Advanced Accelerator Physics and Accelerator Simulation Homework 7

Georg H. Hoffstaetter
Physics 488/688, Cornell University

March 9, 2007

Exercise 1:

Determine the thin lens approximation for the 6×6 matrix of a combined function magnet with quadrupole strength k and curvature κ. Use that the thin lens approximation is linearized in the length L.

Exercise 2:

(a) Determine the transport matrix for a solenoid in the sharp cutoff limit. It has the length L, and the longitudinal field strength on axis is B_{z} for $x \in[0, L]$ and 0 outside this region. As solenoid strength you can use the parameter $g=\frac{q B_{z}}{2 p}$.
(b) Determine the thin lens approximation of this solenoid, which is linearized in L.

Exercise 3:

Derive the equation of motion for Twiss parameters, $\alpha^{\prime}+\gamma=K(s) \beta$ with $K=\left[\kappa^{2}(s)+k(s)\right]$ from the linearized equation of motion $x^{\prime \prime}=-K(s) x$. Use $x=\sqrt{2 J \beta(s)} \sin (\Psi(s)+\Phi)$, $\alpha=-\frac{1}{2} \beta^{\prime}$ and $\Psi^{\prime}(s)=\beta^{-1}$.

Exercise 4:

(a) Given the Twiss parameters α, β, γ : specify the transformation from the amplitude and phase variables J and ϕ to the Cartesian phase space variables x and x^{\prime}.
(b) Specify the inverse transformation.
(c) Given the Gaussian beam distribution in amplitude and phase variables, $\rho(J, \phi)=$ $\frac{1}{2 \pi \epsilon} e^{-\frac{J}{\epsilon}}$. What is the projection $\rho(x)$ of this distribution on the x axis. Check that the rms width of this distribution leads to $\sqrt{<x^{2}>}=\sqrt{\beta \epsilon}$.

