from 12 to 100 ns. The modeled signals are shown with the statistical error bars corresponding to
the number of macroparticles contributing to the signal. The magnitudes of the modeled signals
at large witness bunch delay clearly show the dependence on the elastic yield parameter δ0 as it
is varied from 0.05 to 0.75. The most consistent description of the measured signals is given by a
value of δ0 = 0.75. This value can be compared to the value of δ0 = 0.5 used in the modeling of
CESRTA coherent tune shift measurements as described in Refs. [60, 61], where the measurements
had much less discriminating sensitivity to the elastic yield.

Figure 1.78 shows a similar study, but for a titanium-nitride-coated aluminum chamber. For each
of the six values assumed for the elastic yield, thirteen two-bunch (5.3 GeV, 8.0E10e positrons each)
pickup signals are superposed, whereby the delay of the witness bunch is varied from 14 to 84 ns.
The optimal value for the elastic yield is clearly less than the value determined for the uncoated
aluminum chamber, with δ0 = 0.05 providing the best description of the measurements.

These comparisons show a number of intriguing discrepancies. The leading bunch signal shape
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Figure 1.76: Secondary yield population curve typical of the ECLOUD model for the shielded
pickup signals. The upper plot shows the yield value (ratio of secondary macroparticle charge to
that of the incident charge) as a function of the incident kinetic energy. At low energy the yield
value is dominated by the elastic interaction with the chamber wall. This case exhibits an elastic
yield parameter of 0.55. The lower plot shows the incident energy distribution. The elastic and
rediffused components are shown in green and blue, respectively. The sum of all three components,
true, elastic and rediffused, is shown in red. Since the three colors are plotted on top of each other,
the upper plot shows primarily blue at low energy, even though the elastic process dominates, as
is seen in the lower plot.
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Table 1.7: Shielded pickup witness bunch data sets recorded from March, 2010 through June,
2011. Note that the various cloud-mitigating coatings (TiN, a-carbon, and diamond-like carbon)
were swapped into the different radiation environments at 15E and 15W. Data sets with differing
total radiation dose were obtained as well. Two vacuum chambers with a-carbon coatings were
studied, providing information on production reproducibility.

Date Species Beam Energy Bunch Current 15E/W Mitigation Bunch Spacing
(GeV) (mA) Technique (ns)

03/27/2010 Positrons 5.3 5 W a-Carbon (1) 14-84
E TiN

Electrons 5 W a-Carbon (1) 14-70
E TiN

05/09/2010 Positrons 2.1 3 W Al 4-140
E a-Carbon (2)

Electrons 3 W Al 4-20
E a-Carbon (2)

05/17/2010 Positrons 5.3 3 W Al 4-100
E a-Carbon (2)

Electrons 3 W Al 4-100
E a-Carbon (2)

05/19/2010 Electrons 2.1 1 W Al 4-120
E a-Carbon (2)

12/24/2010 Positrons 5.3 3, 5 W TiN 14-84
E a-Carbon (2)

Electrons 3, 5 W TiN 14-84
E a-Carbon (2)

04/07/2011 Positrons 5.3 3, 5 W TiN 14-84
E DL Carbon

Electrons 3, 5 W TiN 14-84
E DL Carbon

04/16/2011 Positrons 2.1 3, 5 W TiN 14-84
E DL Carbon

04/17/2011 Electrons 3, 5 W TiN 14-84
E DL Carbon

06/11/2011 Positrons 2.1 3, 5 W TiN 14-84
E DL Carbon

06/12/2011 Electrons 3, 5 W TiN 14-84
E DL Carbon

06/18/2011 Positrons 5.3 3, 5 W TiN 14-84
E DL Carbon

Electrons 3, 5 W TiN 14-84
E DL Carbon
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Figure 1.77: Witness bunch study with the uncoated aluminum chamber. Eleven two-bunch scope
traces are superposed in each of the six plots, whereby the delay of the witness bunch ranges from
12 to 100 ns. The modeled signals are shown with the statistical error bars corresponding to the
number of macroparticles contributing to the signal. The magnitudes of the modeled signals at
large witness bunch delay clearly show the dependence on the elastic yield parameter δ0 as it is
varied from 0.05 to 0.75. The most consistent description of the measured signals is given by a
value of δ0 = 0.75.
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Figure 1.78: Witness bunch study with the titanium-nitride-coated aluminum chamber. The
smooth curves are the digitized shield pickup signals. Six two-bunch scope traces are superposed
in each of the six plots, whereby the delay of the witness bunch ranges from 14 to 84 ns. The
magnitudes of the modeled signals at large witness bunch delay clearly show the dependence on
the elastic yield parameter δ0 as it is varied from 0.05 to 0.95. The most consistent description of
the measured signals is given by a value of δ0 = 0.05.
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exhibits the need for further tuning of the photoelectron energy distribution. The signal widths
tend to be wider than observed. In addition, such a low value of 0.9 for the secondary yield of
an uncoated aluminum surface cannot be easily understood, since the tune shifts measurements
require an average value around the CESR ring of about 1.8. A wide variety of systematic studies
have been undertaken since the ECLOUD’10 workshop, discovering sensitivity to many detailed
characteristics of the cloud. For example, the signal widths for early witness signals depend strongly
on the azimuthal production distribution of photoelectrons, as was observed by implementing in
ECLOUD the distributions calculated by the photon-tracing reflectivity model for the CESR ring
described in Ref. [63]. Nonetheless, the dramatic improvements in consistency obtained via such
systematic studies have not changed the quantitative conclusions concerning the sensitivity to the
value for the elastic yield. Generally one can say that the choice of peak true secondary yield value
relative to the effective reflectivity value determines the ratio of the early witness bunch signal
magnitudes to that from the leading bunch. However, for witness bunches late enough that the
signal magnitude becomes comparable to that of the leading bunch, there is little sensitivity to the
true secondary yield. Instead, those signal magnitudes are determined by the value assumed for
the elastic yield.

In situ comparisons of custom vacuum chambers One fruitful analysis strategy has proved
to be the comparison of SPU signals in chambers which have been swapped into the same location
in the CESR ring and studied under identical beam conditions [66]. The two regions in CESR
equipped with SPU detectors differ in radiation environment, since the dominant source points
are in dipole magnets of differing strengths. At 5.3 GeV, for example, the source dipole field
is 3 kG (2 kG) in the west (east) region for a positron beam, resulting in a critical energy of
5.6 keV (3.8 keV). In addition, the situation with regard to reflected radiation is different. By
comparing SPU signals recorded at the same place in the ring with the same beam energy, bunch
spacing and bunch population, many systematic contributions to the comparisons are avoided, and
relatively simple changes to the modeling suffice to quantify the different properties of the vacuum
chambers.

Figure 1.79 shows such a comparison for an a-C-coated chamber in May and December 2010 for
two 5.3 GeV 28 ns-spaced bunches each carrying 4.8 × 1010 positrons, corresponding to a bunch
current of 3 mA. During the intervening time interval, CESR had operated at high current as an
X-ray research facility, with the consequence that synchrotron radiation dose on the chamber had
increased by a factor of about 20, from 8.1×1023 to 1.8×1025 γ/m. Also shown is the ECLOUD
model optimized to reproduce the May measurement. Since the signal from the leading bunch
arises from photoelectrons produced on the bottom of the vacuum chamber [66–68], careful tuning
of the energy distribution and quantum efficiency (QE) for photoelectrons produced by reflected
photons is required to reproduce the size and shape of the signal. The signal from the witness
bunch includes additionally the contribution from secondary EC electrons accelerated into the SPU
detector by the witness-bunch kick. The modeled witness signal is therefore crucially dependent
on the SEY and production kinematics. Since conditioning affects both signals similarly, we can
conclude that the change is in the QE rather than in the SEY. The December measurement is
reproduced by a 50% decrease in the modeled QE for photoelectron production. A reduction in
the SEY of 25% is inconsistent with the observed effect, since the modeled leading bunch signal
remains unchanged.

Guided by the above comparisons, we can assess conditioning effects in the TiN- and DL-carbon-
coated chambers in similar fashion. Figure 1.80 compares the SPU signals for two 8 × 1010 e+
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Figure 1.79: Shielded pickup signals measured in an a-C-coated chamber in May (blue dotted
line) and December (red dotted line) of 2010 for two 5.3 GeV, 28-ns-spaced bunches each carrying
4.8× 1010 positrons. The ECLOUD model optimized for the May data is shown as blue circles, the
error bars showing the signal macroparticle statistical uncertainties.
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Figure 1.80: SPU signals showing condi-
tioning effects in the TiN-coated aluminum
vacuum chamber

Figure 1.81: SPU signals showing condition-
ing effects in the aluminum vacuum chamber
coated with DL carbon

bunches in the TiN-coated chamber in April and June 2011, with accumulated synchrotron radiation
doses of 5.9×1024 and 1.1×1025 γ/m, corresponding to integrated beam currents up to more than
730 amp-hours. Changes in the QE and SEY are less than a few percent. The conditioning effects
in the DL-carbon-coated vacuum chamber are quite different, as shown in Fig. 1.81. Conditioning
effects are clearly observed for a radiation dose increasing from 6.6×1024 to 1.3×1025 γ/m, cor-
responding to 370 and 730 amp-hours. Remarkably, the size and risetime of the signal from the
leading bunch increased, indicating that the QE for photoelectrons produced by reflected photons
increased somewhat, and that more photoelectrons were produced at higher kinetic energies. De-
spite the increase in photoelectron production, the signal from the witness bunch decreased, showing
that the conditioned SEY is significantly lower. Future modeling efforts will provide quantitative
estimates for these changes.

The method of in situ comparison of custom vacuum chambers can also be used to compare the
characteristics of different mitigation techniques. Figure 1.82 compares signals from a TiN-coated
aluminum chamber and an uncoated chamber with a factor of ten lower synchrotron radiation dose.
The shape and size of the leading bunch signal show that the quantum efficiency for producing
photoelectrons from reflected photons is much lower for the TiN coating. The secondary yield is
also significantly smaller. A comparison between TiN and amorphous carbon coatings is shown
in Fig. 1.83. The later, smaller signal from the leading bunch from the a-carbon chamber shows
that the quantum efficiency is lower, particularly for high-energy photoelectrons. However, the
similar magnitudes of the signals from the witness bunch indicate that the secondary yield for TiN
is somewhat smaller than that for a-carbon. Further modeling promises to provide quantitative
results for these qualitative observations.

Use of a Weak Solenoidal Magnetic Field One type of measurement which has been obtained
with the shielded-pickup detectors is illustrated schematically in Fig. 1.84. The vacuum chambers
have been outfitted with windings to approximate a solenoidal field in the region of the cloud with
magnitude up to 40 G. Since signal contributions require nearly vertical arrival angles, the centers of



D
R
A
F
T

1.2. Other Methods to Characterize EC Build-Up 79

Figure 1.82: SPU signals exhibiting the dif-
ference in cloud buildup characteristics be-
tween a TiN-coated aluminum chamber and
an uncoated aluminum chamber with a fac-
tor of ten lower synchrotron radiation dose

Figure 1.83: SPU signals exhibiting the dif-
ference in cloud buildup characteristics be-
tween a-carbon-coated and TiN-coated alu-
minum chambers

the corresponding circular trajectories for any given magnetic field value lie in the horizontal plane
of the ports. The three trajectories originating at the primary impact point of the synchrotron
radiation and leading to the center of each electrode thus select different regions of photoelectron
energy and production angle, as shown. Experiments to date have shown that the 40 G field
magnitude range suffices to cover the full energy range of the photoelectrons produced by a 2.1 GeV
beam (Ecritical ≈ 300 eV) (i.e. no pickup signal is observed for field values of 0 and 40 G), in contrast
to the case of a 5.3 GeV beam (Ecritical ≈ 5 keV), where photoelectron energies suffice to produce
an observable signal even at 40 G. Furthermore, reversal of the solenoidal field provides information
on the production of photoelectrons at a point on the vacuum chamber opposite the primary source
point and thus relevant to the reflective characteristics of the vacuum chamber wall. This paper does
not discuss in detail the measurements obtained with solenoidal field, which remain under analysis,

Figure 1.84: Vacuum chamber wall cross section with circular trajectories of photoelectrons
contributing to the pickup signals.
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but instead concentrates on an alternative method to measure photoelectron energy.

Summary The shielded pickup detectors installed in the CESR ring in 2010 have begun providing
a wide variety of time-resolved measurements of electron-cloud-induced signals. Measurements with
custom vacuum chambers incorporating cloud mitigation techniques such as carbon and titanium-
nitride coatings have been obtained and compared to the case of an uncoated aluminum chamber.
Weak solenoidal magnetic fields have been employed to study photoelectron production kinematics.
A model for the shielded pickup acceptance has been developed in the context of the electron cloud
simulation code ECLOUD. The shielded pickup data have proved remarkably sensitive to model
parameters poorly constrained by any other experimental means, such as the azimuthal production
distribution for photoelectrons and their energy distributions. The measurements with 5.3 GeV
electron and positron beams indicate the need for a high-energy component previously absent
in the photoelectron generation model. In addition, the design purpose of the shielded pickup
detectors has been experimentally confirmed, as the cloud lifetime has been accurately measured
using witness bunches at various delays. Sensitivity to the elastic yield parameter in the secondary
yield model has been shown to be less than 0.05 and remarkably robust against variation of other
model parameters. Data taken with an uncoated aluminum chamber provide a best estimate for
the elastic yield of about 0.75. The cloud lifetime studies in a titanium-nitride-coated aluminum
chamber exclude such a high value, yielding an optimal value of 0.05.

1.3 Comparisons Between Methods

1.3.1 Wiggler Ramp Studies

1.3.2 Comparison of RFA and Shielded Button Responses

1.3.3 TE Wave-Driven Resonance Studies with RFAs

1.4 Summary and Further Investigations
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Some LaTeXing Examples

This appendix provides some examples of how to do things in LATEX for the Phase I Report and
provides some guidelines for preparing material for the report.

Note for experienced LATEX users: the Phase I Report will generally follow “standard” usage for
LATEX and BibTEX. Hence, you do not need to peruse the examples below in detail; it is recom-
mended that you skim through the material and make note of the guidelines for the preparation
of the report (in particular, see Section A.2.2, Section A.7.1, and Section A.7.3). Note that the
additional features provided by the ‘graphicx’ and ‘natbib’ packages will be available (as described
in some of the examples below), but standard commands for graphics inclusion and citations will
still work if you prefer to use them.

We fully expect that some formats will evolve through the course of editing the full document.
We will add further examples, as needed, based on questions that come from the contributors. So
check back often!

A.1 Special Commands

For CESRTA, use the command:

\cesrta

If you need to force a space after CESRTA, then use:

\cesrta\

A.2 Figures

A.2.1 Figure Logistics

The following figures show examples of the commands for inserting various types of graphics.
Graphics files in JPEG, PDF, EPS, and PNG can be readily incorporated into the document. If
you need help including a file of a different type, please consult with the editors. Each figure must
include a caption and a label for cross-referencing the figure in the text.
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Figure A.1 shows an example in which the graphic is a JPEG photo. In this example, the size is
set by specifying the width as an absolute dimension. The height is not specified, which results in
the aspect ratio being preserved. The graphic is centered between the left and right margins.

Figure A.1: Example of including a JPEG photo.

Figure A.2 shows an example in which the graphic is a PDF file. In this example, the size is set by
specifying the width relative to the column width (the report is one-column, so the column width
is equal to the text width).

Figure A.2: Example of including a PDF photo. The caption can contain additional information
that is relevant to the figure. Although the figure can obviously be discussed in the text of the
report, it may be helpful to put some information directly in the caption.

Figure A.3 shows an example in which the graphic is an EPS file. In this example, the height
is specified as an absolute dimension, and the aspect ratio is preserved by not specifying the
width.
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Figure A.3: Example of including an EPS plot.

Figure A.4 shows an example in which the graphic is a PNG file. In this example, the height is
specified relative to the text height. The height of the figure should always be smaller than the
text height in order to allow room for the figure caption.

Captions are produced with an automatically-generated figure number using the \caption com-
mand. The caption should be below the graphics. For long figure captions, it is useful to provide
a short caption as an optional argument. The short caption is used in the list of figures. This is
illustrated in Figure A.2.

Figures may contain more than one graphic. Examples where this option may be useful include dif-
ferent views of the same object, different plots that are related to each other, and so on. Figure A.5
shows an example in which 2 graphics are included.

LATEX allows for an optional argument to specify the placement of the figure on the page. Placement
options include h (here), t (top of page), b (bottom of page), and p (on a separate page with no text).
Generally it is better to not worry about the figure placement until the final stages of document
preparation, since the figures locations will change as material is added or removed within one
section or in preceding sections.

A.2.2 Figure Guidelines

Since the purpose of figures is to supplement the message conveyed in the text, all of the figures
that appear in the report should be referenced in the text of the report.
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Figure A.4: Example of including a PNG plot.

Common categories of figures are photographs (see Figure A.1 and Figure A.2 for examples), plots
(see Figure A.3 and Figure A.4 for examples), and drawings. JPEG is the recommended format for
photographs. For plots and drawings, where possible, “vector” formats are recommended in lieu of
“bit-mapped” formats. Vector formats generally provide better image resolution and smaller file
sizes. JPEG and PNG formats are bit-mapped formats, so they should be avoided for plots and
drawings if possible. Vector formats can be produced as EPS or PDF files (note, however, that
EPS and PDF files can also be produced with bit-mapped content). Three-dimensional drawings
may have to be produced as bitmaps.

Methods for producing graphic files may vary, depending on the software used to produce the
graphic. “Save as EPS” is generally a good option, if available. “Save as PDF” may also work.
In some case, it may be necessary to select “Print” and then print the graphic to a file, selecting
“PostScript” or “PDF Creator” as the printer, and choosing “EPS” as a PostScript feature. If the
output file has extension “.prn,” this can be changed to “.eps.”

Generally is is preferable to place information about the figure in the figure caption, rather than
adding a label to the figure itself. According to this line of reasoning, the information at the top
of Figure A.4 could be removed from the graphic and added to the caption.

A.3 Tables

This section provides an example table with the style features that are specified for the CESRTA
Phase I Report. We appreciate your adherence to this format.

Table A.1 provides the list of chapters and coordinators for this project. Please feel free to contact
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Figure A.5: Example of including two graphics in one figure. Top: top figure in EPS format.
Bottom: bottom figure in PNG format.
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them with questions about your LATEX contributions.

Table A.1: List of chapter coordinators.

Chapter Topic Coordinator

Ch. ?? Introduction M. Billing
Ch. ?? CESR Conversion M. Palmer
Ch. ?? Low Emittance Tuning D. Rubin
Ch. 1 EC Growth M. Palmer

Ch. ?? EC Dynamics G. Dugan
Ch. ?? ILC Recommendations M. Palmer
Ch. ?? Conclusion M. Billing

- Bibliography W. Hartung

As shown in this example, tables should be centered between the left and right margins. The
caption should be placed above the table. A short form of the caption may be provided for the
list of tables via the optional argument to the \caption command. The placement options and
guidelines described above for figures also apply to tables.

A.4 Equations

Equations may be “in-text,” such as E = mc2, or displayed. Equation (A.1) is an example of a
displayed equation generated by MathType:

∆a = 2πG∞αλ
(
e−
z/λ − 1

)
. (A.1)

Please remember to label all equations. For a single equation, as in the example above, this can
be done by using the equation environment, which produces the equation with an automatically-
generated equation number. To cross-reference the equation in the text, as above, label it with
a key using \label{key} inside the equation environment and then use \ref{key} to generate
the equation number. As illustrated above, generally the format of the cross-reference should be
something like

...as shown in Equation~(\ref{key}).

Note the inclusion of parentheses around the equation number.

For a group of two or more equations, use the eqnarray environment instead of the equation

environment.

A.5 List Environments

When creating numbered or un-numbered lists, please use the list environments provided with
/LaTeX/ in order to standardize the look and feel of the presentation instead of emulating it
yourself. This is accomplished by using the itemize or enumerate environments. Note that lists can
be nested. A bulleted list can be created with the following commands (note that the indentation
used is to make the example more easily readable - it’s not required):
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\begin{itemize}

\item First item

\begin{itemize}

\item First sub-item

\item Second sub-item

\end{itemize}

\item Second item

\item Third item

\end{itemize}

which renders as:

• First item

– First sub-item

– Second sub-item

• Second item

• Third item

If you prefer a numbered list you can use (note that the indentation used is to make the example
more easily readable - it’s not required):

\begin{enumerate}

\item First item

\begin{enumerate}

\item First sub-item

\item Second sub-item

\end{enumerate}

\item Second item

\item Third item

\end{enumerate}

which renders as:

1. First item

(a) First sub-item

(b) Second sub-item

2. Second item

3. Third item

A.6 Cross-References

References to figures, tables, equations, and other parts of the report are all done in a similar way
using a key to specify the item of interest. To reference a chapter or section (or subsection,. . . )
of the report, make sure the item of interest has a \label{key} associated with it, and then
reference it with the \ref command using its key, for example, Chapter ??. The \label{key}
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declaration should appear inside or just after the sectioning command which defines the beginning
of the sectional unit.

A.7 Bibliography and Citations

A.7.1 Bibliography Logistics

The bibliography will be generated using BibTEX. A BibTEX database has been set up, mostly
from a search for existing CESRTA papers and from citations therein. The supplementary material
for the CESRTA proposal and review has also been included for the most part. Keys have been
assigned to all entries in the BibTEX database. Additional keys will be assigned by the bibliography
coordinator for new entries.

You may view the BibTEX file (CesrTA.bib) in CesrTA Wiki area for the Phase I Report (or
download (check out) with the rest of the files). It is in the Bibliography/ directory.

You may also view an HTML list of papers in the database with keys and links. The file (HtmlCes-
rTA.htm) is in the same directory as the BibTEX file. You may view it with a Web browser.

Please check whether all of the references you wish to cite are in the database and send the
information for those that are missing to the bibliography coordinator. Alternatively, you may
send your existing list of references to the coordinator, who can then add the missing ones to the
database. You can send your reference list in the form of an existing BibTEX file, in another format,
or in the form of a paper whose reference list you want to include in the database.

There will be one bibliography for the entire Phase I Report. Please notify the coordinator when
you find errors and omissions in the database.

A.7.2 Citation Logistics

The report will make use of the ‘natbib’ package for citations. Citations will be numbered according
to the order in which they appear. Instead of the standard \cite{key} command, please use
natbib’s \citep{key} command (for a “parenthetical” citation). You may provide a list of keys,
as in \citep{key1, key2,...}. The natbib package will perform sorting and compression when
multiple keys are provided.

Example: to cite a reference such as the CESR Conversion PAC09 paper [1], use

...during the CESR Conversion~\citep{PAC09:FR1RAI02}.

The tilde between the text and the citation inserts a “non-breakable” space, which prevents the
citation from appearing at the beginning of a new line.

For those who find a non-standard command objectionable, natbib also allows the standard \cite

command in place of \citep. The natbib package provides many other features, although they are
mostly oriented toward support for “author-year” citations and are not likely to be very useful for
numbered citations. Some of the natbib features are not fully supported by the bibliography style
that we are using for the Phase I Report (\citet, for example), but this should not be an issue,
since we are not using “author-year” citations.
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You may wish to refer to a particular part of a paper that you cite (a page number, a section, a
figure, a table, etc.). This is generally to be encouraged, especially when you are citing material
in a book, design report, etc. The recommended method for this report is to cite the paper in the
bibliography and specify the part of interest in the text. The optional argument of the \citep

command may be useful for this purpose. Example:

This was already demonstrated before the last round of

measurements~\citep[Figures 3 and 4]{IPAC10:TUPD022}.

The above modifies the citation [41, Figures 3 and 4]. (Note that this works the same way as for
the standard LATEX \cite command.) By putting the specifics in the text, we can avoid multiple
entries in the bibliography for the same work.

A.7.3 Bibliography and Citation Guidelines

It is preferable for the references in the bibliography to be ones that are available to the public. In
cases where it is necessary for to cite work that is not in the public domain, you might consider
how the work could be made publicly available. For work that is not suitable for journal articles or
conference proceedings, there are other options, including e-print servers and archives of laboratory
reports, including several report series associated with CESR/LEPP/CLASSE.

The bibliography can be used to acknowledge “private communications” for unpublished informa-
tion, but this should be used sparingly (also, citing a “private communication” from someone who
is one of the authors of the Phase I Report might be considered a circular argument).

You may wish to include information about a device or product and its manufacturer in the report.
Please include this information in the text or in a footnote.1 Example:

We used a dc electron gun\footnote{Model ELG-2, Kimball

Physics, Inc., Wilton, NH.} positioned at 25 degrees

to the manipulator.

A.7.4 Bibliography Details

The coordinator will try to make sure that consistency is maintained between different database
entries and will try to identify and eliminate duplicate entries associated with works that have been
published in more than one way. For cases in which a paper is determined to have been published
as an internal report/pre-print/e-print as well as a proceedings paper or a journal article, the latter
version will be used preferentially.

In assigning keys, the goal is to maintain a scheme whereby a unique key can be associated with
each entry in the database. The disadvantage is that the keys are long. The advantage (we hope)
is that the bibliography database can be expanded and updated in the future for other reports,
proposals, etc.

The format of the bibliography will be determined by the BibTEX bibliography style, and will not
necessarily be the same as the list of papers mentioned above (which was converted to HTML using
somewhat primitive methods). In particular, the bibliography will not include URLs.

1This is an example of a footnote.
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The rule of thumb is that each entry in the bibliography will be a ”stand-alone” entry. In other
words, the XREF feature of BibTEX will not be used to cross-reference one entry to another.
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