
Georg.Hoffstaetter@Cornell.edu               Accelerator Physics USPAS               June 2010 

50 

                                          E has a similar effect as v B. 
                                          For relativistic particles B = 1T has a similar effect as 
                                          E = cB = 3 108 V/m , such an 
                                          Electric field is beyond technical limits. 
     Electric fields are only used for very low energies or 
     For separating two counter rotating beams with 
       different charge. 

+ 

Electrostatic separators at CESR 

Macroscopic Fields in Accelerators 
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Static magnetic fileds: Charge free space: 

(x=0,y=0) is the beam’s design curve 
x 

y 

For finite fields on the design curve, 
Ψ can be power expanded in x and y: 

Magnetic Fields in Accelerators 
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For large permeability, H(out) is 
perpendicular to the surface. 

For highly permeable materials 
(like iron) surfaces have a 
constant potential. 

X 

B 
A 

Surfaces of Equal Potential 
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Knowledge of the field and the scalar magnetic potential on a closed surface 
inside a magnet determines the magnetic field for the complete volume which is 
enclosed. 

Green function: 

Green’s Theorem 
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If field data in a plane (for example the midplane of a cyclotron or of a beam 
line magnet) is known, the complete filed is determined: 

Data of the magnetic field in the plane y=0 is used to determine b0(x,z) and b1(x,z). 

Potential Expansion 
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Iteration equation: 

The functions Ψν(z) along a line determine the complete field inside a magnet. 

Complex Potentials 
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Ψν(z) are called the z-dependent multipole coefficients 

The index ν describes Cν Symmetry 
around the z-axis 
due to a sign change after S 

S 

S N 

N 

N 

Multipole Coefficients 
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Main fields in accelerator physics: 

Main field 

Only the fringe field region has terms with             and  

B 

Fringe field 

Fringe Fields and Main Fields 
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Main field potential: 

Where the rotation       of the coordinate system is set to 0 

The isolated multipole: 

The potentials produced by different multipole components         have 

a)  Different rotation symmetry Cν	



b)  Different radial dependence rν	



Main Field Potential 
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Focusing in a rotating 
coordinate system 

Multipoles in Accelerators     ν=0: Solenoids 
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Solenoid focusing is weak compared to the deflections created by a transverse 
magnetic field. 

Transverse fields: 

Strong focusing 

If the solenoids field was perpendicular to the particle’s motion, 

its bending radius would be 

Weak focusing < Strong focusing by about	



Solenoid vs. Strong Focusing 
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The solenoid’s rotation                         of the beam is often compensated by 

a reversed solenoid called compensator. 

Solenoid or Weak Focusing: 

Weak focusing from natural ring focusing: 

Solenoid magnets are used in detectors for particle identification via 

Solenoids are also used to focus low γ beams: 

r 

Solenoid Focusing 
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C1 Symmetry 

Dipole magnets are used for steering the beams direction 

(+,-) in Ψ	



(S,N) in B 

- 

+ + 

- 

Bending radius: 

Equipotential 

Multipoles in Accelerators      ν=1: Dipoles 
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C-shape magnet: H-shape magnet: Window frame magnet: 

Dipole strength: 

Different Dipoles 
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Shims reduce the space that is open 
to the beam, but they also 
reduce the fringe field region. 

B < 1 T: Region in which 

B < 1.5 T: Typically used region 

B = 2 T: Typical limit, since the field becomes 
              dominated by the coils, not the iron. 
              Limiting j for Cu is about 100A/mm2 

Dipole Fields 
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HERA Tunnel 

Where is the vertical Dipole? 
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C2 Symmetry 

In a quadrupole particles are focused in one plane and defocused in the 
other plane.  Other modes of strong focusing are not possible. 

+ 

+ - 

- 

+ 

- 
+ 

- 
z 

y 

x 

Multipoles in Accelerators    ν=2: Quadrupoles 
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Equipotential: 

Quadrupole strength: 

Quadrupole Fields 
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PETRA Tunnel 

The coils show that this is an 
upright quadrupole not a rotated 
or skew quadrupole. 

SLAC 

Real Quadrupoles 
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i)  Sextupole fields hardly influence the 
particles close to the center, where one 
can linearize in  x and y. 

ii)  In linear approximation a by Δx shifted 
sextupole has a quadrupole field. 

iii)  When Δx depends on the energy, one can 
build an energy dependent quadrupole. 

C3 Symmetry 

S 

S 

S 
N 

N N 

Multipoles in Accelerators      ν=3: Sextupoles 
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Equipotential: 

Quadrupole strength: 

Sextupole Fields 
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ESRF 

Real Sextupoles 
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The CESR Tunnel 
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Higher order multipoles come from 
  Field errors in magnets 
  Magnetized materials 
  From multipole magnets that compensate such erroneous fields 
  To compensate nonlinear effects of other magnets 
  To stabilize the motion of many particle systems 
  To stabilize the nonlinear motion of individual particles 

Multipole strength: units: 

p/q is also called Bρ and used to describe the energy of multiply charge ions 

Names: dipole, quadrupole, sextupole, octupole, decapole, duodecapole, … 

Higher order Multipoles 
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The discussed multipoles 
produce midplane symmetric motion. When the field is rotated by π/2, 

i.e                    , one speaks of a skew multipole. 

Midplane Symmetric Motion 
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Above 2T the field from the bare coils dominate over the magnetization of the iron. 
But Cu wires cannot create much filed without iron poles: 
5T at 5cm distance from a 3cm wire would require a current density of 

Cu can only support about 100A/mm2. 

  Superconducting cables routinely allow current densities of 1500A/mm2 at 4.6 K and 
6T. Materials used are usually Nb aloys, e.g. NbTi, Nb3Ti or Nb3Sn. 

  Superconducting magnets are not only used for strong fields but also when there is 
no space for iron poles, like inside a particle physics detector. 

Superconducting 0.1T magnets for inside the HERA detectors. 

Superconducting Magnets 
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Problems: 
  Superconductivity brakes down 

for too large fields 
  Due to the Meissner-Ochsenfeld 

effect superconductivity current 
only flows on a thin surface 
layer. 

Remedy: 
  Superconducting cable consists 

of many very thin filaments 
(about 10µm). 

Superconducting Magnets 
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Straight wire at the origin:  

Wire at      : 

This can be represented by complex multipole coefficients 

Complex Potential of a Wire 
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Creating a multipole be created by an arrangement of wires: 

if 

           Ideal multipole                     Approximate multipole 

Air-coil Multipoles 
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LHC dipole 

 Quadrupole corrector 

RHIC Tunnel 

Real Air-coil Multipoles 
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LHC double quadrupole 

RHIC Siberian 
Snake dipole 

Accuracy 

Special SC Air-coil Magnets 


