The Frenet Coordinate System

$$
\begin{aligned}
& |d \vec{R}|=d s \\
& \begin{array}{l}
\vec{e}_{s} \equiv \frac{d}{d s} \vec{R}(s) \\
\vec{e}_{\kappa} \equiv-\frac{d}{d s} \vec{e}_{s} /\left|\frac{d}{d s} \vec{e}_{s}\right| \\
\vec{e}_{b} \equiv \vec{e}_{s} \times \vec{e}_{\kappa}
\end{array} \\
& \frac{\frac{d}{d s} \vec{e}_{s}=-\kappa \vec{e}_{\kappa} \quad \text { with } \quad \kappa=\frac{1}{\rho}}{\quad 0=\frac{d}{d s}\left(\vec{e}_{\kappa} \cdot \vec{e}_{s}\right)=\vec{e}_{s} \cdot \frac{d}{d s} \vec{e}_{\kappa}-\kappa}
\end{aligned}
$$

Accumulated torsion angle T

$$
\vec{r}^{\prime}=\left(x^{\prime}-y T^{\prime}\right) \vec{e}_{\kappa}+\left(y^{\prime}+x T^{\prime}\right) \vec{e}_{b}+(1+x \kappa) \vec{e}_{s}
$$

$$
\begin{aligned}
& \frac{\frac{d}{d s} \vec{e}_{\kappa}=\kappa \vec{e}_{s}+T^{\prime} \vec{e}_{b}}{0=\frac{d}{d s}\left(\vec{e}_{b} \cdot \vec{e}_{\kappa}\right)=\vec{e}_{\kappa} \cdot \frac{d}{d s} \vec{e}_{b}+T^{\prime}} \begin{array}{l}
\frac{d}{d s} \vec{e}_{b}=-T^{\prime} \vec{e}_{\kappa}
\end{array} .
\end{aligned}
$$

The Curvi-linear System

Phase Space ODE

$$
\begin{aligned}
& \frac{d}{d s} \vec{r}=x^{\prime} \vec{e}_{x}+y^{\prime} \vec{e}_{y}+(\underbrace{1+x \kappa_{x}+y \kappa_{y}}_{h}) \vec{e}_{s} \\
& \frac{d^{2}}{d t^{2}} \vec{r}=\vec{F} \\
& \frac{d}{d s} \vec{r}=\dot{s}^{-1} \frac{d}{d t} \vec{r}=\dot{s}^{-1} \frac{1}{m \gamma} \vec{p}=\frac{h}{p_{s}} \vec{p} \\
& \frac{d}{d s} \vec{p}=\left(p_{x}^{\prime}-p_{s} \kappa_{x}\right) \vec{e}_{x}+\left(p_{y}^{\prime}-p_{s} \kappa_{y}\right) \\
& e_{y}+\left(p_{s}^{\prime}+\kappa_{x} p_{x}+\kappa_{y} p_{y}\right) \vec{e}_{s} \\
&=\dot{S}^{-1} \frac{d}{d t} \vec{p}=\dot{s}^{-1} \vec{F}=\frac{m \gamma h}{p_{s}} \vec{F} \\
&\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
p_{x}^{\prime} \\
p_{y}^{\prime}
\end{array}\right)=\left(\begin{array}{c}
\frac{h}{p_{s}} p_{x} \\
\frac{h}{p_{s}} p_{y} \\
\frac{m \gamma h}{p_{s}} F_{x}+p_{s} \kappa_{x} \\
\frac{m \gamma h}{p_{s}} F_{y}+p_{s} \kappa_{y}
\end{array}\right) \quad E=\sqrt{(p c)^{2}+\left(m c^{2}\right)^{2}} \\
& E^{\prime}=\frac{d}{d p} \sqrt{(p c)^{2}+\left(m c^{2}\right)^{2}} \frac{d}{d s} p=c^{2} \frac{h m \gamma}{p_{s}} \\
& E \frac{d}{d s} \vec{p}=\frac{h}{p_{s}} \vec{p} \cdot \vec{F}
\end{aligned}
$$

118

6 Dimensional Phase Space

Using a reference momentum p_{0} and a reference time t_{0} :

$$
\begin{aligned}
& \vec{z}=(x, a, y, b, \tau, \delta) \\
& a=\frac{p_{x}}{p_{0}}, \quad b=\frac{p_{y}}{p_{0}}, \quad \delta=\frac{E-E_{0}}{E_{0}}, \quad \tau=\left(t_{0}-t\right) \frac{c^{2}}{v_{0}}=\left(t_{0}-t\right) \frac{E_{0}}{p_{0}} \\
& \text { Usually } \mathrm{p}_{0} \text { is the design momentum of the beam } \\
& \text { And } \mathrm{t}_{0} \text { is the time at which the bunch center is at " } \mathrm{s} \text { ". } \quad \tau \approx \Delta s
\end{aligned}
$$

New Hamiltonian:

$$
\widetilde{H}=K / p_{0}
$$

$\left.\begin{array}{l}x^{\prime}=\partial_{p_{x}} K \\ p_{x}^{\prime}=-\partial_{x} K\end{array}\right\} \Rightarrow \begin{cases}x^{\prime}=\partial_{a} K / p_{0}, & a^{\prime}=-\partial_{x} K / p_{0} \\ y^{\prime}=\partial_{b} K / p_{0}, & b^{\prime}=-\partial_{y} K / p_{0}\end{cases}$
$-t^{\prime}=\partial_{E} K \Rightarrow \tau^{\prime}=\frac{c^{2}}{v_{0}} \partial_{\delta} K / E_{0}=\partial_{\delta} K / p_{0}$

$$
E^{\prime}=-\partial_{-t} K \Rightarrow \delta^{\prime}=-\frac{1}{E_{0}} \partial_{\tau} K \frac{c^{2}}{v_{0}} \quad=-\partial_{\tau} K / p_{0}
$$

Simplified Equation of Motion

Only magnetic fields:

$$
\vec{E}=0
$$

Mid-plane symmetry:

$$
B_{x}(x, y, s)=-B_{x}(x,-y, s), \quad B_{y}(x, y, s)=B_{y}(x,-y, s)
$$

Linearization in : $\quad B_{x}(x, y, s)=\frac{p_{0}}{q} k y, \quad B_{y}(x, y, s)=\frac{p_{0}}{q} \frac{1}{\rho}+\frac{p_{0}}{q} k x$
Highly relativistic :

$$
\frac{p-p_{0}}{p_{0}} \rightarrow \frac{E-E_{0}}{E_{0}} \quad, \quad \frac{v-v_{0}}{v_{0}} \rightarrow 0
$$

$$
\begin{array}{rlr}
x^{\prime}=\frac{p_{x}}{p_{z}}=\frac{p_{x}}{\sqrt{\left(p_{0}+d p\right)^{2}-p_{x}^{2}-p_{y}^{2}}=1 \frac{p_{x}}{p_{0}}=a} & \Rightarrow & \underline{y^{\prime}=b} \\
a^{\prime}=\frac{\left(\vec{p}^{\prime}+p_{s} \kappa \vec{e}_{x}\right)_{x}}{p_{0}}=\frac{h}{p_{0} v_{s}} \frac{d}{d t} p_{x}+\frac{p_{s} \kappa}{p_{0}}=-\frac{1+x \kappa}{p_{0} v_{s}} q v_{s} B_{y}+\frac{p_{s} \kappa}{p_{0}} & \\
& ={ }_{1}-(1+x \kappa)(\kappa+k x)+(1+\delta) \kappa=-x\left(\kappa^{2}+k\right)+\delta \kappa & \\
\tau^{\prime}=\frac{d\left(t-t_{0}\right)}{d s} \frac{E_{0}}{p_{0}}=\left(\frac{1}{v_{0}}-\frac{h}{v_{s}}\right) \frac{E_{0}}{p_{0}}={ }_{1}-x \kappa & b^{\prime}=k y \\
\delta^{\prime}=0
\end{array}
$$

Hamiltonian:

$$
H=\frac{1}{2} a^{2}+\frac{1}{2} b^{2}+\frac{1}{2} k\left(x^{2}-y^{2}\right)+\frac{1}{2} \kappa^{2} x^{2}-\kappa x \delta
$$

Matrix Solutions

Linear equation of motion: $\vec{z}^{\prime}=\underline{F}(s) \vec{z}$
Matrix solution of the starting condition $\vec{z}(0)=\vec{z}_{0}$

The Drift

$$
\begin{aligned}
& \left(\begin{array}{l}
x^{\prime} \\
a^{\prime} \\
y^{\prime} \\
b^{\prime} \\
\tau^{\prime} \\
\delta^{\prime}
\end{array}\right)=\left(\begin{array}{l}
a \\
0 \\
b \\
0 \\
0 \\
0
\end{array}\right) \quad \begin{array}{l}
\text { Note that in nonlinear expa } \\
\text { so that the drift does not ha } \\
\text { transport map even though } \\
\text { is completely linear. }
\end{array} \\
& \left(\begin{array}{l}
x \\
a \\
y \\
b \\
\tau \\
\delta
\end{array}\right)=\left(\begin{array}{c}
x_{0}+s a_{0} \\
a \\
y_{0}+s b_{0} \\
b_{0} \\
\tau_{0} \\
\delta_{0}
\end{array}\right)=\left(\begin{array}{llll}
1 & s & \underline{0} & \underline{0} \\
0 & 1 & \underline{1} \\
\underline{0} & 1 & s & 0 \\
\underline{0} & 0 & 1 & \underline{0} \\
2 & 0 & 0 & 1
\end{array}\right) \vec{z}_{0}
\end{aligned}
$$

The Dipole Equation of Motion

$$
\begin{aligned}
& x^{\prime \prime}=-x \kappa^{2}+\delta \kappa \\
& y^{\prime \prime}=0 \\
& \tau^{\prime}=-x \kappa
\end{aligned}
$$

Homogeneous solution:

$$
x_{H}{ }^{\prime \prime}=-x_{H} \kappa^{2} \quad \Rightarrow \quad x_{H}=A \cos (\kappa s)+B \sin (\kappa s) \quad \text { (natural ring focusing) }
$$

Variation of constants:

$$
\begin{aligned}
& x=A(s) \cos (\kappa s)+B(s) \sin (\kappa s) \\
& x^{\prime}=-A \kappa \sin (\kappa s)+B \kappa \cos (\kappa s)+\underbrace{A^{\prime} \cos (\kappa s)+B^{\prime} \sin (\kappa s)}_{=0} \\
& x^{\prime \prime}=-\kappa^{2} x \underbrace{-A^{\prime} \kappa \sin (\kappa s)+B^{\prime} \kappa \cos (\kappa s)}_{=\delta \kappa}=-\kappa^{2} x+\delta \kappa \\
& \left(\begin{array}{cc}
\cos (\kappa s) & \sin (\kappa s) \\
-\sin (\kappa s) & \cos (\kappa s)
\end{array}\right)\binom{A^{\prime}}{B^{\prime}}=\binom{0}{\delta}
\end{aligned}
$$

The Dipole

$$
\begin{aligned}
\binom{A^{\prime}}{B^{\prime}} & =\left(\begin{array}{cc}
\cos (\kappa s) & -\sin (\kappa s) \\
\sin (\kappa s) & \cos (\kappa s)
\end{array}\right)\binom{0}{\delta} \\
\binom{A}{B} & =\delta \kappa^{-1}\binom{\cos (\kappa s)}{\sin (\kappa s)}+\binom{A_{H}}{B_{H}} \quad \text { with } \quad x=A \cos (\kappa s)+B \sin (\kappa s) \\
\tau^{\prime} & =-x \kappa
\end{aligned}
$$

$$
\underline{M}=\left(\begin{array}{ccccc}
\cos (\kappa s) & \frac{1}{\kappa} \sin (\kappa s) & & 0 & \kappa^{-1}[1-\cos (\kappa s)] \\
-\kappa \sin (\kappa s) & \cos (\kappa s) & \underline{0} & 0 & \sin (\kappa s) \\
\underline{0} & 1 & s & & 0 \\
-\sin (\kappa s) & \kappa^{-1}[\cos (\kappa s)-1] & 0 & 1 & \\
0 & 0 & \underline{0} & 1 & \kappa^{-1}[\sin (\kappa s)-s \kappa] \\
0 & 0 & & 0 & 1
\end{array}\right)
$$

Time of Flight from Symplecticity

$$
\begin{aligned}
& \underline{M}=\left(\begin{array}{ccc}
\underline{M}_{4} & \overrightarrow{0} & \vec{D} \\
\vec{T}^{T} & 1 & M_{56} \\
\overrightarrow{0}^{T} & 0 & 1
\end{array}\right) \text { is in SU(6) and therefore } \underline{M} \underline{J} \underline{M}^{T}=\underline{J} \\
& \left(\begin{array}{ccc}
\underline{M}_{4} \underline{J}_{4} & -\vec{D} & \overrightarrow{0} \\
\vec{T}^{T} \underline{J}_{4} & -M_{56} & 1 \\
\overrightarrow{0}^{T} & -1 & 0
\end{array}\right)\left(\begin{array}{ccc}
\underline{M}_{4}^{T} & \vec{T} & \overrightarrow{0} \\
\overrightarrow{0}^{T} & 1 & 0 \\
\vec{D}^{T} & M_{56} & 1
\end{array}\right)=\left(\begin{array}{ccc}
\underline{J}_{4} & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right) \\
& \left(\begin{array}{ccc}
\vec{T}^{T} \underline{M}_{4} \underline{J}_{4} \underline{M}_{4}^{T}+\vec{D}^{T} & \underline{M}_{4} \underline{J}_{4} \vec{T}-\vec{D} & \overrightarrow{0} \\
\overrightarrow{0}^{T} & 0 & 1 \\
\vec{J}^{T} & -1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
\underline{J}_{4} & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)
\end{aligned}
$$

$\vec{T}=-\underline{J}_{4} \underline{M}_{4}^{-1} \vec{D} \quad$ It is sufficient to compute the 4 D map \underline{M}_{4}, the Dispersion \vec{D} and the time of flight term M_{56}

The Quadrupole (Homework)

$$
\begin{aligned}
& x^{\prime \prime}=-x k \\
& y^{\prime \prime}=y k
\end{aligned}
$$

$$
\underline{M}_{4}=\left(\begin{array}{cccc}
\cos (\sqrt{k} s) & \frac{1}{\sqrt{k}} \sin (\sqrt{k} s) & \underline{0} \\
-\sqrt{k} \sin (\sqrt{k} s) & \cos (\sqrt{k} s) & & \\
& & \cosh (\sqrt{k} s) & \frac{1}{\sqrt{k}} \sinh (\sqrt{k} s) \\
& & \sqrt{k} \sinh (\sqrt{k} s) & \cosh (\sqrt{k} s)
\end{array}\right)
$$

As for a drift:
$\vec{D}=\overrightarrow{0} \quad \Rightarrow \quad \vec{T}=\overrightarrow{0}$
$M_{56}=0$
For $\mathrm{k}<0$ one has to take into account that $\cos (\sqrt{k} s)=\cosh (\sqrt{|k|} s), \quad \sin (\sqrt{k} s)=i \sinh (\sqrt{|k|} s)$
$\cosh (\sqrt{k} s)=\cos (\sqrt{|k|} s), \quad \sinh (\sqrt{k} s)=i \sin (\sqrt{|k|} s)$

The Combined Function Bend (Homework)

$$
\begin{aligned}
& x^{\prime \prime}=-x(\underbrace{\kappa^{2}+k}_{K})+\delta \kappa \\
& y^{\prime \prime}=y k \quad, \quad \tau^{\prime}=-\kappa x \\
& \underline{M}_{6}=\left(\begin{array}{ccc}
\underline{M}_{x} & \underline{0}^{0} & \overrightarrow{0} \vec{D} \\
\underline{0} & \underline{M}_{y} & \underline{0}^{\underline{T}} \\
\underline{\underline{T}} & \underline{\underline{M}}_{\tau} & \underline{\underline{x}}_{\tau}
\end{array}\right) \\
& \underline{M}_{\tau}=\left(\begin{array}{cc}
1 & M_{56} \\
0 & 1
\end{array}\right) \\
& M_{56}=\frac{\kappa^{2}}{K \sqrt{K}}[\sin (\sqrt{K} s)-\sqrt{K} s] \\
& \underline{T} \text { from symplecticity } \\
& \underline{M}_{x}=\left(\begin{array}{cc}
\cos (\sqrt{K} s) & \frac{1}{\sqrt{K}} \sin (\sqrt{K} s) \\
-\sqrt{K} \sin (\sqrt{K} s) & \cos (\sqrt{K} s)
\end{array}\right) \quad \text { Options: } \quad \text { For } \mathrm{k>0}: \\
& \underline{M}_{y}=\left(\begin{array}{cc}
\cosh (\sqrt{k} s) & \frac{1}{\sqrt{k}} \sinh (\sqrt{k} s) \\
\sqrt{k} \sinh (\sqrt{k} s) & \cosh (\sqrt{k} s)
\end{array}\right) \\
& \vec{D}=\binom{\frac{\kappa}{K}[1-\cos (\sqrt{K} s)]}{\frac{\kappa}{\sqrt{K}} \sin (\sqrt{K} s)} \\
& \text { focusing in } \mathrm{x} \text {, defocusing in } \mathrm{y} \text {. } \\
& \text { - For } \mathrm{k}<0, \mathrm{~K}<0 \text { : } \\
& \text { defocusing in } \mathrm{x} \text {, focusing in } \mathrm{y} \text {. } \\
& \text { - For } k<0, \mathrm{~K}>0 \text { : } \\
& \text { weak focusing in both planes. }
\end{aligned}
$$

The Thin Lens Approximation

$$
\vec{z}(s)=\underline{M}(s) \vec{z}_{0}=\underline{D}\left(\frac{s}{2}\right) \underline{D}^{-1}\left(\frac{s}{2}\right) \underline{M}(s) \underline{D}^{-1}\left(\frac{s}{2}\right) \underline{D}\left(\frac{s}{2}\right) \vec{z}_{0}
$$

Drift: $\quad \underline{M}_{\text {drift }}^{\text {thin }}(s)=\underline{D}^{-1}\left(\frac{s}{2}\right) \underline{D}(s) \underline{D}^{-1}\left(\frac{s}{2}\right)=\underline{1}$

The Thin Lens Quadrupole

$$
\begin{aligned}
\underline{M}_{\text {quad, } \mathrm{x}}^{\text {thin }}(s) & =\left(\begin{array}{cc}
1 & -\frac{s}{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\cos (\sqrt{k} s) & \frac{1}{\sqrt{k}} \sin (\sqrt{k} s) \\
-\sqrt{k} \sin (\sqrt{k} s) & \cos (\sqrt{k} s)
\end{array}\right)\left(\begin{array}{cc}
1 & -\frac{s}{2} \\
0 & 1
\end{array}\right) \\
& \approx\left(\begin{array}{cc}
1 & -\frac{s}{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & s \\
-k s & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -\frac{s}{2} \\
0 & 1
\end{array}\right) \approx\left(\begin{array}{cc}
1 & -\frac{s}{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & \frac{s}{2} \\
-k s & 1+\frac{k s^{2}}{2}
\end{array}\right)
\end{aligned}
$$

Weak magnet limit: $\sqrt{k} s \ll 1$

$$
\underline{M}_{\text {quad, }}^{\text {thin }}(s) \approx\left(\begin{array}{cc}
1 & 0 \\
-k s & 1
\end{array}\right)
$$

The Thin Lens Dipole

$$
\underline{M}=\left(\begin{array}{ccccc}
\cos (\kappa s) & \frac{1}{\kappa} \sin (\kappa s) & & 0 & \kappa^{-1}[1-\cos (\kappa s)] \\
-\kappa \sin (\kappa s) & \cos (\kappa s) & \underline{0} & 0 & \sin (\kappa s) \\
\underline{0} & 1 & s & \underline{0} \\
-\sin (\kappa s) & \kappa^{-1}[\cos (\kappa s)-1] & 0 & 1 & 0
\end{array}\right)
$$

Weak magnet limit: $\kappa s \ll 1$
$\underline{M}_{\text {bend }, x \tau}^{\text {thin }}(s)=\underline{D}\left(-\frac{s}{2}\right) \underline{M}_{\text {bend, } x \tau} \underline{D}\left(-\frac{s}{2}\right) \approx\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ -\kappa^{2} s & 1 & 0 & \kappa s \\ -\kappa s & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$

Thin Combined Function Bend

$$
\begin{aligned}
& \underline{M}_{6}=\left(\begin{array}{ccc}
\underline{M}_{x} & \underline{0} & \overrightarrow{0} \vec{D} \\
\underline{0} & \underline{M}_{y} & \underline{0} \\
\underline{T} & \underline{0} & \underline{1}
\end{array}\right) \\
& \text { Weak magnet limit: } \kappa s \ll 1 \\
& \underline{M}_{x}=\left(\begin{array}{cc}
\cos (\sqrt{K} s) & \frac{1}{\sqrt{K}} \sin (\sqrt{K} s) \\
-\sqrt{K} \sin (\sqrt{K} s) & \cos (\sqrt{K} s)
\end{array}\right) \\
& \underline{M}_{y}=\left(\begin{array}{cc}
\cosh (\sqrt{k} s) & \frac{1}{\sqrt{k}} \sinh (\sqrt{k} s) \\
\sqrt{k} \sinh (\sqrt{k} s) & \cosh (\sqrt{k} s)
\end{array}\right) \\
& \vec{D}=\binom{\frac{\kappa}{K}[1-\cos (\sqrt{K} s)]}{\frac{\kappa}{\sqrt{K}} \sin (\sqrt{K} s)}
\end{aligned}
$$

Edge Focusing

The isocyclotron with constant

$$
\omega_{z}=\frac{q}{m_{0} \gamma(E)} B_{z}(r(E))
$$

Up to 600 MeV but this vertically defocuses the beam.
 Edge focusing is therefore used.

Variation of Constants

$$
\begin{aligned}
& \vec{z}^{\prime}=\vec{f}(\vec{z}, s) \\
& \vec{z}^{\prime}=\underline{L}(s) \vec{z}+\Delta \vec{f}(\vec{z}, s) \quad \text { Field errors, nonlinear fields, etc can lead to } \Delta \vec{f}(\vec{z}, s) \\
& \vec{z}_{H}^{\prime}=\underline{L}(s) \vec{z}_{H} \Rightarrow \vec{z}_{H}(s)=\underline{M}(s) \vec{z}_{H 0} \quad \text { with } \quad \underline{M^{\prime}}(s) \vec{a}=\underline{L}(s) \underline{M}(s) \vec{a} \\
& \vec{z}(s)=\underline{M}(s) \vec{a}(s) \Rightarrow \vec{z}^{\prime}(s)=\underline{M}(s) \vec{a}+\underline{M}(s) \vec{a}^{\prime}(s)=\underline{L}(s) \vec{z}+\overrightarrow{f f}(\vec{z}, s) \\
& \begin{aligned}
& \vec{a}(s)=\vec{z}_{0}+\int_{0}^{s} \underline{M}^{-1}(\hat{s}) \Delta \vec{f}(\vec{z}(\hat{s}), \hat{s}) d \hat{s} \\
& \vec{z}(s)=\underline{M}(s)\left\{\vec{z}_{0}+\int_{0}^{s} \underline{M}^{-1}(\hat{s}) \Delta \vec{f}(\vec{z}(\hat{s}), \hat{s}) d \hat{s}\right\} \\
& \quad=\vec{z}_{H}(s)+\int_{0}^{s} \underline{M}(s-\hat{s}) \Delta \vec{f}(\vec{z}(\hat{s}), \hat{s}) d \hat{s}
\end{aligned} \quad \text { Perturbations are propagated } \\
& \text { from s to s' }
\end{aligned}
$$

Beta Function and Betatron Phase

$$
\begin{aligned}
& \begin{array}{l}
x^{\prime \prime}=-x K \\
y^{\prime \prime}=y k
\end{array}
\end{aligned}
$$

$x(s)=M_{11}(s) x_{0}+M_{12}(s) x_{0}^{\prime}$
$x(s)=\sqrt{2 J \beta(s)} \sin \left(\psi(s)+\phi_{0}\right)$

Twiss Parameters

$$
\begin{aligned}
& x^{\prime \prime}=-k x \\
& x(s)=\sqrt{2 J \beta(s)} \sin \left(\psi(s)+\phi_{0}\right) \\
& x^{\prime}(s)=\sqrt{\frac{2 J}{\beta}}\left[\beta \psi^{\prime} \cos \left(\psi(s)+\phi_{0}\right)-\alpha \sin \left(\psi(s)+\phi_{0}\right)\right] \quad \text { with } \alpha=-\frac{1}{2} \beta^{\prime} \\
& x^{\prime \prime}(s)=\sqrt{\frac{2 J}{\beta}}\left[\left(\beta \psi^{\prime \prime}-2 \alpha \psi^{\prime}\right) \cos \left(\psi(s)+\phi_{0}\right)-\left(\alpha^{\prime}+\frac{\alpha^{2}}{\beta}+\beta \psi^{\prime 2}\right) \sin \left(\psi(s)+\phi_{0}\right)\right] \\
& =\sqrt{\frac{2 J}{\beta}}\left[-k \beta \sin \left(\psi(s)+\phi_{0}\right)\right] \\
& \beta \psi^{\prime \prime}-2 \alpha \psi^{\prime}=\beta \psi^{\prime \prime}+\beta^{\prime} \psi^{\prime}=\left(\beta \psi^{\prime}\right)^{\prime}=0 \Rightarrow \psi^{\prime}=\frac{I}{\beta} \\
& \alpha^{\prime}+\gamma=k \beta \quad \text { with } \quad \gamma=\frac{I^{2}+\alpha^{2}}{\beta} \\
& \begin{array}{l}
\alpha, \beta, \gamma, \psi \text { are called } \\
\text { Twiss parameters. } \\
\beta^{\prime}=-2 \alpha \\
\alpha^{\prime}=k \beta-\gamma \\
\psi=\int_{0} \frac{I}{\beta\left(s^{\prime}\right)} d s^{\prime}
\end{array}
\end{aligned}
$$

Phase Space Ellipse

Particles with a common J and different ϕ all lie on an ellipse in phase space:

$$
\binom{x}{x^{\prime}}=\sqrt{2 J}\left(\begin{array}{cc}
\sqrt{\beta} & 0 \\
-\frac{\alpha}{\sqrt{\beta}} & \frac{I}{\sqrt{\beta}}
\end{array}\right)\binom{\sin \left(\psi(s)+\phi_{0}\right)}{\cos \left(\psi(s)+\phi_{0}\right)} \quad \begin{gathered}
\text { (Linear transform of a circle) } \\
x_{\max }=\sqrt{2 J \beta} \text { at } x^{\prime}=-\alpha \sqrt{\frac{2 J}{\beta}}
\end{gathered}
$$

$$
\left.\left(x, x^{\prime}\right)\left(\begin{array}{cc}
\frac{I}{\sqrt{\beta}} & \frac{\alpha}{\sqrt{\beta}} \\
0 & \sqrt{\beta}
\end{array}\right)\left(\begin{array}{cc}
\frac{I}{\sqrt{\beta}} & 0 \\
\frac{\alpha}{\sqrt{\beta}} & \sqrt{\beta}
\end{array}\right)\binom{x}{x^{\prime}}=\left(x, x^{\prime}\right)\left(\begin{array}{cc}
\gamma & \alpha \\
\alpha & \beta
\end{array}\right)\binom{x}{x^{\prime}}=2 J \right\rvert\, \begin{aligned}
& \text { Quadratic form) } \\
& \beta \gamma-\alpha^{2}=I^{2} \\
& \text { Area: } 2 \pi J / I
\end{aligned}
$$

$$
\text { Whea: } 2 \pi J \longrightarrow \int_{0}^{2} \int_{0}^{\frac{\alpha}{\frac{2 J}{\gamma}}} d J d \phi=2 \pi J=\iint d x d x^{\prime}
$$

The Beam Envelope

In any beam there is a distribution of initial parameters. If the particles with the largest J are distributed in ϕ over all angles, then the envelope of the beam is described by $\sqrt{2 J_{\max } \beta(s)}$

The initial conditions of β and α are chosen so that this is approximately the case.

Phase Space Distribution

Often one can fit a Gauss distribution to the particle distribution:

$$
\rho\left(x, x^{\prime}\right)=\frac{1}{2 \pi \varepsilon} e^{-\frac{\gamma x^{2}+2 \alpha x x^{\prime}+\beta x^{\prime 2}}{2 \varepsilon}}
$$

The equi-density lines are then ellipses. And one chooses the starting conditions for β and α according to these ellipses!

$$
\begin{aligned}
\binom{x}{x^{\prime}} & =\sqrt{2 J}\left(\begin{array}{cc}
\sqrt{\beta} & 0 \\
-\frac{\alpha}{\sqrt{\beta}} & \frac{1}{\sqrt{\beta}}
\end{array}\right)\binom{\sin \phi_{0}}{\cos \phi_{0}} \quad \rho\left(J, \phi_{0}\right)=\frac{1}{2 \pi \varepsilon} e^{-\frac{J}{\varepsilon}} \\
\langle 1\rangle & =\frac{1}{2 \pi \varepsilon} \iint_{0}^{2 \pi \infty} e^{-J / \varepsilon} d J d \phi_{0}=1 \quad \text { Initial beam distribution } \longrightarrow \text { initial } \alpha, \beta, \gamma \\
\left\langle x^{2}\right\rangle & \left.=\frac{1}{2 \pi \varepsilon} \iint 2 J \beta \sin \phi_{0}^{2} e^{-J / \varepsilon} d J d \phi_{0}=\varepsilon \beta \longrightarrow x^{\prime 2}\right\rangle=\varepsilon \gamma \\
\left\langle x x^{\prime}\right\rangle & =-\frac{1}{2 \pi \varepsilon} \iint 2 J \alpha \sin \phi_{0}^{2} e^{-J / \varepsilon} d J d \phi_{0}=\varepsilon \alpha \\
\varepsilon & =\sqrt{\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2}} \quad \text { is called the emittance. }
\end{aligned}
$$

Invariant of Motion

$$
x(s)=\sqrt{2 J \beta(s)} \sin \left(\psi(s)+\phi_{0}\right)
$$

Where J and ϕ are given by the starting conditions x_{0} and $\mathrm{x}^{\prime}{ }_{0}$.

$$
\gamma x^{2}+2 \alpha x x^{\prime}+\beta x^{\prime 2}=2 J
$$

Leads to the invariant of motion:

$$
f\left(x, x^{\prime}, s\right)=\gamma(s) x^{2}+2 \alpha(s) x x^{\prime}+\beta(s) x^{\prime 2} \quad \Rightarrow \quad \frac{d}{d s} f=0
$$

It is called the Courant-Snyder invariant.

Propagation of Twiss Parameters

$$
\begin{aligned}
& \left(x_{0}, x_{0}^{\prime}\right)\left(\begin{array}{ll}
\gamma_{0} & \alpha_{0} \\
\alpha_{0} & \beta_{0}
\end{array}\right)\binom{x_{0}}{x_{0}^{\prime}}=2 J \\
& \left(x, x^{\prime}\right)\left(\begin{array}{ll}
\gamma & \alpha \\
\alpha & \beta
\end{array}\right)\binom{x}{x^{\prime}}=2 J={ }_{\left(x_{0}, x_{0}^{\prime}\right)} \underline{M}^{T}\left(\begin{array}{ll}
\gamma & \alpha \\
\alpha & \beta
\end{array}\right) \underline{M}\binom{x_{0}}{x_{0}^{\prime}} \\
& \left(\begin{array}{ll}
\gamma & \alpha \\
\alpha & \beta
\end{array}\right)=\underline{M}^{-T}\left(\begin{array}{ll}
\gamma_{0} & \alpha_{0} \\
\alpha_{0} & \beta_{0}
\end{array}\right) \underline{M}^{-1} \\
& \left(\begin{array}{cc}
\beta & -\alpha \\
-\alpha & \gamma
\end{array}\right)=\underline{M}\left(\begin{array}{cc}
\beta_{0} & -\alpha_{0} \\
-\alpha_{0} & \gamma_{0}
\end{array}\right) \underline{M}^{T}
\end{aligned}
$$

Twiss Parameters in a Drift

CHESS : LEPP

$$
\left(\begin{array}{cc}
\beta & -\alpha \\
-\alpha & \gamma
\end{array}\right)=\left(\begin{array}{cc}
1 & s \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\beta_{0} & -\alpha_{0} \\
-\alpha_{0} & \gamma_{0}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
s & 1
\end{array}\right)=\left(\begin{array}{cc}
\beta_{0}-2 \alpha_{0} s+\gamma_{0} s^{2} & \gamma_{0} s-\alpha_{0} \\
\gamma_{0} s-\alpha_{0} & \gamma_{0}
\end{array}\right)
$$

$$
\beta=\beta_{0}^{*}\left[1+\left(\frac{s}{\beta_{0}^{*}}\right)^{2}\right] \text { for } \alpha_{0}^{*}=0
$$

Twiss Parameters after a thin Quadrupole

From Twiss to Transport Matrix

$$
\binom{x_{0}}{x_{0}^{\prime}}=\sqrt{2 J}\left(\begin{array}{cc}
\sqrt{\beta_{0}} & 0 \\
-\frac{\alpha_{0}}{\sqrt{\beta_{0}}} & \frac{1}{\sqrt{\beta_{0}}}
\end{array}\right)\binom{\sin \left(\phi_{0}\right)}{\cos \left(\phi_{0}\right)}
$$

$$
\begin{aligned}
\binom{x}{x^{\prime}} & =\sqrt{2 J}\left(\begin{array}{cc}
\sqrt{\beta} & 0 \\
-\frac{\alpha}{\sqrt{\beta}} & \frac{1}{\sqrt{\beta}}
\end{array}\right)\binom{\sin \left(\psi(s)+\phi_{0}\right)}{\cos \left(\psi(s)+\phi_{0}\right)} \\
& =\sqrt{2 J}\left(\begin{array}{cc}
\sqrt{\beta} & 0 \\
-\frac{\alpha}{\sqrt{\beta}} & \frac{1}{\sqrt{\beta}}
\end{array}\right)\left(\begin{array}{cc}
\cos \psi(s) & \sin \psi(s) \\
-\sin \psi(s) & \cos \psi(s)
\end{array}\right)\binom{\sin \phi_{0}}{\cos \phi_{0}} \\
\underline{M}(s) & =\left(\begin{array}{cc}
\sqrt{\beta} & 0 \\
-\frac{\alpha}{\sqrt{\beta}} & \frac{1}{\sqrt{\beta}}
\end{array}\right)\left(\begin{array}{cc}
\cos \psi(s) & \sin \psi(s) \\
-\sin \psi(s) & \cos \psi(s)
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{\beta_{0}}} & 0 \\
\frac{\alpha_{0}}{\sqrt{\beta_{0}}} & \sqrt{\beta_{0}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\sqrt{\frac{\beta}{\beta_{0}}}\left[\cos \psi+\alpha_{0} \sin \psi\right] & \sqrt{\beta_{0} \beta} \sin \psi \\
\sqrt{\frac{1}{\beta_{0} \beta}}\left[\left(\alpha_{0}-\alpha\right) \cos \psi-\left(1+\alpha_{0} \alpha\right) \sin \psi\right] & \sqrt{\frac{\beta_{0}}{\beta}}[\cos \psi-\alpha \sin \psi]
\end{array}\right)
\end{aligned}
$$

