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Abstract 

In this paper an introduction is given to secondary electron emission 
properties. It is shown that the reduced secondary emission yield 15/b, as 
a function of the reduced primary energy Ep/Em can be described by a 
universal curve. It is found that it is easier to use the measurement of the 
maximum secondary electron emission 6, and the energy E,,, at which 
this maximum is reached to determine the suitability of a coating for use 
in the display than direct measurement of the first crossover energy EI. 
The value of 6, and E,,, can be used to derive EI. Furthermore, it is 
observed that in any material the elastic fraction of the secondary electrons 
exhibits a universal behaviour as a function of Ep. Fits to S(EJ and the 
energy distribution of the secondary electrons are proposed which can be 
used in Monte Carlo simulations. 

Keywords: secondary electron emission, flat and slim display, energy 
distribution, Zeus display, MgO. 

1. Introduction 

For the Zeus display knowledge of the mechanism of the transport of elec- 
trons along the surface of insulators by means of ‘hopping’ is very important 
[ 1,2]. The hopping behaviour is mainly determined by the secondary emission 
parameters of the insulator on which this hopping takes place. Knowledge of 
these secondary emission parameters is necessary for determining its suit- 
ability for use in the display. 

Secondary emission takes place when a material is bombarded by electrons, 
ions or photons. In our case we are only interested in the effect of bombard- 
ment by electrons. The secondary electron emission yield S is defined as: 
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where ii, is the primary current of the impinging electrons and is is the current 
of all electrons leaving the surface, so including both the elastically and 
inelastically scattered electrons. This is different from definitions used in 
literature, where is often is defined as the current of the ‘true’ secondaries. 
‘True’ secondaries are frequently defined as the secondaries with an energy 
lower than 50 eV. A typical &curve, i.e. S as a function of the primary energy 
Er, and a typical N(E,) curve, i.e. the distribution of the secondary electron 
energy Es, are shown in Fig. 1. 

As shown in Fig. 1, S increases as a function of Ep at very low primary 
energy. This is a result of the fact that with increasing beam energy more 
secondary electrons can be excited. However, secondary electrons have a 
very small escape depth due to their low energy (0 to 50 eV). This escape depth 
is in the order of 1Onm [3]. At a certain beam energy the penetration depth of 
the primary electrons becomes higher than the escape depth of the secondaries, 
resulting in a decrease of S. From Fig. la it is observed that 6 = 1 for two pri- 
mary energies. These energies are denoted as the first (low energy) and second 
(high energy) crossover energies EI and EII. 

For the Zeus display especially the first crossover point El and the average 
kinetic energy of the secondary electrons E, are of importance. These para- 
meters are of major influence on the electric field (the ‘transport field’) needed 
to transport electrons along the channels by means of the hopping mechanism 
[ 1,2]. In general it is found that a small value for EI results in a small value for 
the minimal transport field. MgO is used in the display, because of its small 
value for EI [4] and its stability under electron bombardment [5]. 

In Sec. 2 of this paper we show how secondary electron emission can be 
understood in a more quantitative way. In Sec. 3 we describe the experimental 
set-up used for determining 6(E,) and N(E,). In Sec. 4 we show and discuss 
measurements of S(E,) for several materials, illustrating the universal beha- 
viour of the reduced yield curve. Furthermore, we show measurements of 
the first crossover energy EI and finally we will discuss measurements on 
WE,). 

2. Semi-empirical theory 

To obtain a better insight into the mechanisms responsible for the secondary 
electron emission, we give a concise description of the semi-empirical theory 
developed by Dionne [6]. In deriving S(E,) Dionne makes the following 
assumptions: 
(1) The number of secondaries produced per unit length at position x 

(measured along the path of the primary electron) is equal to the energy 
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Fig. 1. (a) Typical example of the primary energy (Ep) dependence of the secondary electron emis- 
sion yield 6. For MgO one typically finds E1 = 20 eV, En = 10 keV, 6, = 12 and E, = 950 eV. For 
metals typically E, = SOeV, En = 1 keV, E, = 4OOeV and 6, = 1.5 is obtained. (b) Typical 

example of the energy distribution of the secondary electrons. 

loss of the primary electron (-dE/dx) divided by the energy R required to 
produce one excited electron. 

(2) The migration probability for an excited electron produced at depth x to the 
surface is given by exp(-ax), with (Y an effective inverse extinction length. 

(3) The effective escape probability for a secondary electron that reaches the 
surface is B. 
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(4) Angular scattering of the primaries is accounted for by the additional 
assumption that the average loss of energy is independent of the depth 
x: dE/dx = -E,/R, where R is the penetration depth. This assumption 
is known as ‘constant loss’. 

(5) R is determined by primary electrons which do not undergo angular scat- 
tering. In that case the energy loss of the primaries is governed by a power 
law: dE/dx = -A/E”-‘, where from experiments n is found to be 1.3 to 
1.6. 

The secondary electron yield 6(E,) is now given by: 

fi(E,) = B x a x (1 - emaR)/Q, (1) 

i.e. the product of escape probability, density of excited electrons and an 
absorption term. From the power law (assumption (5)) it follows that the 
range R and primary energy Ep are related by: 

;: R=$. 

Experimentally it is found that n z 1.35 in the energy range 0.3 to 7 keV [7,8]. 
The Inelastic Mean Free Path (IMFP) is a well-known empirical concept in 

Auger and XPS analysis, which shows a ‘universal’ energy dependence. For 
energies in the range 75 to 1OOOeV the IMFP is proportional to E”.’ [9]. If 
we assume that the energy loss -dE/dx is inversely proportional to the 
IMFP, then n = 1.5 follows. However, the IMFP goes through a minimum 
at E M 30eV. This implies that n will decrease when the primary energy is 
decreased below 75 eV. 

When also taking into account the scattering of secondary electrons after 
their generation in the bulk, Dionne [lo] derives the following expression for 
EI (valid for S, > 1.5): 

EI = 0.51E S-‘.32 mm 7 (2) 

where S,.,., is the maximum secondary electron emission coefficient and E,,., the 
primary energy at which this maximum is reached. 

3. Experimental 

Measurements of S(E,) and N(E,) are done in a UHV system at a base 
pressure of about 10p9mbar. This UHV system is equipped with a Phi 
Cylindrical Mirror Analyser (CMA) and an Omicron 4-grid Retarding Field 
Analyser (RFA). 
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Fig. 2. Schematic overview of the experimental set-up. 

To measure S(E,) we use a measurement technique analogous to that of 
Henrich [11,12]. A schematic set-up is shown in Fig. 2. In this measurement 
the electron gun of the Phi CMA is used. The primary electron beam is pulsed 
to limit the amount of charge incident on the sample, in order to diminish the 
influence of charging on the measurement of S($) of insulating samples. The 
pulse width is 5 ps and each pulse contains typically lo-” C. The value of 6 can 
be derived from the measured net current through the sample iN: 

The primary current iP is determined by applying a potential of + 100 V to the 
sample. This pulls back most of the secondary electrons, so that iP M iN. Note 
that we include in 6, measured in this way, both the ‘true’ secondary electrons 
and the inelastically and elastically scattered electrons. The value of Ep is 
varied by varying the negative potential of the sample, while keeping the 
cathode at a constant negative voltage. In the case of an insulating sample 
such a negative sample potential has the advantage that the measurement of 
6(E,) is less influenced by charging [13]. 
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To measure N(E,) the sample is put in front of the 4-grids RFA. During the 
measurement of N(E,) the two outermost grids are kept at earth potential, 
while the two middle grids are set to a retarding potential Vs. When the kinetic 
energy of the secondary electrons is larger than le l$I when they arrive at the first 
grid, they will be able to pass to the collector at +3OOV. The current through 
the collector is subsequently measured as a function of I$. Numerical differen- 
tiation of this signal yields N(E,). To increase the collection efficiency and to 
ease the use of low primary beam energies, a constant sample bias of -50 V is 
used. This is a compromise between efficiency and resolution (the resolution is 
optimal when a field-free region exists between the sample and the first grid). 

Samples which are used are a 100 nm e-beam evaporated Au layer on a Si 
substrate, Si, stainless steel (FeNiCr), leadglass (PbO + 1% RuO,) and a 
100 nm e-beam evaporated MgO layer on a Si substrate. All materials are mea- 
sured ‘as prepared’, with the exception of the steel sample, which initially was 
severely contaminated by carbon and therefore directly sputter-cleaned. For Si 
this means that the data are representative for the native oxide, rather than for 
the semiconductor itself. 

4. Results and discussion 

4.1. Universal yield curve 

In Fig. 3 we show for Au, stainless steel, Si, leadglass and MgO the reduced 
value 8,/S, as a function of E,/E,,,, in the following denoted as the ‘reduced 
b-curve’. The energy scale is logarithmic, to emphasize the low-energy part. 
These data have been corrected for the contribution of elastic reflection, as 
will be discussed in Sec. 4.3. Figure 3 shows that the data for all materials fol- 
low more or less a single, ‘universal’, curve. For Ep/Em < 1, however, the 
spread in the reduced data is rather large, limiting the validity of the concept 
of a single ‘universal’ curve. The existence of a universal curve has also been 
mentioned by Baroody [14] and Dekker [3]. 

Also shown in this figure are curves representing the semi-empirical formula 
eq. (l), with n = 1.5, 1.35 and 1.05, respectively. This formula describes the 
reduced data satisfactorily only if the exponent in the power law is allowed 
to vary from about 1.5 around Ep/Em = 1 to unity at the low-energy limit. 
This reduction of n, needed to fit the data properly at low primary energy, 
was already anticipated in Sec. 2. At energies just above Ep/Em = 1, the value 
n = 1.35 gives the best fit to the data; at higher energies the data show a con- 
vergence with the n = 1.5 curve, in agreement with results reported in the lit- 
erature [6-81. The full curve in Fig. 3 is a Gaussian in the logarithm of E,/E,,,, 
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Fig. 3. Reduced b-curve for five materials, corrected for the elastic fraction. The fits are discussed in 
the text. 

according to: 

EP = 
s [ 1 

In, 

s,= exp - 20; I 1 ) (3) 

with 0 = 1.6. 
This single parameter curve describes the data quite well over the entire 

energy range, in fact much better than the semi-empirical formula for a fixed 
value of n. We found that even when omitting the correction for the elastic 
reflection, the fit of this equation to the data is still reasonable for 
EP > 100 eV. Although eq. (3) has no physical basis, it can be used in e.g. simu- 
lations of the measurement of the secondary electron emission of insulators 
[13] or in Monte Carlo simulations of the display [15]. 

4.2. Estimate of theJirst crossover energy EI 

The value of EI can be estimated from the values of S, and E,. First of all 
we have eq. (2) for Ep derived by Dionne [lo], and secondly, from eq. (3), the 
Gaussian fit to the reduced S-curve, we find for EI: 

EF = E,exp(-Jm). (4) 
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Fig. 4. Calculated vs measured value of E, Open symbols represent EI calculated using the Gaussian 
expression (eq. (4)). Filled symbols represent EI calculated using the formula by Diome (eq. (2)). Also 
shown is the line for which the calculated value equals the measured value of 4. Furthermore, a 50% 

error margin for the measured values of Er (between the dashed lines) is depicted. 

For Au, Si, steel, leadglass and MgO we have determined Er, 6, and E,. In 
Fig. 4 we show the calculated values Ef (S,, E,) and J$(S,, E,) as a function 
of the measured Er. Although we find from Fig. 3 that the reduced S-curve can 
reasonably be approximated by a Gaussian expression (eq. (3)) and the expres- 
sion by Dionne (eq. (1)), we find here that the theoretical estimates agree only 
within 50% of the measured value for EI. Probably this has to do with experi- 
mental artifacts encountered when measuring the secondary emission 
parameters. For insulators charging is the main cause for these artifacts, 
especially in the case of the measurement of EI. An extensive study of 
experimental artifacts resulting from charging has been published elsewhere 
P31. 

As the measurement of EI is hampered more severely by charging than the 
measurement of 6, and E,,,, it is much easier to use the measurement of E,,, and 
6, for determining the suitability of an insulating coating for the use in the dis- 
play than direct measurement of EI. The (apparent) EI can then be determined 
using eq. (2) or eq. (4). Note that a suitable coating should have a small value 
for El. From eq. (2) or eq. (4) it follows that this coating should, therefore, pre- 
ferably have a large value for 6, combined with a small value for Em. 
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Fig. 5. Measured secondary electron energy distribution of Au, for Ep = 100, 40 and 20eV. 

4.3. Energy distribution of secondary electrons 

Figure 5 shows the secondary electron energy distribution N(E,) of Au, for 
several primary energies. These curves are representative for all five materials. 
Clearly, the elastic peak is more prominent at lower primary energies. The 
instrumental resolution can be estimated from the falling edge of the elastic 
peak to be about 1.8 eV FWHM. It can be seen that the elastic peaks are 
located 2.5 eV below the nominal value, which is consistent with the contact 
potential difference between gun cathode (LaB6) and Au. We have shifted 
the N(E,) distributions of the other materials, to make the onsets of the sec- 
ondary peaks at EP = 1OOeV coincide with that of Au. This corrects for con- 
tact potential differences. The applied shifts were less than about 1 eV in all 
cases. 

In Fig. 6 we show the elastic fraction f, i.e. the integral of the elastic peak as 
a percentage of the total integral of N(E,) as a function of primary energy, for 
all five materials. The data can be described by the following fit, as shown in 
the figure: 

lnf = 1.59 + 3.75lnEr - 1.37(lnE,,)* +0.12(lnEP)3, 

with EP in eV and valid for EP values across the interval 5 to 100 eV. The rela- 
tive increase of the elastic fraction towards lower primary energy was to be 
expected, since excitation of secondaries becomes increasingly unlikely, or 
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fit: In(f) = 1.59 + 3.75ln(E,,) - 1.37[ln(E,)]* + 0.12[ln(Ep)]3 
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Fig. 6. Elastic fractionf of the secondary electrons as a function of primary energy Ep for five 
different materials. The full line is the empirical fit as explained in the text. 

even impossible for primary energies below approximately three times the 
bandgap energy [ 161. However, the ‘universal’ shape of this curve is somewhat 
surprising and up to now we have not been able to find a satisfactory explanation. 

We now define an elastic reflection coefficient R: 

which is the number of elastically reflected electrons per incoming electron. 
The corrected secondary emission yield SC is now determined as follows: 

6 C =6-R& l-f ~ 
1-R l-Sf’ 

which is the average number of secondary electrons which are inelastically 
scattered, S - R, divided by the number of actually penetrating electrons, 
1 - R. This is the correction which is applied to the data in Fig. 3, since this 
is the quantity which is directly comparable with a theoretical yield curve. 
This correction is negligible above approximately 100 eV, but becomes increas- 
ingly important towards lower primary energy. 

In Fig. 7 the low-energy part of the N(E,) distribution is shown for Au, 
MgO, lead-glass and stainless steel. It is found that with decreasing ,?$ the 
maximum of the distribution shifts towards higher energy. This effect was 
present in all data, but most significant for the insulators. This behaviour 

384 phiups JodofRestarcb Vol.50 No. 314 1996 



Secondary electron emission properties 

was already predicted by Bindi et al. [17] by solving Boltzmann’s equation. 
This effect can be understood intuitively by assuming that at a certain depth 
the primary electrons produce secondary electrons with an internal energy dis- 
tribution which is independent of Er,, having a maximum Es of a few eV. While 
the secondaries travel towards the surface, their energy distribution changes. 
When the distribution is produced at a large depth (high E,), the probability 
for inelastic scattering increases and therefore Et, is expected to shift to a lower 
energy with increasing Er. The fact that this is more pronounced in the case of 
insulators is more difficult to explain. One would, on the contrary, expect that 
for insulators this effect should be less pronounced, as secondary electrons are 
expected to have a larger mean free path due to the absence of free-electron 
scattering and because of the large band gap which makes it unlikely for sec- 
ondary electrons with a kinetic energy of approximately three times the band 
gap to interact with valence electrons [ 161. Note that for insulators also char- 
ging can play a role in determining the shape of the energy distribution. The 
influence of charging is unknown, however. 

The low-energy part of the distributions has been fitted to a Maxwell- 
Boltzmann distribution: 

fMB(Es) = Cr2exp -2 . 
( > 

(5) 

This distribution is a simplified version (containing less fit parameters) of the 
one derived by Bouchard and Carette [18], and turned out to be sufficient for 
use in Monte Carlo simulations [15]. A slightly more complicated formula, 
giving better fit results, is a Gaussian with a logarithmic argument: 

(6) 

In both formulas Ci is the normalization constant and E,, is the position of the 
maximum. The Gaussian curve has the standard deviation r as an additional 
parameter. Note that the average secondary electron energy E, is given by: 

EMB = 2E,,, a E,” = EOexp (1.5r2), 

for eq. (5) and (6), respectively. Fit results for the materials shown in Fig. 7 are 
given in Table I. Note that these fits actually represent convolutions of the 
above formulas with a Gaussian resolution function with r = 0.8eV. This 
resolution function affects the rising edge and the position of the maximum 
significantly. From Table I it can be concluded that the variations in r are 
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Fig. 7. Low-energy part of the secondary electron energy distributions for several materials. Some 
of the curves have been fitted to a Maxwell-Boltzmann distribution and a Gaussian. The fit para- 
meters are shown in Table I. (a) Au, fitted is the curve for EP = 30eV; (b) MgO, fitted is the curve 

for EP = 100eV. 
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Fig. 7. contd; (c) Leadglass, fitted is the curve for Ep = 100eV; (d) Stainless steel. 
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TABLE I 
Overview of the fit parameters used in the fits of Fig. 7. 

Materials Es(eV) 

Au (fit to Ep = 60eV) 2.7 
MgO (fit to Ep = 100eV) 2.2 
Leadglass (fit to Ep = 100eV) 3.0 
Stainless steel (fit to Ep = 100eV) 2.7 
Si (fit to Ep = 100eV) 2.0 

r(ev> E,” 

1.1 6.1 E. 
0.85 3.0 E. 
0.7 2.1 E. 
1.05 5.2 E. 
1.1 6.1 E. 

significant which implies that a Gaussian fit, which decouples the width of the 
distribution and the position of the maximum, is preferable. 

5. Conclusions 

It is experimentally shown that for the materials studied in this paper the 
reduced yield S/& as a function of the reduced energy Ep/Em shows a more 
or less universal behaviour. When using the semi-empirical formula by 
Dionne to fit the data for various values of n, we find that the best fit to 
the high-energy part of the reduced S-curve is the fit using n = 1.5, while 
the best fit to the low-energy part is the fit using a lower value for n. This 
result can be understood from the energy dependence of the inelastic mean 
free path. We found that a Gaussian with a logarithmic argument with 
0 = 1.6 describes the reduced S-curve better than the semi-empirical formula 
of Dionne. It is concluded that Em and S, can be used qualitatively as a 
measure for the suitability of a coating for use in the display. 

We also found that the energy distribution of the secondary electrons 
can accurately be described by a Gaussian with a logarithmic argument, 
which can be used in Monte Carlo simulations. Furthermore, we found that 
the elastic fraction of the secondary electrons exhibits a surprisingly 
‘universal’ behaviour. At present no satisfactory explanation is available, 
however. 
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