WIGGLER MAGNET DESIGN DEVELOPMENT FOR THE ILC DAMPING RINGS

J.A. Crittenden, M.A. Palmer, D.L. Rubin
CLASSE, Cornell University, Ithaca, NY 14850, USA

The baseline damping ring lattice for the International Linear Collider employs 54 wigglers at peak field 1.51 T for the 5 Hz mode and 2.1 T for the 10 Hz mode to provide the damping necessary to achieve the specified horizontal emittance. We describe the OPERA-based finite-element model developed for the 14-pole, 30-cm period, $7.62-\mathrm{cm}$ gap superferric design which meets the 2.1 T peak field requirement.

Table 1: Superferric Wiggler Comparison						
Parameter Unit CESR-c ILC Baseline ILC Optimized ILC Optimized/Higher Field Peak Field T 2.10 1.67 1.95 2.16 No. Poles 8 14 12 14 Length m 1.3 2.5 1.68 1.875 Period m 0.40 0.40 0.32 0.30 Pole Width cm 23.8 23.8 23.8 23.8 Pole Gap cm 7.6 7.6 8.6 7.6 dB/B (x=10mm) $\%$ 0.0077 0.0077 0.06 0.06 Coil Current A 141 112 141 141 Beam Energy GeV $1.5-2.5$ 5 5 5						

Analytic Model Fit to the OEPRA 3D Discrete Field Map
The analytic model used for the CESR-C wigglers to allow fast tracking for lattice development was successfully used for the IIC damping ring wiggler designs as well. We find
that a good fit, including the finite pole widith and the end effects, requires about 220 terms. Each term independently satisfies Maxwell's equations. Symplectic integration that a good fit, inclucing the finite pole width and the end effects, requires a.
through this analytic representation of the field is used for long-term tracking.

Vertical Field Component
The three axes shown pass through the point (0,0,7.5) cm

