

Macroscopic Fields in Accelerators

 $\frac{d}{dt}\vec{p} = q(\vec{E} + \vec{v} \times \vec{B})$

E has a similar effect as v B.

For relativistic particles B = 1T has a similar effect as $E = cB = 3 \ 10^8 \ V/m$, such an

Electric field is beyond technical limits.

Electric fields are only used for very low energies or

For separating two counter rotating beams with

Georg.Hoffstaetter@Cornell.edu Accelerator Physics USPAS

Static magnetic fileds: $\partial_t \vec{B} = 0$; $\vec{E} = 0$ Charge free space: $\vec{j} = 0$

 $\vec{\nabla}$

 $\vec{\nabla}$

$$\vec{B} = \mu_0 (\vec{j} + \varepsilon_0 \partial_t \vec{E}) = 0 \implies \vec{B} = -\vec{\nabla} \psi(\vec{r})$$

 $\vec{\nabla} \cdot \vec{B} = 0 \implies \vec{\nabla}^2 \psi(\vec{r}) = 0$

Georg.Hoffstaetter@Cornell.edu

Green's Theorem

$$\vec{\nabla}^2 \psi = 0$$

Green function:

$$\begin{split} \vec{\nabla}_{0}^{2}G(\vec{r},\vec{r}_{0}) &= \delta(\vec{r}-\vec{r}_{0}) \qquad \psi(\vec{r}) = \int_{V} \psi(\vec{r}_{0})\delta(\vec{r}-\vec{r}_{0}) d^{3}\vec{r}_{0} \\ &= \int_{V} \left[\psi(\vec{r}_{0})\vec{\nabla}_{0}^{2}G - G\vec{\nabla}_{0}^{2}\psi(\vec{r}_{0}) \right] d^{3}\vec{r}_{0} \\ &= \int_{V} \vec{\nabla}_{0} \left[\psi(\vec{r}_{0})\vec{\nabla}_{0}G - G\vec{\nabla}_{0}\psi(\vec{r}_{0}) \right] d^{3}\vec{r}_{0} \\ &= \int_{V} \left[\psi(\vec{r}_{0})\vec{\nabla}_{0}G - G\vec{\nabla}_{0}\psi(\vec{r}_{0}) \right] d^{2}\vec{r}_{0} \\ &= \int_{\partial V} \left[\psi(\vec{r}_{0})\vec{\nabla}_{0}G + \vec{B}(\vec{r}_{0})G \right] d^{2}\vec{r}_{0} \end{split}$$

Knowledge of the field and the scalar magnetic potential on a closed surface inside a magnet determines the magnetic field for the complete volume which is enclosed.

Potential Expansion

If field data in a plane (for example the midplane of a cyclotron or of a beam line magnet) is known, the complete filed is determined:

$$\psi(x, y, z) = \sum_{n=0}^{\infty} b_n(x, z) y^n \implies \vec{B}(x, 0, z) = - \begin{pmatrix} \partial_x b_0(x, z) \\ b_1(x, z) \\ \partial_z b_0(x, z) \end{pmatrix}$$

$$D = \vec{\nabla}^{2} \psi = \sum_{n=0}^{\infty} \left(\partial_{x}^{2} + \partial_{z}^{2} \right) b_{n} y^{n} + \sum_{n=2}^{\infty} n(n-1) b_{n} y^{n-2}$$
$$= \sum_{n=0}^{\infty} \left[\left(\partial_{x}^{2} + \partial_{z}^{2} \right) b_{n} + (n+2)(n+1) b_{n+2} \right] y^{n}$$

$$b_{n+2}(x,z) = -\frac{1}{(n+2)(n+1)} (\partial_x^2 + \partial_y^2) b_n(x,z)$$

Data of the magnetic field in the plane y=0 is used to determine $b_0(x,z)$ and $b_1(x,z)$.

Complex Potentials

$$\begin{split} w &= x + iy \quad , \quad \overline{w} = x - iy \\ \partial_x &= \partial_w + \partial_{\overline{w}} \quad , \quad \partial_y = i\partial_w - i\partial_{\overline{w}} = i(\partial_w - \partial_{\overline{w}}) \\ \vec{\nabla}^2 &= \partial_x^2 + \partial_y^2 + \partial_z^2 = (\partial_w + \partial_{\overline{w}})^2 - (\partial_w - \partial_{\overline{w}})^2 + \partial_z^2 = 4\partial_w \partial_{\overline{w}} + \partial_z^2 \\ \psi &= \operatorname{Im} \{ \sum_{\nu,\lambda=0}^{\infty} a_{\nu\lambda}(z) \cdot (w\overline{w})^{\lambda} \overline{w}^{\nu} \} \\ \vec{\nabla}^2 \psi &= \operatorname{Im} \{ \sum_{\nu=0,\lambda=1}^{\infty} 4a_{\nu\lambda}(\lambda + \nu)\lambda(w\overline{w})^{\lambda-1} \overline{w}^{\nu} + \sum_{\nu=0,\lambda=0}^{\infty} a_{\nu\lambda}^{,*}(w\overline{w})^{\lambda} \overline{w}^{\nu} \} \\ &= \operatorname{Im} \{ \sum_{\nu,\lambda=0}^{\infty} [4(\lambda + 1 + \nu)(\lambda + 1)a_{\nu\lambda+1} + a_{\nu\lambda}^{,*}](w\overline{w})^{\lambda} \overline{w}^{\nu} \} = 0 \\ \operatorname{Iteration equation:} \quad a_{\nu\lambda+1} = \frac{-1}{4(\lambda + 1 + \nu)(\lambda + 1)} a_{\nu\lambda}^{,*} \quad , \quad a_{\nu0} = \Psi_{\nu}(z) \end{split}$$

The functions $\Psi_{v}(z)$ along a line determine the complete field inside a magnet.

 $\Psi_{v}(z)$ are called the z-dependent multipole coefficients

$$\psi(x, y, z) = \operatorname{Im} \left\{ \sum_{\nu, \lambda=0}^{\infty} \frac{(-1)^{\lambda} \nu!}{(\lambda + \nu)! \lambda!} \left(\frac{w\overline{w}}{4} \right)^{\lambda} \overline{w}^{\nu} \Psi_{\nu}^{[2\lambda]}(z) \right\}$$
$$\psi(r, \varphi, z) = \sum_{\nu, \lambda=0}^{\infty} \frac{(-1)^{\lambda} \nu!}{(\lambda + \nu)! \lambda!} \left(\frac{r}{2} \right)^{2\lambda} r^{\nu} \operatorname{Im} \left\{ \Psi_{\nu}^{[2\lambda]}(z) e^{-i\nu\varphi} \right\}$$

The index v describes C_v Symmetry around the z-axis \vec{e}_z due to a sign change after $\Delta \varphi = \frac{\pi}{v}$ (N) (S) (N) (S) v = 3

Only the fringe field region has terms with $\lambda \neq 0$ and $\partial_z^2 \psi \neq 0$

Main fields in accelerator physics: $\lambda = 0$, $\partial_z^2 \psi = 0$

$$\Psi_{\nu} = \begin{cases} e^{i\nu\vartheta_{\nu}} |\Psi_{\nu}| & \text{for } \nu \neq 0\\ i & |\Psi_{0}| & \text{for } \nu = 0 \end{cases}$$
$$\psi(r,\varphi) = \sum_{\nu=1}^{\infty} r^{\nu} |\Psi_{\nu}| \operatorname{Im} \{e^{-i\nu(\varphi - \vartheta_{\nu})}\} + |\Psi_{0}|$$

Main Field Potential

Main field potential:

$$\psi = |\Psi_0| - \sum_{\nu=1}^{\infty} r^{\nu} |\Psi_{\nu}| \sin[\nu(\varphi - \vartheta_{\nu})]$$

The isolated multipole:

$$\psi = -r^{\nu} |\Psi_{\nu}| \sin(\nu \varphi)$$

Where the rotation ϑ_{ν} of the coordinate system is set to 0

The potentials produced by different multipole control have

- a) Different rotation symmetry C_v
- b) Different radial dependence rv

Georg.Hoffstaetter@Cornell.edu

Solenoid vs. Strong Focusing

If the solenoids field was perpendicular to the particle's motion,

its bending radius would be $\rho_z = \frac{p}{qB_z}$

$$\ddot{r} = -\left(\frac{qB_z}{2m\gamma}\right)^2 r = -\frac{qv_z}{m\gamma}B_z\frac{r}{4\rho_z}$$

Solenoid focusing is weak compared to the deflections created by a transverse magnetic field.

Transverse fields: $\vec{B} = B_x \vec{e}_x + B_y \vec{e}_y$

$$m\gamma \begin{pmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{pmatrix} = q \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} \times \begin{pmatrix} B_x \\ B_y \\ 0 \end{pmatrix} \implies \begin{pmatrix} \ddot{x} \\ \ddot{y} \end{pmatrix} = \frac{qv_z}{m\gamma} \begin{pmatrix} -B_y \\ B_x \end{pmatrix}$$
 Strong focusing
Weak focusing < Strong focusing by about $\swarrow \rho$

Solenoid Focusing

Solenoid magnets are used in detectors for particle identification via $\rho = \frac{p}{qB}$

The solenoid's rotation $\dot{\varphi} = -\frac{qB_z}{2m\gamma}$ of the beam is often compensated by a reversed solenoid called compensator.

Solenoid or Weak Focusing:

Solenoids are also used to focus low γ beams:

$$\ddot{w} = -\left(\frac{qB_z}{2m\gamma}\right)^2 w$$

Weak focusing from natural ring focusing:

$$\Delta r = r - R$$

$$[(R + \Delta r)\cos\varphi - \Delta x_0]^2 + [(R + \Delta r)\sin\varphi - \Delta y_0]^2 = R^2$$
Linearization in Δ : $\Delta r = (\cos\varphi \Delta x_0 + \sin\varphi \Delta y_0)$

$$\partial_{\varphi}^2 \Delta r = -\Delta r \implies \Delta \ddot{r} = -\dot{\varphi}^2 \Delta r = -\left(\frac{v}{\rho}\right)^2 \Delta r = -\left(\frac{qB}{m\gamma}\right)^2 \Delta r$$

Georg.Hoffstaetter@Cornell.edu

Where is the vertical Dipole?

Georg.Hoffstaetter@Cornell.edu Accelerator Physics USPAS June 2010

Real Quadrupoles

PETRA Tunnel

upright quadrupole not a rotated

$$\psi = \Psi_3 \operatorname{Im}\{(x - iy)^3\} = \Psi_3 \cdot (y^3 - 3x^2y) \implies \vec{B} = -\vec{\nabla}\psi = \Psi_3 \operatorname{3}\begin{pmatrix} 2xy \\ x^2 - y^2 \end{pmatrix}$$

C₃ Symmetry

 $x \mapsto \Delta x + x$

$$\vec{B} = -\vec{\nabla}\psi = \Psi_3 3 \begin{pmatrix} 2xy \\ x^2 - y^2 \end{pmatrix} \quad \text{iii})$$

- i) Sextupole fields hardly influence the particles close to the center, where one can linearize in x and y.
- ii) In linear approximation a by Δx shifted sextupole has a quadrupole field.
 - When Δx depends on the energy, one can build an energy dependent quadrupole.

$$\vec{B} \approx \Psi_3 3 \begin{pmatrix} 2xy \\ x^2 - y^2 \end{pmatrix} + 6\Psi_3 \Delta x \begin{pmatrix} y \\ x \end{pmatrix} + O(\Delta x^2)$$

Real Sextupoles

June 2010

The CESR Tunnel

Georg.Hoffstaetter@Cornell.edu Accelerator Physics USPAS

Higher order Multipoles

/

$$\psi = \Psi_n \operatorname{Im}\{(x - iy)^n\} = \Psi_n \cdot (\dots - in \ x^{n-1}y) \implies \vec{B}(y = 0) = \Psi_n \ n \begin{pmatrix} 0 \\ x^{n-1} \end{pmatrix}$$

Multipole strength: $k_n = \frac{q}{p} \partial_x^n B_y \Big|_{x,y=0} = \frac{q}{p} \Psi_{n+1} \ (n+1)!$ units: $\frac{1}{m^{n+1}}$

p/q is also called $B\rho$ and used to describe the energy of multiply charge ions

Names: dipole, quadrupole, sextupole, octupole, decapole, duodecapole, ...

Higher order multipoles come from

- Field errors in magnets
- Magnetized materials
- From multipole magnets that compensate such erroneous fields
- To compensate nonlinear effects of other magnets
- To stabilize the motion of many particle systems
- To stabilize the nonlinear motion of individual particles

Superconducting Magnets

Above 2T the field from the bare coils dominate over the magnetization of the iron. But Cu wires cannot create much filed without iron poles:

5T at 5cm distance from a 3cm wire would require a current density of

$$j = \frac{I}{d^2} = \frac{1}{d^2} \frac{2\pi r B}{\mu_0} = 1389 \frac{A}{mm^2}$$

Cu can only support about 100A/mm².

- Superconducting cables routinely allow current densities of 1500A/mm² at 4.6 K and 6T. Materials used are usually Nb aloys, e.g. NbTi, Nb₃Ti or Nb₃Sn.
 - Superconducting magnets are not only used for strong fields but also when there is no space for iron poles, like inside a particle physics detector.

Superconducting 0.1T magnets for inside the HERA detectors.

77

Complex Potential of a Wire

Straight wire at the origin: $\vec{\nabla} \times \vec{B} = \mu_0 \vec{j} \implies \vec{B}(r) = \frac{\mu_0 I}{2\pi r} \vec{e}_{\varphi} = \frac{\mu_0 I}{2\pi r} \begin{pmatrix} -y \\ x \end{pmatrix}$ Wire at \vec{a} :

$$\vec{B}(x,y) = \frac{\mu_0 I}{2\pi (\vec{r} - \vec{a})^2} \begin{pmatrix} -[y - a_y] \\ x - a_x \end{pmatrix}$$

This can be represented by complex multipole coefficients Ψ_{ν}

Air-coil Multipoles

Creating a multipole be created by an arrangement of wires: 2π

$$\Psi_{v} = \int_{0}^{2\pi} \frac{\mu_{0}}{2\pi} \frac{1}{v} \frac{1}{a^{v}} e^{iv\varphi_{a}} \frac{dI}{d\varphi_{a}} d\varphi_{a}$$

$$\Psi_{v} = \delta_{vn} \frac{\mu_{0}}{2} \frac{1}{n} \frac{1}{a^{n}} \hat{I} \quad \text{if } I(\varphi_{a}) = \hat{I} \cos n\varphi_{a}$$

 $d\varphi_a$

 X_{\cdot}

à

 φ_a

Real Air-coil Multipoles Quadrupole corrector

CHESS & LEPP

Special SC Air-coil Magnets

LHC double quadrupole

Georg.Hoffstaetter@Cornell.edu

Accelerator Physics USPAS