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What is accelerator physics

Accelerator Physics has applications in particle accelerators for high energy
physics or for x-ray science, in spectrometers, in electron microscopes, and in
lithographic devices. These instruments have become so complex that an
empirical approach to properties of the particle beams is by no means
sufficient and a detailed theoretical understanding is necessary. This course
will cover theoretical aspects of charged particle beams and their practical
relevance.

Physics of beams (nonlinear dynamics, many particle systems)

Physics of non-neutral plasmas (distribution dynamics)

Physics involved in the technology:
Superconductivity in magnets and radiofrequency (RF) devices
Surface physics in particle sources, vacuum technology, RF devices
Material science in collimators, beam dumps, superconducting materials
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Linear and circular accelerators
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Three historic lines of accelerators g

Direct Voltage Accelerators

Resonant Accelerators Transformer Accelerator
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particle beam

The -e-rTergy limit is given by the maximum-p-ossible voltage. At the limiting voltage,
electrons and ions are accelerated to such large energies that they hit the surface

and produce new ions. An avalanche of charge carries causes a large current and
therefore a breakdown of the voltage.

1930: van de Graaff builds the first 1.5MV high voltage generator

1932: Cockcroft and Walton: 700keV cascade generator (planned for 800keV)
and use initially 400keV protons for ’Li + p +—~ “He + “He and ’Li + p—~ 7Be + n

1932: Marx Generator achieves 6MV at General Electrics
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Three historic lines of accelerators g

_ Resonant Accelerators
Direct Voltage Accelerators Transformer Accelerator
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1932: Lawrence and Livingston 1st cyclotron in Berkeley
1934: Cornell is the 2 lab with Cyclotron (by Livingston in room Rf-B54)

Microtrons

1928: Wideroe builds the first drift tube linear accelerator for Na* and K*
1933: J.W. Beams uses resonant cavities for acceleration

Alvarez builds the first Alvarez Linear Accelerator
1970: Kapchinskii and Teplyakov built the first RFQ
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Three historic lines of accelerators g

Transformer Accelerator

Direct Voltage Accelerators Resonant Accelerators

accelerating
1940: Kerst and Serber build a

betatron for 2.3MeV electrons and
understand betatron (transverse)
focusing (in 1942: 20MeV)
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focusing
magnet
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1946: Goward and Barnes build the first synchrotron (using a betatron magnet)
1949: Wilson et al. at Cornell are first to store beam in a synchrotron

(later 300MeV, magnet of 80 Tons)
1954: Wilson et al. build first synchrotron with strong focusing for 1.1GeV
electrons at Cornell, 4cm beam pipe height, only 16 Tons of magnets.
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Limits of Synchrotrons

p= P [l  The rings become too long

Protons with p =20 TeV/c, B =6.8 T would require a 87 km SSC tunnel
Protons with p =7 TeV/c, B =8.4T require CERN’s 27 km LHC tunnel

I:)radiation 67150 N q2 y i

o,

Energy needed to compensate
Radiation becomes too large

Electron beam with p = 0.1 TeV/c in CERN’s 27 km LEP tunnel radiated 20 MW
Each electron lost about 4GeV per turn, requiring many RF accelerating sections.
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Elements of a Collider N

Chalenges:
»Saving one beam while injection another
»Avoiding collisions outside the detectors.

»Compensating the forces between e* and e- beams
bending magnet € €

focusing

—

/

pulsed
injection magnef §

focusing magnets

Georg.Hoffstaetter@Cornell.edu




Special Relativity

E = mc?

Albert Einstein, 1879-1955
Nobel Prize, 1921
Time Magazine Man of the Century

SRR

Four-Vectors:
Quantities that transform according to
the Lorentz transformation when viewed
from a different inertial frame.

Examples:
X*O{ct,x, v,z
P*U{ZE, P, Py, P}
P I{oALA A}
JH{co, Iy, bys )t
K*O{wk,,k,, K}

X#Of{ct,x,y,2 O X*X,=(ctf-%*=const.

P“O{1E, p,, p,, P} 0 PHP, = @g ? = (m,c) = const.

LCL
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Available Energy

LEZ = (R + P )an(Py + P)en
=(R* +PFf)(R, +P,)
=L (E+E) = (P~ PL)°

E
- 2( Eéz : + pzl pzZ) + (rnO1C)2 + (rnOZC)2

Operation of synchrotrons: fixed target experiments ®
where some energy is in the motion of the center off
mass of the scattering products

09/01/04
CORNELL

| Pl
-

E, >>m,c?,m,c% p, =GE, =m,c? O E,, =2Em,c?

Operation of colliders: ° \kf °
the detector is in the center of mass system { ¥\

E, >> mmcz; E, >> mozC2 U E,, =2{EE,
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The Livingston Chart G
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4 Generations of Light Sources

1952: First accurate measurement of synchrotron radiation power by Dale
Corson with the Cornell 300MeV synchrotron. Later also first measurements of
spectrum and polarization with worlds 15t SR beam line.

1st Generation (1970s): Many HEP rings are parasitically used for X-ray
production
2nd Generation (1980s): Many dedicated X-ray sources (light sources)

3rd Generation (1990s): Several
rings with dedicated radiation
devices (wigglers and undulators)
3.5 Generation: Construction of
Energy Recovery Linac (ERL) with
Undulators

4t Generation: Construction of Free
Electron Lasers (FELs) driven by
LINACs

focusing

undulator
beam

wiggler beam
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Accelerators of the World oo

Sorted by Location

Europe

AGOR Accelerateur Groningen-ORsay, kM| Groningen, Metherlands
ARlEA Brgstrimauelle Karlsruhe, Karlsruhe, Germany (Farschungsaruppe Svnchrotranstrahlung (FGEN
ASTRID Aarhus Storage Ring in Denmark, 154, Aarhus, Denmark

BESSY Berliner Elektronenspeicherring-Gesellschaft fir Synchrotranstrahlung, Germany (BESSY | status,
BESSY Il status)

BIMF Budker Institute for Muclear Physics, Movosibirsk, Russian Federation (YEFPP-20 collider, WEFPP- 40
collider {statush)

CERM Centre Europeen de Recherche Mucleaire, Geneva, Suisse (LEP & SPS Status, LHC, CLIC,
FS-Division, SL-Division)
COsY Cooler Synchrotron, IKP, FZ Jdlich, Germany (COSY Status)

CYCLOME  Cyelotron of Louvain la Meuve, Louvain-la-Meuve, Belgium
DELTA Dornrmund Electron Test Acceleratar, U of Dodmund, Germany (DELTA Status)
DESY Deutsches Elektranen Synchrotron, Hambuorg, Germany (HERA, PETRA and DORIS status, TESLA)

ELBE ElLectron source with high Brilliance and low Emittance, FZ Rossendorf, Germany
ELETTRA Trieste, ltaly (ELETTRA status)

ELSA Electran Stretcher Accelerator, Bonn Uiniversity, Germany (ELSA status)

ESRF European Synchrotron Radiation Facility, Grenoble, France (ESRF status)

GARIL Grand Accélérateur Mational d'lons Lourds, Caen, France

[EH= | Gesellschatt fir Schwerionenfarschung, Darmstadt, Germany

IHEF Institute far High Enerdy Physics, Protving, Mascow region, Russian Federation
IMER |stituto Mazionale di Fisica Mucleare, taly,

LMF - Lahoratori Mazionali di Frascati (DAFRKE, other accelerators),
LML - Lahoratari Mazionali di Legnaro (Tandem, Ch Wan de Graaff, AR 2000 Yan de Graaff,
LME - Lahaoratori Razionali del Sud, Catania, (Superconducting Collider & Van de Graaff Tandem)

1515 Rutherford Appletan Laharatory, Oxford, LUK, (1515 Status)

ISL lonenStrahllabor am HMI, Betrlin, Germany

JIMR Jaoint Institute for Buclear Research, Dubna, Russian Federation (U-200, U-400, U-400M, Storage
Ring, LHE Synchrophasotron f Muclotron)

JYFL Jyedskylan Yliopiston Fysiikan Laitos, hwvaskyla, Finland

kTH kungl Tekniska Hogskola (Royal Institute of Technolooy), Stockholm, Sweden (alfén Lab electron

accelerators)
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Accelerators of the World oo

Accelerator of LML and TU Muenchen, Munich, Germany

Laboratoire pour 'Utilisation du Rayonnement Electromagnétique, Orsay, France (DCI, Super-ACO
status, CLIOY

Mainzer Microtran, Mainz U, Germany

Lund University, Sweden

Manne Sieghahn Laboratary, Stockhalm, Sweden (CRYRING)

Mationaal Instituut voor Kernfysica en Hoge-Energie Fysica, Amsterdam, Metherlands (AmPS ciosech
Paul Scherrer Institut, Villigen, Switzerland (PSI status, SLS wndier construction

S-DALINAC Darmstadt University of Technology, Germany (S-DALINAC status)

SRS Synchrotron Radiation Source, Daresbury Labaratary, Daresbury, U K. (SRS Status)

TSL The Svedberg Lahoratory, Uppsala University, Sweden (CELEIUS)

TER Heawvy-lon Test Storage Ring, Heidelberg, Germany
North America

88" Cycl.  88-Inch Cyclotron, Lawrence Berkeley Labaoratory (LBL), Berkeley, CA

ALS Advanced Light Source, Lawrence Berkeley Lahoratory (LBL), Berkeley, CA (ALS Status)

ANL Argonne MNational Laboratory, Chicago, IL (Advanced Photon Source APS [status], Intense Pulsed
Meutron Source IPNE [status], Argonne Tandem Linac Accelerator Systerm ATLAS)

BrHL Brookhawen Mational Laboratory, Uptan, WY (4GS, ATF, NELS, RHIC)

CAMD Center for Advanced Microstructures and Devices

~HERE ¢ nhE g g - S

CLS Canadian Light Source, U of Saskatchewan, Saskatoon, Canada

CESR Cornell Electron-positran Starage Ring, Cornell University, lthaca, MY (CESR Status)

FIAL Fermi Mational Accelerator Laboratory, Batavia, IL (Tevatran)

A [daho accelerator center, Pocatello, daho

IUCF Indiana University Cyclotron Facility, Bloominaton, Indiana

JdLab aka TJMAF, Thomas Jefferson Mational Accelerator Facility (formerly known as CEBAF), Mewport
HEws YA

LAC Louisiana Acceleratar Center, L of Louisiana at Lafayette, Louisiana

LARL Los Alamos Mational Laboratony

MIT-Bates Bates Linear Accelerator Center, Massachusetts Institute of Technology (MIT)

MECL Mational Superconducting Cyelatron Laboratory, Michigan State Liniversity

ORI Oak Ridpe Matinnal | aboratory (ER Tandem Accelaratorn Oak Ridne Tennessee

SBEL Stony Brook Supercanducting Linac, State University of Mew York (SLIRY)

SLAC Stanford Linear Accelerator Center (Linac, MLC - Mext Linear Collider, PEF - Fositron Electron Project
{finished), PEP-1l - asymmetric B Factory {in commissioning), SLC - SLAC Linear electran positran
Collider, SPEAR - Stanford Fositron Electron Asymmetric Ring (actually SFEAR-I|, see S5RL), S5RL-
Stanford Synchratron Radiation Labaratond

ShE Spallation Weutron Source, Oak Ridge, Tennessee

SRC Synchrotran Radiation Center, U afWisconsin - Madison (Aladdin Status)

SURF Il Synchrotran Witraviolet Radiation Facility, Mational Institute of Standards and Technalogy (MIST),
Gaithershburg, Maryland

TASCC Tandem Accelerator Superconducting Cyelotran (Canada) (ciosec)
TRIUMF  TRI-University Meson Facilit f Mational Meson Research Faeility, Vancouver, BG (Canada)

South America

LKLS Labaratario Macional de Luz Sincrotron, Campinas 5P, Brazil
TAMDAR  Tandem Accelerator, Buenos Aires, Argentina

Asia
BEFC Beijing Electran-Fasitron Collider, Beijing, China
KEK Mational Laboratory far High Energy Physics ('Koh-Ene-Ken™), Tsukuba, Japan (KEK-B, PF, JLC)
MNEC Muclear Science Centre, Mew Delhi, India {15 UD Pelletran Accelarator)
FLS Pohang Light Source, Fohang, Korea

RIKEMN Institute of Physical and Chemical Research ('Rikagaku Kenkyusho), Hirosawa, Wako, Japan

SESAME  Synchrotron-light for Experirmental Science and Applications in the Middle East, Jordan (under
construction)

SPring-8  SuperPhoton ring - 8 GeV, Japan
SRRC Synchrotron Radiation Research Center, Hsinchu, Taiwan (SRRC Status)
LVEOR Ultraviolet Synchrotron Orbital Radiation Facility, Japan
WECC Wariable Energy Cyclotran, Caloutta, India
Africa

A Mational Accelerator Centre, Cape Town, South Africa

Sorted by Accelerator Type
Electrons

Stretcher Ring/Continuous Beam facilities

ELSA (Honn Uy, JLab, MAMI (Mainz L1, MAX-Lab, MIT-Bates, PSR (SAL), S5-DALINAC (TH Darmstadt), SLAC
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Accelerators of the World oo

Synchrotron Light Sources

AREA (FZED, ALS (LBL), APS (ALY, ASTRID (I5A), BESSY, CAMD (LSLh, CHESS (Cornell Wilson Lahk), CLS (U of
Saskatchewan), DELTA (U of Dodmund), ELBE (FZ Rossendarf, Elettra, ELZA (BHonn LN, ESRFEF, HASYLAB (DESY,
LURE, MAX-Lah, LMLE, NSLS (BML), PF (KEK), ILVSO0R (IMS), FLS, S-DALINAC (TH Darmstadt), SESAME, SLE
(PSh, SPEAR (S5RL, SLACY, 3Pring-8, BRC (L of Wisconsind, SRRC, 8RS (Daresbury), SURF 1 {MIST)

Other

Alfan Lah (kKTH), I1AC

Protons

aa” Cyclotron (LAL), CELSILS (TSL), COsY (FZJalich), IPMS (AMLY, 150 (HMID, 1515, IUCE, LHC (CERMN), MAC, PS
(CERM), P51 SP5 (CERM)

Light and Heavy lons

ad” Cyclotron (LAL), AGOR, ASTRID (15A), ATLAS (ANL), CELSILS (TSL), CEYRING (M5L), CYCLOME, EM Tanderm
(ORML), GAMIL, GSI IS0 (HMI, IUCE, JYFL, LAC, LHC (CERM), LHE Synchrophasotron § Muclotran (JINE),
LMUUTUIM, LML (IME MY, LS (NERY, MAC MNSC, PSI RHIC (BML), SBEL, 3NS5, SPS (CERMN), TANDAR, TSR, L-2007
L4005 LU-400M 7 Storage Ring (JINR), VECC

Collider

BEFRC, CESRE, DAFME (LMF), HERA (DESY), LER (CERM), LHC (CERN), PER I PEP-II {SLAC), SLC (SLAC), KEK-B
(KEED, TESLA (DESY), Tevatron (FMNAL), VEPP-2M, VEFPP-4M (BIMF)
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Macroscopic Fields In Accelerators

d . . E has a similar effect as v B.
at pP=q(E+VvxB) For relativistic particles B = 1T has a similar effect as
E=cB=310%V/m, such an
Electric field is beyond technical limits.
Electric fields are only used for very low energies or
For separating two counter rotating beams with
different charge.

+

Electrostatic separators at CESR
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Magnetic Fields in Accelerators

Static magnetic fileds: 9, B=0: E=0 Charge free space: | =0
OxB=y(j +£,0,E)=0 O B =-0g(F)
OB =0 0 D%(r)=0
y
N =

(x=0,y=0) is the beam’s design curve

For finite fields on the design curve, _ -
J ‘//(X, y’ Z) - Z bnm(z)xnym

¥ can be power expanded in x and y: nGeo
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Complex Potentials

W :)(+iy : W:X_iy
ax :0W+0V—\,, ay:iaw_iav_v:i(aw_av_\l)
(2 =02+0%+02 = (0, +0,) ~ (3, ~9y) +0° = 49,0, +0°

N 14 Main field ) N
T Fringe field T

In the main field:

Wit ) = 2Im{LIJVV_v”} HWo| =3 W+
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Main Field Potential

The isolated multipole: (/ = —I’V‘LIJV‘Sin(V[¢ -3,])

Where the rotation 79,, of the coordinate system is set to 0 for midplane symmetry

Bx (X’_y’ Z) - _Bx (X’ Y, Z)
B,(X,-y,2)= B,(X,Y,2) _y_ U(xV,2) = (x-Y,2)

Bz (X’_y’ Z) - _Bz(X’ Y, Z) A

The index v describes C,, Symmetry @ @
around the z-axis €, . ® ™
[
due to a sign change after A@ = —
¢ v @ @ V=3

The potentials of different multipole components LIJV have

Different rotation symmetry C,

Different radial dependence rv
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Multipoles in Accelerators

Dipole:
Y=Y Imx-iy} =W, 0-y) O B=-Op=y, g@

Quadrupole:

w:wzlm{(x_iy)Z}:Lpgm—ZXy) [] éz—ﬁw:wg 2%%

Sextupole:

W =W, Im{(x=iy)®} =W, y* -3x%y) O éz—igu:wgs%ff{/z@
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Real Quadrupoles

lose-up of the water cooling tubes
e L G Ik e

The coils show that this is an
upright quadrupole not a rotated
or skew quadrupole.
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Real Sextupoles

Georg.Hoffstaetter@Cornell.edu




Higher order Multipoles .

=W, Im{(x=iy)"} =¥, Q...-inx"y) O é(yzo):“"n”@?‘lg
1

n+1

q L]
= — +1)! .
X,y=0 D LIJn+1 (n 1)- units: -

Multipole strength: K. = ﬂasz
P

p/q is also called Bp and used to describe the energy of multiply charge ions

Names: dipole, quadrupole, sextupole, octupole, decapole, duodecapole, ...

Higher order multipoles come from
Field errors in magnets
Magnetized materials
From multipole magnets that compensate such erroneous fields
To compensate nonlinear effects of other magnets
To stabilize the motion of many particle systems
To stabilize the nonlinear motion of individual particles
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The comoving Coordinate System

‘dﬁ‘ = ds

r=R(s) +Xx§,(5) + Y&, ()

—

eS

4R(9)

The time dependence of a particle’s motion is
often not as interesting as the trajectory
along the accelerator length “s”.

Georg.Hoffstaetter@Cornell.edu




The 4D Equation of Motion

f,(F,47,t)

d_
dt?

3 dimensional ODE of 2"d order can be changed to a
6 dimensional ODE of 15! order:

if’:ip’ %

at my - = - o
[] di =f,(Z,t), Z=(r,p)

L P=F(r, pt) £

If the force does not depend on time, as in a typical beam line magnet, the
energy is conserved so that one can reduce the dimension to 5. The
equation of motion is then autonomous.

Furthermore, the time dependence is often not as interesting as the
trajectory along the accelerator length “s”. Using “s” as the
independent variable reduces the dlmen3|ons to 4. The equation of
motion is then no longer autonomous.

47=1,(29, Z2=(XY,p.P,)

“ ”
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The 6D Equation of Motion

Usually one prefers to compute the trajectory as a function of “s” along the
accelerator even when the energy is not conserved, as when
accelerating cavities are in the accelerator.

Then the energy “E” and the time “t” at which a particle arrives at the cavities
are important. And the equations become 6 dimensional again:

7= fZ(Z,S) , Z=(XY, Py Py,—t,E)

But: Z= (F, |_5) IS an especially suitable variable, since it is a phase space
vector so that its equation of motion comes from a Hamiltonian, or by
variation principle from a Lagrangian.

5I :px)'(+ p,y+psS—H(r, pt) ]dt =0 [ Hamiltonian motion

5I :pXX’+ p,y-Ht+ P.(X, Y, p,, p,.t,H )]dS =0 [ Hamiltonian motion

The new canonical coordinates are: Z = (X, Y, p,, p,,~t,E) with E=H
The new Hamiltonian is: K=-p.(Z,5)
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6 Dimensional Phase Space

Using a reference momentum p, and a reference time t:

Z=(x,a,Y,b,7,¢)

=P p=P 5=E5H g HE —(t —t)
Po Po =

Usually p, is the design momentum of the beam
And t, is the time at which the bunch center is at “s”.

X = 0 KO X=0,K/p,, a=-0,K/p,
’ pX |:||:| ’ ’

P, =-0, K[ %=0bK/po, b'=-0,K/p,
-t'= 0.K 0 1= £9,K/E =0,K/p,

E'=-0.K O &=-40,KS =-9,K/p,

New Hamiltonian:

=K/ p,
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4Simplified Equation of Motion

Only bend in the horizontal plane: K, = 0, K, =K :ZI/,O

Only magnetic fields: E=0
Mid-plane symmetry: B, (X,Y,S) =-B,(X,-y,s), B,(XV,8) =B, (Xx-V,9)

a=-xk*-20,Bx+3B°k O X'=-x(k*+Kk)+35;°k

b'=--9,B,y O y'=ky
U= -xBitK L 0

o' =0

Hamiltonian:

— 1 A2 12 1 2 2 1,22 -2 1 1 -4 2
H =382 +3b% +1k(X* - y*) +$K°X* = B’k X0 + 55 5g*S
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The Curvilinerar System for 1, =0

h

i):@
dt /s hdt

Pp=pE(s)+pe(s)+ peE(s)

LP=(p,— PK)E + P&, + (P, + PK)E,
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Motivation for v=c
X"=-X(k°+K)+ K _ _
ey TP -
. 4Pp=04rxB, B=ftkOorikmxQ
I =—KX E): Eb:
5 =0 . |
Eds:cdt+0 E
4p,=x=pky & gOp=myc [ O y'=ky+O’
. = myc+0?
(& P), =2(L p, — pk) =—(£), p(k +kx) =-h< p(k +kx)
0 &p.=-pl(h-Dk +kq]+0° O X——(K +Kk)x+O?

T :j'[l—\/hz + X% +y?]ds= —JS'des
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Significance of Hamiltonian

The equations of motion can be determined by one function:

ix =0, H(Zs), Lp,=-0,H(Z59),

e | | 0 1
$2=J0H(z,5)=F(z,5) with J=diag(J,), QZZE—l OE

The force has a Hamiltonian Jacobi Matrix:

A linear force: F(Z,s) = F(s) 7,

The Jacobi Matrix of a linear force: F(S)

The general Jacobi Matrix : F. = 02 Fi or F= (5 IET)T

Hamiltonian Matrices:

L
Proof : Fij =0,F=0,J,0, H :JikakajH 1 F=JDH
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Hamiltonian F » Hamiltonian H

Sofar shown: Hamiltonian — Hamiltonian F

Z=F(z,s) with F =d F  and FJ+JF' =0

—

The vector h = QIE therefore has a symmetric Jacobian hj = 62. Jika = Jikaj
J
h=JF=-F'J=h'

The potential theorem:
Any vector valued function h(Z) with d,h(z)=0,h.(2)
j |

can be written as the gradient of a potential: H(Z) = oH (2)

7
Where H is the path independent integral H(2) :J'h(fo)dfo
0
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H —» Symplectic Flows

The flow of a Hamiltonian equation of motion has a symplectic Jacobi Matrix

The flow or transport map: Z(s) =M (s, Z,)
A linear flow: Z(s)=M(s)[Z,
The Jacobi Matrix of a linear flow: M (S)

LT
The general Jacobi Matrix : My=0, Mi o M= (aol\/l T)

The Symplectic Group SP@N): MJIM' =J

%_Z' :%M(S,_ZO) :ile = |E %Mij :aZoJ' Fi (Z,S) :620] Mkaszi(z,S)
) xM(s,Z)) =FE(Z,5)M(s 7))
K=MJM

K = Jis a solution. Since this is a linear ODE , K = J is the unique solution.
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Symplectic Flows ~ H

For every symplectic transport map there is a Hamilton function

The flow or transport map: Z(s) =M (s, Z,)
Vector to compute force: H(Z, s =-J % M (s, _ZO)J—Z»Ozl\‘/l’—l(—Z»’S)
Since then: 47= Qﬁ(_z', S)

There is a Hamilton function H with:  h = odH

If and only if: 0,h=0,h [ h=h'

M
=-JLMM?=J4MIM I=-IMJILM J=M " LM J=h"

il - s — X2 fullls
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Hamiltonian and Symplecticity

Note that the exponent of a Hamiltonian matrix is symplectic
=Fz O 2(s):gls 2"(0) = Zn. F"z,=e*
n=

M(s) =e™

In fact, any symplectic matrix (that has a logarithm) can be written as

the exponent of a Hamiltonian matrix.

efJe =) O Fetlet +eFJF e =0 0 FJ+JE =0

And every symplectic matrix has a logarithm.
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Phase space density in 2D

Phase space trajectories move on surfaces of constant energy

AD,

:\\(\ 47=JoH O <Lz00H
U g

\J H (X, p,) = const

A phase space volume does not change when it is transported by
Hamiltonian motion.

At | 7 | pXAAt 2 The distance d of lines with equal energy
is proportional to 1/| oH 0] 3 |_1

X
H (X, p,) = const

d OAt | Z |= const

@
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Lioville’s Theorem

A phase space volume does not change when it is transported by

72(s) =M (Z,,s) with det[al]:ﬂ
’ azo

Hamiltonian motion.

—>

Volume = V = Jv;[dn_'_ﬂ ﬂ“\/l dn_' _ﬂdnz’_ A

Hamiltonian Motion V =V,

But Hamiltonian requires symplecticity, which is
much more than just det[M (s)] =
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Matrix Solutions

Linear equation of motion: Z'= F(S)Z

Matrix solution of the starting condition Z(0) = Z,

;Z' = M pend (LM et (Lo)M g (L) M 4 (L) Z
: Z=M 4in (LS)Mquad (LM 4in (L) Z,
|

Z=M 4in (L) 7 Z
Z=M g (LM i (L) %
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The Drift

B 2 8
EBE E E Note that in nonlinear expansion X'# a
E&/D:D b [1 so that the drift does not have a linear
[('0 O O [O transport map even though X(S) = X, + X,S
iﬂ DAIBO%O-D Is completely linear.
bt o H
+ sa, s
FHH* 0@ s , 4 f
mOO a Omp 1 - - Q
1 [ L
— <<l [ E&/D:E&/O-I_Sboﬂzgo 1 s 0 E—Z'O
4 OO bk O 01 ~ f
0 O [ 1 0
7, Uy [
e 500 7 o
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The Dipole Equation of Motion

X'==XK?+ 0K

iz<<1 O y'=0

4 T' =—XK

Homogeneous solution:

X,"==%X, k° 0 x,=Acos(ks)+Bsin(ks) (natural ring focusing)
Variation of constants:

X = A(s)cos(k s) + B(s)sin(k s)

X'=—Aksin(k s) + Bk cos(k S) + A cos(k s) + B'sin(k s)j

=0

X"=—k*X— Ak Sin(k s) + B'k cos(k S) = -k °X + Ok

=5k

cos(ks) sSin(ks) A 0
E‘Sin(/( s) cos(k ) E: Efﬁo'z E

Georg.Hoffstaetter@Cornell.edu




The Dipole
% 0S(kS) —Sn(ks)
E: iIN(ks) cos(ks) 1o %

%E %Orf((z:)) %@% with - x= Acos(ks) + Bsin(x <)

I’ =—XK
H cos(ks) Lisin(ks) 0 0 « '[1-cos(k 9)] H
[0 —ksSIn(kS) cos(k S) - 0 sin(k S) []
[] 1 s []

M =0 0 0 [
O 01 O
O-sin(ks) & [cos(k s)—1] 5 1 k7[sin(ks)-sk]O
= 0 0 -0 1
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Time of Flight from Symplecticity
M, 0 D

is in SU(6) and therefore M JIM ' = J

<

1

=

!

mZ
munmlm-

0 0 1 -
M,J, -D OfM, T OY @, 0 0f
oT'J, -M, 100" 1 0C=00 0 10
5o -1 o M, 19 Ho -1 off
H MM,  M,JT-D O @, 0 Of
T'J,M,+D’ 0 10=00 0 1[0
S -1 of Ho -1 of

T = “J M 15 It is sufficient to compute the 4D map M, , the Dispersion D
4 and the time of flight term M
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The Thin Lens Approximation

> >
< L >
X'=[-(k+k?)x+k O]LI,(S)
y'=kyLoy(s)
1 0) O O
I' =—=XK LOo,(S) H , H
T (k+xk9)L 1 0 kL[
thin D 1 O D
My o =0 U v O
L\ p g thin L [l kL 1 L
M =DMy D(3) 1 —«L O 1 0
0 o0 = 0 1/
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Thin Combined Function Bend

M, 0 OD[
M,=00 M, 0L
J0 0 1F

Weak magnet limit: Kk S<<1

<
1l
113

cos(vK 9) S-S n(~vK S)E -
+JKsin(WKs) cosWK s) M. = %

1 0
Ks 1%

wn 01 0
/ksinh(vks) cosh(~k s) E_> My Hes 1%
6:§:1—cos(ﬁs)]ﬁ 5 = E(OE

cosh(vks)  Lsinh(vks)

<
I
CL1 1]

S

ﬁsin(ﬁs) -
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Beta Function and Betatron Phase &

s =0 Ql

Q2

Q3

Q4

D2

D3

D4 DS («x,
o Xg

|

i

|

X'=-xk Ex) DI
y”: yk xio
" |
x [mm] ;. : trajectory
a K\
0
-1
2
-3.+

X(S) = Mll(S)XO + MlZ(S)XO
X(s) =+/2JB(s) sn((s) + @)

\-ly _j
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Twiss Parameters

y=KkB

09/22/04
CORNELL

a, [, ), are called

X'=-k x L]
(9= 20O S+ @) .,
w=} -
IB’: -2 F

What are the initial conditions?

In linear accelerators:

The beam distribution is used to
define the initial twiss parameters.

£(0) = £,

a0)=a,

Twiss parameters.

In ring accelerators:

In equilibrium the beam distribution
Is periodic and therefore periodic
Boundary conditions are used.

f(s+L)=[(s)
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Phase Space Ellipse

Particles with a common J and different ¢ all lie on an ellipse in phase space:

el

T T

q:Si nW(s) + @) E (Linear transform of a circle)

X . =420 axX=-a,%

Feos(/(s) + @) s
0 %XE: % o XE:ZJ (;uadraZicf(irm)
—a?=
e oot AR

A

What 3 is for x, y is for X’
2 X  =.2Jya x=-a,/2

4

\/%

271

Area: 27i J —» IIdeqo: 271 :dedx’
' 00
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The Beam Envelope

3] E(s) =eB(s)
+ [mm] fiM >:(S) =2JB(s) sin(y(s) + @)

0 "

S

| I S |
w B

particle trajectory

R envelope
3 ]
e\ — .
=SS e

1 T S
N 4 v\
-3

In any beam there is a distribution of initial parameters. If the
particles with the largest J are distributed in ¢ over all angles, then

the envelope of the beam is described by\/ 23 B(9)

|
|

{

The initial conditions of § and a are chosen so that this is
approximately the case.

Georg.Hoffstaetter@Cornell.edu




Invariant of Motion

X(s) =/2JB(s) sinW(s) + @)

Where J and ¢ are given by the starting conditions x, and x,.

K + 200K+ B = 2]

Leads to the invariant of motion;

f(x,X,8) =p(X* +2a(g)xx+B(s)x*> O Lf=0

It is called the Courant-Snyder invariant.
A r

T

o 5 " // X
C B sma
Y

B large ||
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Phase Space Distribution '

Often one can fit a Gauss distribution to the particle distribution:
_yxEH2a XX+ BX*

p(X.X) =58 %

27T

The equi-density lines are then ellipses. And one
chooses the starting conditions for § and o according
to these ellipses!

Tl JERE owege

4 ~ 27TE
5 _jj,os%
27T

S J'J'e ‘”‘ngd% 1 Initial beam distribution —— initial o, 3, y

2—}T€HZJ,BS|n¢§e ddg =8 —» <X’2>:5V
2mﬂZJasmqqfe V¢ didg, = ea

=
()
)=

(xx

E= \/<X2><X’2> — <XX’>2 is called the emittance.
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Propagation of Twiss Parameters &=
o A2

ol KT 2 0™ B ABEKE
O LAY

15 _UE:M B, _UOE‘AT
a y O Y




The One Turn Matrix for a Ring

Z(s) =M (s,0)2(0)
Poincare Section

|
0%

2(L) = M(L,0)Z(0)
2(s+L)=My(9Z(S) , M,=M(s+L,9
2(s+nL) =M (9)2(s)
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The Periodic Beta Function

If the particle distribution in a ring is
stable, it is periodic from turn to turn.

o(x,X,s+L)=p0(xX,S)

To be matched to such a beam, the Twiss

parameters a, 3, y must be the same after — —
every turn. Z(L)lzo

H Rlcosy+aysiny] JBBsiny
_\/%Tp[(ao‘U)Cosw—(l+aoa)sinw] L [cosy —asing]

MO(S):E:OS,uHrsin,u Bsinu E:COS,LHEG _ﬁa%”ﬂ

—ysinu cosyu—asinu ol

Poincare Section

LT ]

M(s,0) =

p=¢(s+L)-4(s)
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60
The Tune

The betatron phase advance per turn
devided by 2= is called the TUNE.

=21 =i(s+L)-¢(s)

It is a property of the ring and does not
depend on the azimuth s.

y (s):cosmga(s) BB, (D)%
- M) als

2008 4(8) = TI[M (5)] = TI{M (S O)M ,(O)M (s, 0)]
=Tr[M,(0)] =2cos @

Poincare Section

$x(nL) = x, Bsinnu

i a [B. * P o o
M, =cosnu + nnu O - >
EV a ® 9

Georg.Hoffstaetter@Cornell.edu




The Periodic Dispersion

P(L)SH Mo, 0 DL)PE
M0 =077 1 M 000
% o f %OT 0 1 §E Poincare Section

The periodic orbit for particles with relative >
energy deviation o is N N _ _ ,Z(S) N
(L) =M,7(0)+D(L) with 7(L)=7(0)

7(0) = M ,77(0) + D(L)
[]

A(0) =[1—M (0 —15 L Particles with energy deviation o oscillates
,7( ) [' _O( )] ( ) around this periodic orbit.

2=2,+¢A
Z5(L) +377(L) = Z(L) = M,2(0) + D(L)J = M ,[Z,(0) + &7 (0)] + D(L)d
=M,Z5(0) +ar(L)
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Dynamical systems

Z(s) =M (s; S 70) dynamical variable Z
Flow, transport map M

By referring to a reference trajectory, transport maps in accelerators become
origin preserving: M (S;Ss, O)

Flows build a group under concatenation:
M(s;s, Do M(S;%,2) =M (S;S,M(8: %, %)) =M(S; 8, %)
Identity element: M (s; S,,2) =7

Inverse element of M (S;s,,Z2) =M (s;5,,2) is M(s);S 2)

In physics, the flow is often given as a solution of a first order ODE % Z=1(Z,5)

(Note that an nth order ODE can be rewritten as an n-dimensional first order ODE.)
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Uniqueness

7= f(Z,9)
S)
)

through a given point ~ Z(0

Note that not all ODEs

have a unique solution

d
ds
ya

7
Picard-Lindeloef: N B

A unique solution through (Z,, S,) exists for £Z = f(Z,9) if f(Z,9)
Is Lipschitz continuous and bounded,

l.e. it is continuous, bounded, and there is a number N such that

| £(2,9) - f(Z,9KN|Z -2

3
Example: H =3p*+V(a), V(@)=-8ylal" O qg=p, p=12y|q|
There are two solutions through the point (q,p.t)=(0,0,0)

1.(q(t), p(t)) = (0,00 2. (q(t), p(t)) =(t*,4t°) O (g, p) = (4t°12t7)

In our following treatments we do require uniqueness of solutions.
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Linear systems

Linear ODEs in N dimesions %2 = F(Z S) have F(A Z,5)=A F(Z, S)

= 2=L(s)Z

There are N linearly independent solutions. For example _Zn(S) going through (_ZO, SO)
With Z; =0 for 1 ZN and Z,, =1

2=0,...1...0" O Z(9

One speaks of N fundamental solutions.

Superposition for linear ODEs:
If z1 is a solution and z2 is a solution, then
any linear combination Az1 +Bz2 is also a solution

£§4=L0Z & §Z=L(9Z 0 §(AZ+BZ)=L(s)(AZ+B2)
N
Therefore any solution through (Z,, S,) can be written as Z(S) = Z 7 (9)Z,

2(s) =M(5%,%) =M (s,5)Z, with M(S,5)=(Z(S).....Z(9))
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Nonlinear systems

Noninear ODEs in N dimesions % Z=1(Z,9)
Have no fundamental solutions. Each solution has to be determined separately
for each initial condition.

Examples: Plasma, Galaxies

q; A«

¢J|Fj_ﬁ<|

H(..\F N L
(""ri""""’pi"")_Z%
_ 2m

Finding a general solution, flow, or transport map can be very hard.
This has not even been possible for the 3 body problem.

2(5) =M(s'%, 2,))
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66
Weakly nonlinear systems

Weakly nonlinear ODEs 47 = ]?(_z', S)

Have a right hand side that can be

approximated well by a truncated Taylor expansion

f(2,9)= L(s)z+Zkaz Z, + ;fjklzjzkzl+ + FEZE +...
k ,order O
. Kk
=11z, with k,=0
In_=! orderO Z nz=1

By solving the Taylor expanded ODE one tries to find a Taylor expansion of the

transport map: (S5,Z,)=M(S, )7, +...+ Z MEZ;Z T...
K ,orderO
Note:

While this approach is usually chosen, it is not certain that a transport map of the
Taylor expanded ODE is a Taylor expansion of the transport map of the original
ODE. One therefore often speaks of “formally” finding the Taylor expansion of
the transport map.
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Aberrations and sensitivities

M(Si%:2) =M(s,8)Z%+...+ § M Z5+...

K ,order O

The Taylor coefficients are called aberrations of order O and are denoted by

6
(z.7"...z°) =M, , order O:;kn

Parameter dependences lead to sensitivities:

f(2,56) O Z(s)=M(sE;s,7Z,)

i—»
dsZ

<

M (S.6%,%) =M(5,8)2% +M (s 8)Ze+...+ 5 MIZe"
k,n,

,n,order O

6
(.2"...2°€") =M, order O:n+zlkj
J:

How can all these Taylor coefficients be computed?
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68
Horizontal midplane symmetry

This is the most important symmetry in nearly all accelerators.

- =(x,—-y,2) y §
P =(P.—Pys P,) —
$p=F(r,p) O £p"=F(",p")|=Y L
Z =(x,ay,b1,¢) 72(s) =M(s,Z,)
7" = (x,a,-y,-b,7,0) 77(s) =M (s, 2]

M (s,Z,)= M,.(sZ) for i0{1256}

M (s,Z))=-M.(s,Z,) for i0{34
(X, X...0¢)=0 for k,+k,isodd similarly fora,tand3
(V,X2...00)=0 for k,+k,iseven similarly for b
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Double midplane symmetry

In addition to midplane symmetry, some elements are symmetric around the

vertical plane, e.g. quadrupoles, glass lenses

N

=(x,a,Y,b,7,¢)
Y =(x,a,~y,b,1,0)
Y =(-x,—a,Y,b,7,0)

M. (5.25)= M,(s,2) for
M, (5,2))=-M,(s,2,) for
M. (5.25)=-M,(s,2,) for
M. (5.20)= M,(s,2) for

N/

N/

2(s) =M(s2,)
27(s)=M(s,%,))
2°(s) = Mi(s,2)

| 0{1,2,5,6)

| {34

10{12}

| 0{3,4,5,6)

(X, X...00¢)=0 for k +k,isevenork,+Kk,isodd similarly fora,tand3

(y,x4...0%)=0 for k +k,isoddork,+k,iseven similarly for b
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Rotational symmetry

Some optical elements are completely rotationally symmetric in the x-y plane,
e.g. solenoid magnets, many glass lenses

w =Xx+iy, a=a+ib
z =(ww,a,a,1,0) 2s) =M(s2)

Z" = (e’w,e’w,e%a,e?a,1,0)

Mi(s,20) =M (s,2,) for i0{13

M. (s,Z))=€""M.(s,z,) for i0{24

M(s,Z)= M (sZ) for i0{56}
(W,w...0%)=0 for k —-k,+k,—k,#1 similarly for o
(W,w...0%)=0 for k —k,+k,—k, #-1 similarly for -
(r,w*...0%)=0 for k —-k,+k,—k,#0 similarly for

(W, o[ “Wo), (@ | W), (@, WE@,), (7,[we|*) ~ can all be non-zero
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C,, symmetry

Some optical elements have C, symmetric in the x-y plane,
e.g. C, for quadrupole, C, for sextupoles, etc.

W =Xx+iy, a=a+ib
Z =(wW,W,a,d,7,0) 2(s) =M(s %)

2= (¥ wetweta e a e 2 (9=MER)

M.(s,Z))=e "M (s,Z,) for i0{13

M.(s,Z))=€e""M.(s2) for i0{2,4

M(s,Z)= M, (sZ) for i0{56}
(wW,W...0%)=0 for k, —k,+k,—k,# jn+1 similarly for o
(W,w"...0%)=0 for k, —k,+k,—k, # jn—1 similarly for o*
(r,we...0%)=0 for k -k, +k,—k,# jn similarly for &

(W, W), (ﬁ,\wo\zwo), (a,W.a,), (T,‘WO‘Z) can all be non-zero for C,
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2
. . 10/18/04
Symplecticity Cons
[5 |\7i T]T 3[5 M T] =J Symplecticity leads to the requirement that sums over
o — certain products of aberrations must be either O or 1.

Separation into linear an ~ .
nonlinear part of the map: M (Z) =M, (Z+ N(2))

M(2)=[0MT]" =[1+0N")M,]" =M, (1+N(2))

1+N)'M; IM,@+N)=J O M,;JIM,=J, N'J+IN=-N'JIN

For the leading order n-1 (the first order that appears in N): MTQ +JN

N is a Hamiltonian matrix up to order n and can thus be N(‘z’) = 15 f(Z) + o
written up to order n as:

W(S;) = (X, %)0, T +(X, o), T +I[(Y, %), T +(Y, ¥0)0, 1]

=(W,%)0, T +(W,Y,)0, f
=z [(w,wo) + (W, Wo)][0, T +0, f]=3[(w,w) —(w, W)][0, f —0, ]

=(w,w,)0_ f +(w,w,)a, f =(w,w,)0d,f
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Special aberrations

Some aberrations and sensitivities have special names:

Dispersion (for § as parameter of 4-dimensional motion) Z =M (S) Z, + D(s)0

Chromatic aberrations (X,...0"), n# O

Geometric aberrations (X, X8 yk3bk4 k 0
Purely Geometric aberrations (X,...0"), n= O -
Opening aberrations (X, X" ... yk2 ..., k+k,=0
Field aberrations (X X%...y..), k+k,#0

Spherical imaging systems: (W, @) =0
2
Spherical aberration for rotational symmetry (W, @ | |7)

Coma line (w,w|a )
Coma circle (W, Wa?)
Astigmatism (w, war)
Curvature of Image (w,|w[* a)
Distortion (w, w|w[*)
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Aberrations for rotational symmetry

Imaging systems: (W,a)(s;) =0

(w,w)(a,a) =1

Symplecticity: Magnification = Angle demagification
Spherical aberration for rotational symmetry (W, |a )

w(s) = (w,a)a, +(w,alaagla, [

Scherzer Theorem:

For rotationally symmetric electro-magnetic systems, the focal
length for larger angels is always shorter.
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Koma line and Koma circle

W(s) = (W, W), +(W,a)a, +(w,wla F)w, |a, [

W(s; ) = (W, W)W, = (w,w|a [)w |a [

/ + (W, Wa®)W,a;

¢ = 2arcsin(&) = 2arcsin( o))
A (w,wia’)
,, Ay Symplecticity yields:
(w,w|a ) =2(w,wa?) O ¢=60°

Since:
wW(s;) = (W, wW,)d,[...+ Re{Kwaa@?}] = (W, W,)[... + Kwad@ + L KWa?]
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Curvature of image

w(s) = (W, W)w, +[(w,a) +(w,|w|* a) | w, ['a, '

The focus occurs at (W, a)(s; ) +(wW,| W[’ a)(s;) |w, =0
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Other special systems

Telescope:
parallel to parallel system

Microscope:
point to parallel system

Nonlinearly corrected microscope: (a,a”) =0

(x,¢) large
Spectrograph: (x,a) =0
point to parallel system (X,X) small

Nonlinearly corrected spectrograph: (X,a"b™) =0
Tilt of focal plane:  (X,aC) #0 the focusis at (X, @)(S;)+(x,ac)(s;)¢c =0
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Variation of Constants

7 =1(z,9

Z =L(9)Z +A]?(_Z', S)  Field errors, nonlinear fields, etc can lead to AF(Z, S)

2, =L(9Zy O Z,(9=M(9)Z;, with M (9a=L(5)M(s)a

2(9)=M(9d(s) O Z(s)=M (9a+M(9)d (s)=L(s)Z+Af(Z,5)
a(s) = 7, +} M (9AF (2(8),9) ds

2(8) = M) 7y + [M (T (2(9), § dr
0 []

Perturbations are propagated
fromstos’

-2.(s) +} M (s, §)AF (2(8), §) d3
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lteration for Aberrations
2(s) =2,y (5) + [M(s, SAF (2(9),9)ds
2(9=2,(9

2,(9)= 2,(9)+ [M (s, 97 (5(9). 9 8

2,(9)=2,(9+ [M(s. 907 (2,,(8), § &

Taylor expansions:  Af (Z,S) = AI?Z(_Z', S) +A]?3(_Z', S)+..., Afy= Z ]?E_Z'Iz
_ _ k order O
z(s) =M(s)7,

2,(5) = M(9)%, + [M (s, 9AF,(2(8),§) ds

2,(8) = M(9)7, + [M(s, S{[AF,(2(9), §)]s + Af:(2,(8), 9} 06
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Poisson Bracket

The Poisson Bracket is defined as
[f(2,921=Y0,f0,9-0,fd,g=0"fJog

The Poisson Bracket can be viewed as a product on the vector space of phase

space functions. It is:
Linear: [f,ag]=[af,g]=4a[ f,g], allIR
Distributive: [ f,g+h]=[f,g]+[f,h]

This turns the vector space into an algebra.

The multiplication is furthermore:

Anti-commutative: [f,0]=-]9,f]

Has a Jacobi-identity: [ f,[g,h]]+[g,[h, f]]+[h,[f,g]] =0

as can be proven by the product rule: [f, gh]=g[f,h]+[f,g]h
This turns the algebra into a Lie algebra.

Example: axDb turns IR® into a Lie algebra.
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10/25/04
Map computation by Lie Algebra

The Poisson-Bracket operator of f, : § : is defined as : g : h=[g,h]

'H:g=[H,g]=-g,H]=-0"gJoH =-0"glZ=-49g(2)

= re = 2

In the main field region where diZ = f (Z) 1 -:H fj :% fJ :%ZJ
— d _ dn+1 . n _ dn

If g(Z) = dg=4"7 O ( H)z=%72

00} 00}

Propagator: @™2sH'z = Z (-AilH:)n 5 = Z Ans“
M, o M,(Z;) = M,(As,, 2(As))) = Z( =DM, (As,, Z,)

= g i) grlsHa ()5

M(S,Z)=M_o...oM,oM,(Z,) =€ ez
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Poisson Bracket invariants

The Poisson Bracket is invariant under a symplectic transfer map

[F(M(2),9M (@)]=0"f| MIMTdg| =[f(2), 9],

For nonlinear expansions, one writes the transport map as a linear matrix
and a nonlinear Lie exponent,

()

(S — ‘H (2" — H': 5
Ni,(2) =M€ 2= M, 5 57
n=

since a linear Lie exponent requires infinitely many terms in the power sum, but
the nonlinear exponent terminates when a finite order expansion is sought.

HN(2)2

(Mze:Hg(_Z'):—z) ° (Mle:Hln(Z):—z) — Mze:Hz(Mle' 1 z):Mle:Hln(Z)Z—Z

gn :Hn(i):..n-.__> Cnee i a
= M 2M 1e.H2(M1e 1 2).e.H1 (Z)Z — M , M 1e.H1 (Z).e.HZ(Ml'z’)_Z

When these equations are used to compute and manipulate transfer maps, one
speaks of the Lie algebraic method.
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. . 10/27/04
Computing Taylor expansions
f(x)= Orderox_nan f ‘ But taking this approach for complicated
- ; b 0 functions would be very cumbersome:
1 — COSX
1. f(x) = -1, f(0)=0, of| = =1,
) 1+sinx ©) ‘0 (1+sinx)20

sinx(L+sinx)+2cos? X|

0°f (X) = _ =2, f(X)=—-x+x*+0O°
(L+sinx) .
1
2. f(X)=—— -1, | | o
1+sinx This approach is formalized in the field of
1 automatic differentiation using a
f(x)= 1 Differential Algebra.

1+x-1x’+0O* B
= =(x=3x) +(x=$X)" = (x=§x)*+ O*

=-X+ X' —-2x*+0"
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Computations with TPS(n)

Computation of a function in /Ris 1 1. xUIR
.. f (X) =—-1 -
done by a finite number of 1+sinx 2. 9n
elementary operations (+,-,x) and 3. 1+
elementary function evaluations 4 1/
(sin, cos, exp, 1/x, ...). '
5. -1

If g,(x) is the truncated power series of order n of g(x) and h_(x) is that of h(x)
we can look for elementary operations (“+”,”-”,”’x”) so that

g, +’h, is the TPS(n) of g+h

g, - h, is the TPS(n) of g-h

g, xh, is the TPS(n) of gxh

Similarly we can look for elementary functions (“sin”,”cos”,”exp”,”1/x”,...) so that
“sin”(g,) is the TPS(n) of sin(g), “exp”(g,) is the TPS(n) of exp(g), etc.

Evaluating all elementary operations and elementary functions in f(x) in terms of
“+7 7. ..” starting with the TPS(n) of x, leads to the TPS(n) of f(x).
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Automatic differentiation with TPSA(n)

Example: computing the TPS(3) of f(X) =—— -1

1
1+snx

1. TPS(3) of xisx

2.
3.
4.
D.

TPS(3) of "sin"xisx—1x’

I'+'x=1ix> =1+ x-1x°

(X)) =2, 1"(X) =1-x+X* = x>, "iI"(x=3x°) =1-x+Xx* =2 x°

1-X+ X =3x°"—"1=—x+ X —gx?’

This automatically (i.e. with a computer) leads to derivatives of f(x):

f(0)=0, Q) =-1 f"(0) =2, "(0) = -

Truncated power series can be added “+” and multiplied “x” and there

is a neutral element of multiplication (i.e.1). Therefore the vector space of
TPS(n) forms an algebra. It is called the Truncated Power Series Algebra
TPSA(N).

Georg.Hoffstaetter@Cornell.edu




86
The Algebra ,D,

An addition and multiplication with a scalar leads to a vector space over /R 2
{ag,a},{by, b} OIR, tOIR
{ag,a} +{by, b} ={a, +by,a +b}

Hay, a} ={ta,,ta}
The introduction of a multiplication {ao, ai}{bo, bl} :{aobo, aobl + a:I_bO}

leads to an algebra if it is:

Distribut. — {a,,a} ({by, b} +{Cy,C}) ={a, at{by, b} +{a, a}t{c, c}
Has a neutral element: {a,,a}{10} ={a,,a}

and additionally to a ring if it is

Commutative: {a,,a,}{b,,b} ={b,,b}{a,,a}
Associative: {8, a,} ({0, b} {C,¢}) = {8y, a}{by,b}){c c}

All these properties are clearly given, since first order power expansion
have this multiplication: (@, + a,X)(lb, +b,x) = a,b, + (a,b, +ab,)x+ O~
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The Differential Algebra ,D.

By the introduced addition and multiplication we created an algebra, since the
multiplication is commutative and associative we also created a ring, but not a
field. Complex numbers are a field since there is a multiplicative inverse for all
numbers except 0.

{85, a}{by, b} ={aghy, b +ab} O {a,a}{s -3 ={10

We further introduce a differentiation: 0{ay,8,} ={&,,0}
It is a differentiation since it satisfies a product rule:

0({ay, &by, b}) ={a5h +a0,,0 = (&, a}){ky, b} +{a,, &} (o(hy, b})

By adding a differentiation we have created a Differential Algebra (DA).

Differentiation of Polynomials: f (X) =2+ x> 0O f '(X) = 2X
F{21)={20 +{44 ={6,4 ={1(2), T '(2)}

Since{ f, I’} +{9,9} ={(f +9),(f +9)}, {T, 1'}{g,97} ={(19).(19)}
Every polynomial: P({ f, f'}) ={P(f),[P(f)]’} and [P{x,1}) ={P(X), P’(X)}
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Elementary functions in ,D,
e(a, +ax) = &(a,) +€'(a,)ax+0’
leads to

e({ay,a}) ={e(a,), a€'(a,)} sin({ay, a}) ={sina,, a, cosa,}
cos({a,,a,}) ={cosa,,~a sina,}
since{ f, f}+{g,9% ={(f +9).(f +9)}, {f, f}{g, 0% ={(f9).(fg)}
and e({f, f7})={e(f).[e(f)]}

Therefore F({ T, f'}) ={F(f),[F(f)]} and F{Xx3})={F(X),F’'(X)}

So that automatic differentiation works not only for Polynomials but for any function
that is constructed from a finite number of operations and elementary functions.

Computer programs that have differential algebra elements as data types can
evaluate any function or algorithm in this data type and obtain derivatives of
the function or derivatives of the algorithm.
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The differential algebra D,

The concept of ,D, can be extended to truncated power series of order n and to v
variables. This leads to the differential algebra D,. For each coefficient in the nth
order expansion there is one dimension in the vectors of D,

Power expansions for v variables have extremely many expansion coefficients:
| | | - (n+v)t

A polynomial of order n in v variables has di m(n DV) — —  coefficients

since niv!

dim(,D,)~dim(,,D,) = dim(,D,;) , {vr_{nzlrvi_(n+v-l)
\ v S niv (n—=D!u n(v-1)!

\" \"

k — k ky—
z%..2¥,y k;=n 2Lz, k<n
(n+1)!

n!

and iteration of D, starts with the correct conditions:  di m(,D,) =n+1=

Example: dim(,,D,) = 8008 dim(,D,)=1=

Computer programs that have differential algebra elements as data types
produce the nth order power expansion of v-dimensional functions or algorithms
automatically.
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Equivalence classes and D,

A TPS(n) of a function f(x) defines the equivalence class of all functions that have
the same TPS(n).

Def: f= g if 0f(0)=0"g(0) Ok withorder<n

= Is an equivalence relation since it has

the identity property f=,1f Of
the symmetry property f= g if g=,f
the transitivity property f=,h if f= gandg= h

Equivalence classes: Def : [f], ={g|g=, f}

Arithmetic of equivalence class: [f],+[0]l, =[f +4],
Those operations generate a [f]n[g]n - :f g]n
P ’ ],  =[tf]

differential algebra.

o[t],  =[0;T]y
et],) =[e(T)],
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Composition of Maps
f(x,909 and [f],.[9,]0,D,
[F(a()]o =L (9(O))],
[F(g()], =T (9(0) +g'(0) f*(9(0))x],

The composition of two TPS(n) can only be computed if the first one is origin

preserving, then [f],o[0], =[f(a(x)],

If two maps that are know to order n and the first one is origin preserving, then the
composition of the maps is known to order n.

:Ml:n’[MZ]nDn D\\//

—

M,], O[Ml]n :[MZ(Ml(z))]n

Therefore the reference trajectory is always chosen as origin for the maps
accelerator elements.
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Inversion of Maps

The nth order inverse of an origin preserving function can be computed within the
differential algebra (DA):

[M™],=M;1Z-NoM™], =M (Z-[N],°[M ™],-)

lterative computation of the inverse:

M 7, = [Ml_lz]l

M _1: 2 = Ml_l(z _[ |ii]z © [Ml_lz]l)

M _1: 3= Ml_l(z all N]s © (Ml_l(z _[N]z © [Ml_lz]l)))
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Generating Functions

The motion of particles can be represented by Generating Functions

Each flow or transport map: 7(s) =M (s, Z,)

_ 30T )
With a Jacobi Matrix : My=0, M; o M=PM
That is Symplectic: MQMT =J

Can be represented by a Generating Function:

F.(G,0p,9) with p=—9.F, , P,= 9,F

F(p.Gy,,s) with g= o F, , p,= 9d,F,

Y Go

F.(d, By,s) with p=-9,F, , G=-0,F,
F,(P. Po,s) with G= o,F, , G,=-0,F,

6-dimensional motion needs only one function ! But to
obtain the transport map this has to be inverted.
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Computation of Generating Functions

For any map for which the TPS(n) is know, a TPS(n+1) of a generating function
that produces this map can be computed. For example, looking for

F.(6,G,S) with p=-0,F(G,0,) , Po= 04 F(G 0,9

7=M (Z,) is given as TPS(n)

EEWZO) "), E%E:Eﬁpéo ) = R @),

—

do)
oF, =-Jhol ™ O F=-J Iﬁ o1 (Q)dQ @w_
~ - 0 . [Fulha=—d [[Ih], eIl _1]ndQ
[M], O []1.[h], 007,07, l

Particle coordinates (q0,p0) are propagated by such generating functions when
zeros of the following equations are found numerically:

p+0,F (0,069 =0 and p,-9, F(G,Gp,9) =
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F o SP(2N)

Generating Functions produce symplectic tranport maps

F.(G,0y,9) with p=-9.F(6,0,S) , Po=

q 0 - - O
z=gE=ds o FEfQ90
ié Efaq'zl(q’qo’s): N 2=1(G7(2,9),9)
= _io qO :__>—» [] M:_»Og»_l
% = %j()%: %% ACKS S)E 9@ S)E (function concatenation)

Jacobi matrix of concatenated functions:
C(Z,) = A B(Z,)
C;=0,G = Z 0, B(%) [azk A (2)] 228(2,) 0 C=A(B)B

Mog=f O M(g)=FG™
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CORNELL

- Fz_ll |:22 Fz_ll E
11 Fz_ll |:22 - |:12 - |:11 Fz_ll

<
3
I
I
9
h
pEs

0O 1
%ﬂT — | The map from a generating function is symplectic.

T

— H: Fz_ll - Fz_ll |:22 I |:22 F1£1 |:22 F1£1 |:11 - |:21 E: Ef) 1%
1|:2_11 |:11 Fz_ll |:22 - |:12 F1£1 - F1£1 |:11 10

1

Georg.Hoffstaetter@Cornell.edu




SP(2N) i F

Symplectic tranport maps have a Generating Functions

2=M(Z,)

OE E\A;(OZO) Epo%ng(zo)é ﬁ(fo)ﬂ[élrl(q,qo)] o

OF, =—Jhol =
For F, to exist it is necessary and sufficient that 0. |:j = aj F O F= =
-Jh=F.l 0O -Jh=F()!

Is J h I'" symmetric ? Yes since:

— — — — _1

Ih| S 9;0|\/|1 0, M,
T M 1 0

:E\A 0 1 E: 22M1_21 M21_M22M1_21M11
0 _1 Mz —M,pMy My, MMy, =
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L Ml_Zl 1_21M11
M (_Zo) — %‘1(60’ ﬁO)E E:j:
2(Co» Po)
0 1
M
vl o=l o

9 9 11/10/04
-1 _ »Mp; My —M,ME My, CORNELL
Jhl "=
M
M

11%; M;]-E:E? 1%
r MpC 010

_ T _ _ _
M12M1T1 = M11M1Tz ] (M121M11) = [I\/llzll\/|11|v|1T2]MlzT i M121M11
M21M%2 = MzzMT2T1 D=D"
MllM 22 |V|12M21 =1
M, M, -M, M) =1 A=A

?
VT _ _ - _
(M 22M121) :[MzleTlMlzT - le]Msz = M22[M121M11M 2T2 - M-Zrl. = IV|22M121

M, - M22M1_21M11 =My, - M22M11M1_2T = Ml_ZT —»B=C'
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Symplectic Representations

Hamiltonian
Z=J0H(Z,9)
\ 4 \4
Generating Functions Symplectic transport map
-  — _ =4 — —» < > T
(P By) =—J0F(q,q,,S) MJM =J
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Advantages of Symplecticity

Determinant of the transfer matrix of linear motion is 1:
Z(s)=M(s)lZ, with det(M(s))=+1

One function suffices to compute the total nonlinear transfer map:

F.(6,0,,9 with p=-0,F(d,6,9 ., Py= 0, F.(G,G,.9
q

ﬁ:% 0%
%= i%% F(q Go» S)

Therefore Taylor Expansion coefficients of the transport map are related.

NI
I

B NN
|
—h|
~
Q.
&K

O
&K

LI III |
(’S_D\l
I I

Computer codes can numerically approximate M (S, _Z'O) with exact
symplectic symmetry.

Liouville’s Theorem for phase space densities holds.
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Eigenvalues of a Symplectic Matrix

For matrices with real coefficients:
If there is an eigenvector and eigenvalue: MV, = AV
then the complex conjugates are also eigenvector and eigenvalue: VIV, = Ai \7I

For symplectic matrices:
_ - T
If there are eigenvectors and eigenvalues: MV. = AV, with J=M JM

then \ZTJQJ :\ZTMTQMVJ' :Ai/]j\_iiTléj N \7iT_\71 (44, -1)=0

Therefore JV Is orthogonal to all eigenvectors with eigenvalues that are
not 1//\ Slnce it cannot be orthogonal to all eigenvectors, there is at least
one elgenvector with elgenvaluell/]

Two dimensions: /\j IS eigenvalue Four dimensAions: o)
Then1/A; and /]*j are eigenvalues 4 )
j

: /a*-l
VA =4 0O [A4F1 /\\ \’ >

NFAANE
A*J = AI:L .Aj
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Perturbations to linear motion
L oibii
AR bl

This would be a solution with constant J and ¢ when Af=0.
Variation of constants:

| 0o
23 B Eﬁf%

) S+v2J @’ ° 1_»:'8_1%;E with ,8'1=EJ% s

J23 1 O = [ - HF VA

%:Cos(¢+¢6)\/ﬁAf . 23 gr=-sin + @)y B
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Simplification of linear motion

44,
H ¢ Orisin((p+¢6)E J'=0
2 ]
g%rﬁ% 77 Heosy + @) @'=0
>
: y Ag
MH\/E 0 Hsing . J’=0
o o U
>
AP
g%mﬁﬁ 0 'W—#%W)ED =0 /
5 JpHtosW - ptt ) ¢'=ut
>

Y=¢p-pu20 ¢g(s+L)=¢(9) Corresponds to Floquet’'s Theorem
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Quasi-periodic Perturbation
J'=cos( + @)\2IBAf , @ =-sin(y + @), 550

I=cos(@+¢)\2IBAF , ¢'=pt-sin(@+@)y[Lof

New independent variable 9 = 27-[3

4 J=cos(f +9)2IBAF L | Lo=v-sn@f+¢)LAf L

Af (x) = Af (/2IB Sin({ + @)

The perturbations are 2r periodic in J and in ¢
¢ is approximately @ = U [

For irrational v, the perturbations are quasi-periodic.
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Resonances Diagram

n+mu, + rnyuy =~ (0 means that oscillations in y can drive oscillations in x in

J‘ ¥ i , : T o e : B [
2y s & -‘z}:ﬁ{ z_i; : :--
i £ - i ; - - )' F |" .-
n I- z-: I A e .. e
L B Y o 5 '!rl'ﬁ‘*‘ =
0.8 B SR I SR U N
N o
R N el
I e i S L F. =4t
e B I g i
I 7 7 '
0.6 |tbpis s NG e
| - %" | '_::’--'/I:;.I :}.-'
0.4 T N S '
W, T ,n'a/: 1k
A
. N
L 5 e N
; " s L
(R : A
]
0.8

11/15/03

CORNELL

X'==-K X+ Af (X,9)

All these resonances have to be
avoided by their respective
resonance width.

The position of an accelerator
in the tune plane s called its
Working Point.
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Resonances Connm
:%r[, ]'[,%r[

n f

for U=3
A
S

—
&

for 0>0

?.
N

=K

\/

P

=1 5 ornone for. ¢>0
4 for 6<0

Either 8 fixed points: ¢ <0

How can the motion inside the fixed points be
> simplified for a real accelerator ?

9%

—

‘%\

- Normal From Theory
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Linear Normal Form Theory

1
g
I

+

ﬁIQ

1
NG

0 Hicosu sin,uffi 0%:%@%% 0 H

H-sinu cosufpe IR

.SE

cosy sSnul -1, H

rsiny cosud i, 0
4<

L

11/15/04
CORNELL

Ko
5 VPR

=l

Dt

o
o O+
o

¢Complex plane
t+

[

N

/o/
L
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Non-linear Normal Form Theory

In nonlinear normal form theory, one tries to remove as many of the higher order
terms in the transport map by nonlinear coordinate transformations.

L f B

ap: DY, + N(to) f, = Ah(tn Dy Af) =40

Dt +N,({,) =, [1+A]o[D+N,Jo[1-A]=D+N,, +[A D]

Ah Is chosen so that as many nth order terms in N 11 are eliminated as possible.

—

QF + Nn(fn) :n [1+ Ah]o[D + Nn—l]o[l_ A] :n 6 + Nn—1+[Aw |5]
N, (6) =, Ny + A (D) DA, (f,)

+ NIt + (R -pE™) _ +luJ
.= .+ .
Nn,j,k n-1,j,k An,j,ke An I K
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The Normal Form

+ + + (AR T-fRT) +I,u
N* C=NZ AT O A

n,j,k n,j.k

All terms for which the denominator is not very small are eliminated by the choice

+
+ _ Nn—l,j,lz
Nk gty i (R R

A Complex plane
Terms which are not eliminated are:

Amplitude dependent tune shift terms:

E ) L ()
P o Etﬂeﬁfmﬂﬁ

CEE e & J "

Resonance terms:

Alm=m,

Georg.Hoffstaetter@Cornell.edu




110

Dispersion relation in waveguides

w(k,) = Cy A +K?

Phase velocity V, = wl Kk, =c, 1+ (%)2 >C

Group velocity Vv, =dw/dk, =c/4/1+ (%)2

For each excitation frequency o one
obtains a propagation in the wave guide of

ik,z — 2 _ A2
&, Kk, =4(2)° - A;
Transport for o above the cutoff frequency & > @, = CA,
Damping for o below the cutoff frequencya < G, = CA}yA
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Rectangular TE and TM Modes

nm Kk,

TE Modes 5 1@z S n(—=x)cos(+ y)sin(k,z—at)[{  TM Modes:
= ok : : — Exchange of
B(x) = B,OY = cos( ) sin(F y) sin(k,z-a) - EXoheng

| cos("Z x) cos(‘"* y) cos(k, z— at) H
] ¥ cos(% ) sin( ) sin(k,z - at)
E(X) = k<_f§2 B, (+-=sin(= x) cos(+- y)sin(k,z—at) O
0]
Notation: TE,, Mode '%i‘_g{:‘\ \
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Fundamental Mode

Mode for particle acceleration: TMy;  E, (X) = E,J, (L) cos(k,z — at)
E, (X) =-E,rk,Jy (rLl) sin(k,z—at)

E,(X)=0

B (X)=0

B,(X) =—E,r, 5 J,'(7)sin(k,z-at)
L - . .
1

1.

8 Y = = A 4 I N ot B = ]

o 9 o o
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Resonant Cavities

Q
1.4}
] 2

1-
0.8 s
0.6}

__.--m"""'"-il

0.4f
] 2_j___—--:___;.---""'f"""...---

11/22/04
CORNELL

TE Modes: Standing waves with nodes

B,(X) Osin(k,2)sin(at), Kk, =
| >0

I
L

TM Modes: Standing waves with nodes

E, (X) Ucos(k,z)cos(at), k,=
| >0

I
L

For each mode TE_ or TM__
there is a discrete set of frequencies
that can be excited.

(E/B) _C\/k(E/B)Z (m
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Resonant Cavities Examples

Rectangular cavity:

2 [ ‘2 2
L e =c )

Fundamental acceleration mode: ( B) = %\/E

L,=L,=22cm O f =1.0GHz

Pill Box cavity:

(E/B) _C\/k(E/B)Z (m

( ( kr(,i)l’ is the mth 0 of the nt Bessel function.

kr(‘r'i)r is the mth extremeum of J,

Fundamental acceleration mode: a)élE) - CZT4

r=1lcm O f!¥) =1.0GHz

Georg.Hoffstaetter@Cornell.edu




Cavity Operation

500MHz Cavity of DORIS: B > _______ < E _
r=231cm 0O f\%) =0.4967GHz w
- | 2760 |
motor 77777 /
I tuning TMmo
L plunger C&Vity
d b T3
R beam
-coupling loop  gxis

\
ceramic window electl'lc ﬁeld
from klystron

The frequency is increased and tuned by
+> a tuning plunger.
J_¥ An inductive coupling loop excites the
TE,, waveguide i J magnetic field at the equator of the cavity.
4

Georg.Hoffstaetter@Cornell.edu
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RF systems for accelerators

. L and C: determined by the cavity geometry

R R : determined by the surface resistance
I .

L(I.,—1.)=Rl +J'—dt

. N .
IC—E*? 'Cw“'—w@”—ﬂm

U, = 1 LA Y JL I

1
C Cres RC in res_TC
\/R2+B* ng VLe

PRF:<ULIin>:<(R |Cw)R|Lw C> <(|CCR+1)R%U§>:%%R\/%R2+1U\§

(An alternative circuit diagram leads to simplified formulas)

Georg.Hoffstaetter@Cornell.edu
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RF systems for accelerators

I L and C: determined by the cavity geometry

R : shunt impedance, related to surface res. R

_._.C | | = 1 +iCa)+i
e— Rs L in Rs il cw C

1 - "
Pre =<UL|in>=%EUC23 UC :\/ZRSPRF

Quallity factor: = 27T— = 272 =awRC = c
? AE TP Rt

_ L

Geometry factor: _Q _C

Georg.Hoffstaetter@Cornell.edu




Superconducting Cavities

' A bell with this Q
1 'would ring for a year.

Q=101

AL AL Ry K 0 T N VR e
] RO RN 0 Y
| R = E = 20MV/m

®* Very low wall losses.

® Therefore continuous operation _ .
Normal conducting cavities

is possible.
¢ Significant wall losses.
¢ Cannot operate continuously with
® Energy recovery becomes appreciable fields.
possible. ® Energy recovery was therefore not

possible.

Georg.Hoffstaetter@Cornell.edu
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Multicell Cavities

The filed in many cells can be excited by a single power source and a single input

coupler in order to have the voltage of several cavities available.
coupling slots  RF coupling loop

Q
1.4} ' ' ‘ ' ]
1.2¢ ]
0.8} L (Ci = ‘ij -
0.6} ______..--7 ] L
0.4f /.v"‘" =
02/#///# | | I U I N 6 S 6 1= B N = B ™ ) L N L ™ N & B w p

a 0.z 0.4 0.6 0.8 lk tuning

z plunger

Example: PETRA Cavity f__ =500MHz
R, =18.010°Q

125kW - 2.12MV |

Without the walls: Long single cavity with too large wave velocity. Vg, = %

Thick walls: shield the particles from regions with decelerating phase.

Georg.Hoffstaetter@Cornell.edu
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Disc Loaded Waveguides

The iris size is chosen to let the phase velocity equal the particle velocity.

disc-loaded

TE,, wave structure

from

coupling
klystron

N

A
-'I
Y

A\

I
\
O

Z
A
~

\Wi ‘ T™,, wave
-
~ N
beam axis
in k =21
Loss free propergation: K =<2
Standing wave cavity.
klystron
l TE,
T T LT EL LT T T LT k.
R S A WA A A

standing wave reflection

11/22/04

CORNELL

undisturbed »
structure \

disc-loaded
structure

k 1

mode kwg

Traveling wave cavity (wave guide).

klystron

travelling wave

absorber
Georg.Hoffstaetter@Cornell.edu
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Modes in Waveguides Goros

The iris size is chosen to let the phase velosity equal the particle velocity.

T mode a A ':
1 I

N N N N N N N N

N N N N N N N N

N N N N N N N N

D D D N N D N N

........ 44----14--4- Long initial settling or filling time,

S R N R N [ Q Q .
VR ME s G - T AR not good for pulsed operation.
N N\ [\ N
s - .
— mode | A |
2 : :
N N N N N N
N N N N N N
\ \ \ \ \ N
[ = - ;__,,b“ ) ) N
"""" S e e 111 Small shunt impedance per length.
\ \ \ N N N
N N N N N N
2T mode —— A ——
RN EEEELLLRN (R AN (AN AN SRARANRR (RN
\ N© N i NN
N N N N N \ N
N N N N N N &
N { R | s [P TO 117 § IS ¥ = b Common compromise.
i la———] | ——a
N \ \ \ N N N
\ N N N N N N
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Accelerating cavities

1933: J.W. Beams uses resonant cavities for acceleration

Traveling wave cavity:
VRIBR [COORR |PRRREB GO [SB®

Vv

phase
. N TS
E(t,s) = E, ., sin(at —ks)

particle Here v=c for electrons

Q
=—— =V
K

COOOO [FFRXRR [COOOR |VBIVRR|OECEEE

Standing wave cavity:  _
YRR [COO [ROVRA [EEOEE [®RRB® ? B Vparticle
= — - _ - E(t,s) = E_, Sin(at)sin(ks)
E(;2-.8)=E,sn ?(ks)
partlce

QOLOR |YIRRYRY | COOO |IBPVRR|CCOER | 1t or the 1/2[3% mode
1 AR

Transit factor (for this example): < = J'E( | ,S)ds= %

partlce

Georg.Hoffstaetter@Cornell.edu
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Phase focusing

1945: Veksler (UDSSR) and McMillan (USA) realize the importance of phase
focusing

voltage

/\ AK =qU (1) = U, Sina(t —to) +45,)

/:’ tme Longitudinal position in the bunch:

. \/ | 07578 = (")
AK(0) = QU SN(—2 (S~ %) +¢y)

AK (0) >0 (Acceleration)
AK (0) <AK(0)foro >00 2L AK(0) <0 (Phase focusing)
qu (t) > OD
gy (t) > OD

(0)

Phase focusing is required in any RF accelerator.
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Longltudlnal stability

Reference particle: dE 0 = Ecosq)

ds
Other particles: d_E = éCOS(D
ds
¢=P-d,=a(t-t,)
dé _ . .
— = £ (cog(®, +¢) —cosP, ) = ~pE sin P,
av 2
_w(_ i):w( ](;V _1): d506 wvg 5
Vo Vo +$05 Vo Vo oyo
2 2 2
O S P = tsnow
S VoVo Os 7 VoVo

Stability for small phases when the factor on the right hand side is negative.
Georg.Hoffstaetter@Cornell.edu




Effective longitudinal potential

For not very small phases one cannot linearize.
dé . d c’?
—:EL(COS((DO'F(”)_COSCDO) _(Oz_w 3 25
ds ds VoV

=, CZ
H(p,J) = —%(s n(®, +¢) —qpcosd)o)—a)vs—yzdz
070
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Hamiltonian for longitudinal motion

di = qKEE (cos(®,, + @) —cosD, )= —qai—%sind)o
d°g ¢’ dd ¢’
2 =- = (cos(P, + @) —cosP
ds2 ngoz ds ngg KO( (P, +¢) o)
d c? qE. (.
= s (sin(® . + @) — cosP
do ngg KO( ( 0 1) ) o)

Effective potential

AE _—% \vj separatrix
i =
) » §//\/\/§%/
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