The harmonic oscillator:

The classical oscillator often occurs in nature and is often a good approximation for small oscillations.

$$V(x) = \frac{1}{2}Cx^2$$
 \rightarrow $m\ddot{x} = -Cx$ \rightarrow classical oscillation with $\omega_0 = \sqrt{\frac{C}{m}}$

Maximum oscillation amplitude: $x_{\text{max}}^2 = \frac{2E}{m\omega_0^2}$

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\Phi(x) + \frac{1}{2}Cx^2\Phi(x) = E\Phi(x)$$

$$\frac{\hbar\omega_0}{2}\left\{-\frac{\hbar}{m\omega_0}\frac{\partial^2}{\partial x^2} + \frac{m\omega_0}{\hbar}x^2\right\}\Phi(x) = E\Phi(x)$$

Simplification:
$$a = \sqrt{\frac{\hbar}{m\omega_0}}$$
, $\xi = \frac{x}{a}$

$$\frac{\hbar\omega_0}{2}\left\{-\frac{\partial^2}{\partial\xi^2} + \xi^2\right\}\Phi(x) = E\Phi(x)$$

$$\Phi_n(x) = A_n f_n(\xi) e^{-\frac{1}{2}\xi^2} \quad \Rightarrow \quad \frac{\hbar\omega_0}{2} \left\{ -\frac{\partial^2}{\partial \xi^2} + 2\xi \frac{\partial}{\partial \xi} + 1 \right\} f_n(\xi) = E_n f_n(\xi)$$

$$f_0(\xi) = 1$$
, $\Phi_0(x) = Ae^{-\frac{1}{2}\xi^2}$, $E_0 = \frac{\hbar\omega_0}{2}$

Ground states

Gaussian function:

$$f_0(\xi) = 1$$
, $\Phi_0(x) = Ae^{-\frac{1}{2}\xi^2}$, $E_0 = \frac{\hbar\omega_0}{2}$

Carl Friedrich Gauss (1777-1855, Germany)

The falloff for large **x** is even faster than for the finite potential well where it was $e^{-\sqrt{\frac{2m}{\hbar}}\sqrt{V_0-E}\,x}$

This is due to the fact that now the potential increases with \mathbf{x} : $V(x) \propto x^2$

CORNELL All wave functions are dominated by the same form at large x.

Exited states:

$$a = \sqrt{\frac{\hbar}{m\omega_0}}$$
, $\xi = \frac{x}{a}$

$$\frac{\hbar\omega_0}{2}\left\{-\frac{\partial^2}{\partial\xi^2} + \xi^2\right\}\Phi(x) = E\Phi(x)$$

$$\Phi_n(x) = A_n f_n(\xi) e^{-\frac{1}{2}\xi^2} \quad \Rightarrow \quad \frac{\hbar\omega_0}{2} \left\{ -\frac{\partial^2}{\partial \xi^2} + 2\xi \frac{\partial}{\partial \xi} + 1 \right\} f_n(\xi) = E_n f_n(\xi)$$

$$f_n(\xi) = \sum_{j=0}^{\infty} c_j \xi^j \quad \Rightarrow \quad \sum_{j=0}^{\infty} \{-c_{j+2} \frac{(j+2)(j+1)}{2} + c_j (j+\frac{1}{2})\} \xi^j = \frac{E_n}{\hbar \omega_0} f_n(\xi)$$

$$f_n(\xi) = \sum_{j=0}^{\infty} c_j \xi^j \implies c_{j+2} \frac{(j+2)(j+1)}{2} = c_j (j + \frac{1}{2} - \frac{E_n}{\hbar \omega_0})$$

The series terminates when $\frac{E_n}{\hbar\omega_0}$ equals $n+\frac{1}{2}$ for some integer n, yielding an nth order polynomial $\mathbf{f_n}$.

This leads to a wave function $\Phi_n(x) = A_n f_n(\xi) e^{-\frac{1}{2}\xi^2}$ with n nodes.

Therefore this leads to all possible wave functions.

$$E_n = \hbar \omega_0 (n + \frac{1}{2})$$

Hermit polynomials

Stationary states of the harmonic oscillator:

$$\Phi_n(x) = \frac{A}{\sqrt{n!}} \frac{1}{\sqrt{2^n}} e^{-\frac{1}{2}\xi^2} H_n(\xi)$$

Hermite polynomials: $H_n(\xi) = (-1)^n e^{\xi^2} \frac{\partial^n}{\partial \xi^n} e^{-\xi^2}$

Normalization: $\int_{-\infty}^{\infty} |\Phi(x)|^2 dx = 1 \text{ leads to the constant A.}$

Charles Hermite
1822-1901
Georg.Hoffstaetter@Cornell.edu

Lowest Eigenvalue:

The chain of eigenfunctions Φ_n where **n** is a positive integer.

The Schrödinger equation of an harmonic oscillator has eigenvalues

$$E_n = \hbar \omega_0 (n + \frac{1}{2})$$

With the lowest possible energy or ground state energy

$$E_0 = \frac{1}{2}\hbar\omega_0$$

Probability amplitudes for eigenstates

$$\Phi_n = \frac{A}{\sqrt{n!}} \frac{1}{\sqrt{2^n}} e^{-\frac{1}{2}\xi^2} H_n(\xi), \quad \xi = x/a, \quad a = \sqrt{\frac{\hbar}{m\omega_0}}, \quad E_n = \hbar \omega_0 (n + \frac{1}{2})$$

$$H_0(\xi) = 1$$

$$H_1(\xi) = 2\xi$$

$$H_2(\xi) = 4\xi^2 - 2$$

$$H_3(\xi) = 8\xi^3 - 12\xi$$

CORNELL

Time dependent states in the square potential

02/28/2005

$$\Psi(x,t) \propto \Phi_0(x) e^{-i\frac{E_0}{\hbar}t} + \frac{1}{2}\Phi_1(x) e^{-i\frac{E_1}{\hbar}t}$$

Time dependent states in the square potential

02/28/2005

$$\Psi(x,t) \propto \Phi_0(x) e^{-i\frac{E_0}{\hbar}t} + \frac{1}{2}\Phi_1(x) e^{-i\frac{E_1}{\hbar}t}$$

$$\Psi(x,t) = \sum_{n=0}^{30} A_n \Phi_n(x) e^{-i\frac{E_n}{\hbar}t}$$

