

Simulations of synchrotron-radiation-induced electron

production in the CESR vacuum chamber wall

Jim Crittenden

Stephen Poprocki, David Rubin, David Sagan Cornell Laboratory for Accelerator-based ScienceS and Education 6 June 2018

- Observations and Predictions at CESRTA and Outlook for ILC, G.Dugan et al, ECLOUD12
- The CESR Test Accelerator Electron Cloud Research Program: Phase I Report, M.A.Palmer et al, CLNS-12-2084 (2013)
- Investigation into Electron Cloud Effects in the International Linear Collider Positron Damping Ring, J.A.Crittenden et al, Phys. Rev. ST Accel. Beams, Vol 17, 031002 (2014)
- J.A.Crittenden, THPAF26, IPAC18
- S.Poprocki, THPAF25, IPAC18
- Stephen Poprocki, ECLOUD18

I) Extensive CESRTA measurements of tune shifts and beam sizes in 2016 and 2017 at 2.1 and 5.3 GeV with varying bunch populations, together with improved data-taking methods and analysis techniques pointed to the need for more sophisticated modeling.

II) While the necessity of a detailed model of synchrotron radiation photon scattering inside the CESR beam pipe had been recognized and addressed, new information on roughness, material and coating had not been taken into account.

III) The assumptions in the electron cloud buildup model for the dependence of quantum efficiency on azimuthal absorbed photon location remained coarse and ad hoc, as did the photoelectron production energy distributions.

IV) Over the past decade, much progress in modeling low-energy atomic processes has been implemented in Geant4.

We describe here the implementation of a Geant4 postprocessor for the Cornell Synrad3D photon tracking code.

Motivation

Interplay of beam kicks with photoelectron energies

I) Photon tracking model extensions

- 1) Effect of microgrooves
- 2) Dependence on pipe material
- 3) Effect of thin surface layers

II) Modeling of photoelectron production

- 1) Photoelectric and atomic de-excitation processes
- 2) Dependence on beam-pipe materials

III) Combined results input to electron cloud buildup model

- 1) Photoelectron production rate distributions
- 2) Electron production energy distributions

Implementation of 10-µm grooves in the CESR vacuum chamber model

Measurements of x-ray scattering from accelerator vacuum chamber surfaces, and comparison with an analytical model, G. F. Dugan, K. G. Sonnad, R. Cimino, T. Ishibashi, and F. Schäfers, Phys. Rev. ST Accel. Beams 18, 040704 (2015)

Small grooves observed in AFM measurements result in greatly enhanced out-of-plane photon scattering.

Curved trajectories in XY coordinate system result from the longitudinal pipe bend in the dipole magnet.

Azimuthal distribution of photon absorption sites

The effect of grooves is to enhance photoelectron production on the top and bottom of the beam-pipe, increasing the contribution of dipole regions to the tune shift and emittance growth calculations owing to cloud pinning on the magnetic field lines.

Cornell University Laboratory for Elementary-Particle Physics

Reflectivity dependence on material

Reflectivity derived from Henke LBNL tables for various vacuum chamber surface materials

Determines photon absorption site distributions, absorbed photon energies and incident wall angles

Product of quantum efficiency and photon rate used as input to electron cloud buildup model

Detailed model of CESR vacuum chamber

Simulating synchrotron radiation in accelerators including diffuse and specular reflections, G. Dugan and D. Sagan, Phys. Rev. Accel. Beams 20, 020708 (2017)

10⁶ photons tracked around the 768-m CESR ring Vacuum chamber model includes gate valves, bellows, etc

6 June 2018

Simulations of synchrotron-radiation-induced electron production in the CESR vacuum chamber wall / J.A. Crittenden

Photon tracking results 5.3 GeV e+ beam

<u>Characteristics of</u> <u>absorbed photons</u>

Hot spots around ring due to vacuum chamber geometry

Diffuse scattering and many reflections result in absorption sites on top and bottom of vacuum chamber

Cornell University Laboratory for Elementary-Particle Physics

Absorbed photon energies and grazing angles 5.3 GeV e+ beam

Dramatic dependence of photon energies and incident angles on azimuthal absorption location We distinguish three azimuthal regions for generating photoelectron energies Absorption site and energy distributions averaged over dipole and field-free regions separately for input to electron cloud buildup modeling

6 June 2018

Cornell University Laboratory for Elementary-Particle Physics

QE dependence on photon energy and incident angle

Geant4 photoabsorption cross sections show important dependence on photon energy and incident wall angle.

The photon tracking code Synrad3D provides this information on a photon-by-photon basis.

Evaluated Atomic Data Library in Geant4 -- comprehensive, detailed --

non-radiative transitions

subshell parameters

Geant4 includes rates for the photoionization and atomic de-excitation processes fluorescence, Auger and Coster-Kronig electron emission. Vacuum chamber material composition is defined in Geant44 input file.

6 June 2018

Geant4 events

30 eV and 2 keV photons. Zoom in on 5-nm CO layer

6 June 2018

Simulations of synchrotron-radiation-induced electron production in the CESR vacuum chamber wall / J.A.Crittenden

Number of electrons per beam particle per meter provided to electron cloud buildup modeling in 720 azimuthal location bins averaged over dipole and field-free regions separately. These values replace the overall photon absorption rate and QE values used in the previous electron cloud buildup model.

Photoelectron production energies 5.3 GeV e+ beam

Strong dependence on azimuthal production location

Reflection selects low energy photons

Photoelectron energy distributions provided to electron cloud buildup modeling for each of the three azimuthal regions separately for field-free and dipole regions of the ring

Improved measurements and data analysis for CESRTA beam dynamics motivated detailed modeling development

Photon tracking code updated with sophisticated vacuum chamber model

Electron production model based on Geant4 implemented as post-processor for photon tracking code

Combined model validated using CESRTA tune shift and beam size measurements

Implementation of means of choosing vacuum chamber surface properties and materials enables generalisation to other applications

This work addresses the CESRTA project goal of providing validated modeling tools for present and future accelerator projects