The harmonic oscillator: 02/28/2005

The classical oscillator often occurs in nature and is often a good approximation for small oscillations.

V(x)=1Cx* - mx=-Cx - classica oscillation with a, =,/

Maximum oscillation amplitude: x2,, = -2E. \/(X) /
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Ground states 02/28/2005

Gaussian function:
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Carl Friedrich Gauss

(1777-1855, Germany)
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The falloff for large x is even faster than for the finite potential well where itwas @ ¥ ”

This is due to the fact that now the potential increases with x: V/ (X) O X

f@e a8 All wave functions are dominated by the same form at large x.
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Exited states: 02/28/2005
a=.| mZo , E=%
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The series terminates when hif)‘o equals N+ lfor some integer n, yielding an nth order polynomial fy.

This leads to a wave function @ (X) = A f (&)e 3 ith n nodes.
En = ha?o (n + %)
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Therefore this leads to all possible wave functions.




Hermit polynomials 02/28/2005

Stationary states of the harmonic oscillator:
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Hermite polynomials: H N (5 ) — (_1) " efz oF
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Normalization: J‘ | cp(x)|2 Ox =1 leads to the constant A.
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. 02/28/2005
Lowest Eigenvalue :

The chain of eigenfunctions ch
where n is a positive integer.
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The Schrddinger equation of 2 hao
an harmonic oscillator

has eigenvalues
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Probability amplitudes for eigenstates
O, =A-Le® H (), {=x/a, a= @, E =hwn+3)

Ho(¢) =1
H,(¢)=2¢
H,(§) =46 -2
H, (&) =88° -12¢
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Time dependent states in the square potential 02/28/2005

WP(x,t) [ CDO(x)e'i%t +1 cpl(x)e“%t
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Time dependent states in the square potential 02/28/2005
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