Advanced Accelerator Physics and Accelerator Simulation Homework 3

Georg H. Hoffstaetter and Changsheng Song
Laboratory of Elementary Particle Physics, Cornell University

February 23, 2007

Exercise 1 : This was a part of Homework 2.

Exercise 2:

When the coordinates $w=x+i y$ and $\bar{w}=x-i y$ are used, the Laplace operator has been derived to be $\vec{\nabla}^{2}=4 \partial_{w} \partial_{\bar{w}}+\partial_{z}^{2}$.
(a) Check that this is correct.
(b) The static magnetic field in a charge free space is given by $\vec{B}=-\vec{\nabla} \psi$. Writing the magnetic field in x and y direction in complex notation as $B=B_{x}+i B_{y}$, derive a formula that expresses B and B_{z} in terms of $\Psi(w, \bar{w}, z)$ and only $\partial_{w}, \partial_{\bar{w}}$, and ∂_{z}.
(c) Given the vector potential in complex notation as $A=A_{x}+i A_{y}$ and A_{z}, derive a formula that expresses B and B_{z} given by $\vec{B}=\nabla \times \vec{A}$, again only using $\partial_{w}, \partial_{\bar{w}}$, and ∂_{z} and A, A_{z}.

Exercise 3:

(a) The field in a bending magnet has usually two symmetries: Midplane symmetry since the upper and lower part of the magnet are built identically, and a mirror symmetry with respect to the vertical plane, since each pole is build with right/left symmetry when viewed along the beam pipe. Which multipoles, in addition to the main dipole component, satisfy this symmetry and can therefore be associated with such a bending magnet.
(b) Similarly, a focusing magnet has C_{2} and midplane symmetry. Which multipoles, in addition to the main quadrupole term, satisfy this symmetry and can therefore appear when such a magnet is built.
(c) Generalize your observation to a magnet which is built with exact C_{n} symmetry and midplane symmetry. Which multipole terms can the field have?

