$\boldsymbol{\mu}$ spectrometers at ATLAS and CMS

Our charge: Survivability Resolution Pileup Angle/rapidity coverage Efficiency Jet Resolution Jet Separation

6 minutes

The "S" is for "Scary".

ATLAS Resources: TDR, muon TDR (522 pages) http://atlas.web.cern.ch/Atlas/internal/tdr.html

LHCC meeting http://agenda.cern.ch/fullAgenda.php?ida=a041899 4 muon talks, + magnet

+ computing

CMS resources: LHCC page http://cmsdoc.cern.ch/docLHCC.shtml with link to muon TDR (441 pages) http://cmsdoc.cern.ch/cms/TDR/MUON/muon.html muon group page http://cmsdoc.cern.ch/muons.html LHCC meeting http://agenda.cern.ch/fullAgenda.php?ida=a043653 3 muon talks

+ magnet

LABORATORY FOR ELEMENTARY-PARTICLE PHYSIC

ATLAS chambers		acceptance: $\begin{array}{rcl} \theta \text{ is w.r.t beam} \\ \eta &= -\ln(\tan(\theta/2)) \\ \eta &= 2.4 & 2.7 & 1.66 \end{array}$
		tracking: $ \eta < 2.7$ trigger: $ \eta < 2.4$ $\theta = 10.4^{\circ} 7.7^{\circ} 21.5^{\circ}$ $\cotan(\theta) = 5.4 7.4 2.53$ $\cos(\theta) = .983 .992 .93$
wire volt µm monitored drift tube 50 327 cathode strip chamber 30 260	s gain 0 2x10 ⁴ 0 1x10 ⁴	chanls press time $\sigma(single) \sigma(s.l.)$ 1000 bar ns μm μm ⁴ 372 3 480 80 50 ⁴ 61 1 30 60 pitch
resistive plate chamber 890 thin gap chamber 50 310 strip	00? 00106	(mm) 354 1 1.5 40 320 1 "25" 7-36 120 14-49
population: 3 radial "stations"		
monitored drift tubes4+4cathode strip chambers4+4resistive plate chamber2thin gap chamber2	3+3 2 2+3	<pre>3+3 very forward 2</pre>

ATLAS, radiation

LABORATORY FOR ELEMENTARY-PAP

6

Well, that is honest !

•12 MDT tubes (10%) show slight loss in gain within first 10 cm from gas inlet; no ageing in remaining MDTs.

- Pulse height loss developed within first 4 weeks of operation, afterwards: stable plateau
- Ageing, as in previous study, caused by Si-O needles on the anode wire

CMS, chambers	acceptance: tracking: trigger w/RF	η < 2.4 PC: η < 2.1	$\theta \text{ is w.r.t beam} \eta = -\ln(\tan(\theta/2)) \eta = 2.1 2.4 1.66 \theta = 14.0° 10.4° 21.5° cotan(\theta) = 4.0 5.4 2.53 cos(\theta) = .970 .983 .93$			
wire vol µm	ts gain chanls pres 1000 bai	s time σ(sing r ns µm	(le) $\sigma(s.l.)$ μm			
drift tube	195	400 250	100-150			
cathode strip chamber 30 300 50 410	0 273 0	50	75-150			
anode (2.5 10 ⁶ wires)			(1700-6000)			
resistive plate chamber 9000	0 160	pitch 3 10-40m	ım			
population: 4 radial "stations"						
drift tubes $4r\phi + 4z$	+ $4r\phi$ $4r\phi$ + $4z$ + $4r\phi$	$4r\phi + 4z + 4r\phi$	$4r\phi + 4z + 4r\phi$			
cathode strip chambers 3	2	2	2			
resistive plate chamber 2 1	1	1	1 barrel 1 forward			

CMS efficiency and resolution

 $\begin{array}{l} \mbox{Efficiencies in the barrel region (0 \leq |\eta| < 0.8) for track fitting in the stand-alone muon system \\ \mbox{with the vertex constraint for several values of } p_T \mbox{ by the number of track segments} \\ \mbox{ successfully used.} \end{array}$

	Track los	ses (%)	Suce	Successful track fits in barrel (%)			
p _t (GeV)	Fewer than 2 segments	Failure of fit	2 N	lumber of tr 3	ack segmen ≥4	ts Total	Δр _т /р _т (%)
1000	6.2%	20.4%	27.6%	32.5%	13.3%	73.4%	18.6%
500	3.8%	12.8%	29.4%	34.2%	19.8%	83.4%	15.2%
300	3.2%	7.2%	28.5%	38.6%	22.7%	89.9%	12.3%
100	1.5%	1.1%	31.0%	39.5%	26.9%	97.4%	9.3%
10	5.0%	11.6%	33.4%	32.6%	17.4%	83.4%	8.9%

Fig. 2.1.2: Muon system geometrical acceptance shown for the following three requirements: three or more stations, including at least one of the first endcap station: any three stations; and any two stations.

There seams to be some loss here, but the text acknowledges there is refinement to be done in the pattern recognition

CMS alignment

Alignment design parameters and component statistics.

Intrinsic sensor accuracy	$<5~\mu m$	
Accuracy of barrel chamber positioning	${<}150\text{-}350~\mu m$	
Accuracy of endcap chamber positioning	<75-200 µm	
Number of Rasnik systems	12	
Number of MPA sensors	546	
Number of video-camera detectors	612	
Number of proximity measurements	1404	

Fig. 7.2.3: The design of the 3/-/1 MAB. 1: Camera box for chamber measurement; 2: Camera box for diagonal connection; 3: Camera box for z measurement; 4: Transparent sensors for the link; 5: Tiltmeter; 6: Fixation; 7: Endcap link connection.

Fig. 7.2.1(color): Barrel Muon position monitoring scheme. The system is based on rigid mechanical structures (36 MABs and 6 Z-bars), optical connections between them (*diagonal connections*, connection between MABs and Z-bars) and optical connections between MABs and barrel muon chambers (*muon chamber optical lines*). The position of the Barrel Muon system with respect to the Central Tracker is located via Link lines (6 on each side).

I think it is some kind of camera positioning gizmo.

CMS, field

Longitudinal field

Fig. 2.5.1: Reconstructed mass distribution with background of H^o (150 GeV) \rightarrow ZZ*, ZZ* $\rightarrow \mu^+\mu^-\mu^+\mu^-$ for L = 10⁻⁵ pb⁻¹.

Dec- Feb- Apr- Jun- Aug- Oct- Dec- Feb- Apr- Jun- Aug- Oct- Dec- Feb- Apr- Jun- Aug- Oct-02 03 03 03 03 03 03 03 04 04 04 04 04 04 04 05 05 05 05 05

CMS, latest review

Many charts ! There is a picture of the alignment thing.

But, I did not find anything on reconstruction efficiency refinements.