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ABSTRACT

ASPECTS OF THE INVARIANT SPIN FIELD FOR HIGH ENERGY
POLARIZED PROTON BEAMS

By
Georg Heinz Hoffstatter

So far polarized proton beams have never been accelerated to energies higher
than about 25GeV. Up to these energies the beam polarization is quite undisturbed
when the accelerator is well adjusted, except at special energies where resonances
occur. In particular, it has not been necessary to study the variation of the protons’
spin direction across the phase space of the beam. Taking the pre—accelerators of
HERA-p at DESY as an example, methods will be described which have already
been established in the AGS at the Brookhaven National Laboratory and which
could therefore be used to avoid a reduction of the polarization at resonance energies.
But when accelerating to energies of several hundred GeV as in RHIC, TEVATRON,
or HERA—p, new phenomena can occur which can lead to a significantly diminished
beam polarization. For these high energies, it is necessary to look in more detail at
the spin motion at each point in phase space and the invariant spin field will prove
to be a useful tool. This is a vector field over the phase space of the proton beam
which describes a polarization state that is periodic from turn to turn, and it is
already widely used for the description of high energy electron beams which become
polarized by the emission of spin—flip synchrotron radiation.

It will be proven that this field gives rise to an adiabatic invariant of spin—orbit
motion and that it defines the maximum time average polarization that is usable
in a particle physics experiment. Furthermore, the invariant spin field allows the
amplitude dependent spin tune to be defined and computed and thereby opens the
way to a clear evaluation of the effects of higher—order spin—orbit resonances. In
particular the strengths and the depolarizing effects of these resonances can only be
determined once the amplitude dependent spin tune has been computed.

These concepts make it possible to optimize HERA—p for acceleration and storage
of a polarized proton beam. For example, it will be shown that schemes with 4 and
8 Siberian Snakes can be so chosen that the influence of higher—order spin—orbit
resonances, the spread of the spin tune over the particle amplitudes in the beam,
and the variation of the invariant spin field over orbital phase space are reduced and
then polarization can be maintained for a significantly increased region of the beam
while accelerating to high energy and therefore more polarization can be delivered
for particle physics experiments.

The utility of the invariant spin field will be illustrated by simulations of spin
motion up to 920GeV in HERA-p and various methods for computing the invariant
spin field, the adiabatic spin invariant, and the amplitude dependent spin tune will
be presented. Moreover, several high energy spin—orbit dynamical effects will be
discussed which go beyond conventional models of spin dynamics and were observed
with these novel methods.
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Chapter 1

Introduction

This report describes phenomena which occur when accelerating polarized proton
beams to energies of several hundred GeV. In addition to introducing concepts and
techniques which are relevant to all very high energy rings, this report will illustrate
them by a study of the feasibility of obtaining very high energy polarized protons in
HERA, the “Hadron-Electron-Ring—Anlage” at DESY in Hamburg. HERA has an
e* ring (HERA-e) and a proton ring (HERA—-p) and they are contained in the same
6335m long tunnel. HERA—p stores protons at 920GeV and HERA-e stores e* at
27.5GeV for typically about 10 hours. The tunnel of HERA contains the proton ring
as well as a 27.5GeV electron ring. Both rings have 4 straight sections and 4 arcs
which bend the beams by 7 /2. Proton and electron beams are brought to collision
in two experimental detectors, H1 in the North and ZEUS in the South. The East
straight section contains HERMES, a fixed target experiment for the electron beam
and the West straight section contains HERA-B, a fixed target experiment for the
proton beam. This layout is sketched in figure 1.1.

The electron or positron beam in HERA—e becomes polarized by spin—flip syn-
chrotron radiation [1, 2]. When the disturbing effects of misalignments are com-
pensated, a polarization of 60% can routinely be obtained. Around the HERMES
experiment, spin rotators consisting of interleaved vertical and horizontal bends have
been installed, which disturb the orbit only marginally but orient the polarization
parallel to the beam direction in the HERMES experiment while it remains vertical
in the arcs. Installing such spin rotators in a high energy storage ring while keeping
a high degree of the self—polarizing mechanism was only possible after spin matching
of spin—orbit motion [3, 4, 5, 6, 7]. This has not been achieved in any other labo-
ratory and the attainment of longitudinally polarized electron or positron beams in
HERA—-e was, and still is, a unique achievement.

The HERMES experiment studies interactions of the polarized electron or positr-
on beam with polarized nuclei in an internal gas target. The center of mass energy
of these collisions is approximately 7GeV. A 920GeV polarized proton beam in
HERA-p would allow measurements at center of mass energies of up to 318GeV for
collisions between polarized protons and polarized electrons in the detectors H1 and
ZFEUS to be made. In a future experiment, collisions of the polarized protons with
a polarized gas target at 42GeV center of mass energy could also be investigated. A

7
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Figure 1.1: Schematic view of the HERA ring.

very active group of many high energy physicists has already been studying which

experiments could be performed with polarized protons and electrons at HERA
energies [8, 9, 10, 11].

The spin flip synchrotron radiation leads to a typical polarization buildup time
2mp

of roughly 7 = 7o7 7" [12, 13]

5
1 gl "
TST p3 (me?)7
with the constant C' = 0.92214- 1077 (eV)*m?®s~'. The fraction between the bending
radius p of the main dipoles and the length L = 6335m of the ring takes the absence
of synchrotron radiation between the dipoles into account. With the bending radius
of p = 608m for the main dipoles of the electron ring HERA—e, the characteristic
buildup time is 38 minutes. The energies in modern proton accelerators are still
too low to produce a sufficient amount of synchrotron radiation for polarization

buildup. For protons in HERA—p with p = 583m, the corresponding buildup time
would be 7-10'° years. For this reason, the energy of polarized proton beams has not
increased along with the achievement of higher and higher energies for unpolarized
proton beams. So far no polarized proton beam with momentum above 25GeV /¢ has
been produced [14, 15, 16, 17]. But theoretical and numerical studies of very high
energy polarized proton acceleration have been undertaken for high energy rings,
namely for RHIC (250GeV/c) [18], TEVATRON (900GeV/c) [19], and HERA—p
(920GeV/c) [20, 21, 22, 23, 24, 25, 26, 27]. The study presented here will add to
the studies for HERA—p.



Since the protons in HERA—p do not become polarized by spin flip synchrotron
radiation, methods for obtaining polarized proton beams will be completely different
from the well established methods of obtaining polarized electron beams. Various
ideas for creating a polarized high energy proton beam have been discussed:

e Resonance excitation by the Stern—Gerlach Effect. This method has not been
tested and requires very difficult phase space manipulations [28, 29, 30, 31, 32].

e Spin flipping by scattering the proton beam on a polarized electron beam. The
polarization buildup would be too slow [33, 34] and protons would get lost due
to the scattering process.

e Spin filtering with a polarized internal target. This method has been tested
and is understood for low energies [35, 36]. For high energies the polarization
buildup would be too slow.

e Acceleration of polarized protons after creation in a polarized source. This
method has been tested at several accelerators [37, 14].

Here T concentrate on the last possibility since all of these ideas except the last
are currently either too difficult or not very promising. In this scenario polarized
protons are produced in a polarized H™ source. A proton beam at DESY is then
accelerated by an RFQ to 750keV, then by the LINAC 1T to 50MeV, by the DESY TI1
synchrotron to a momentum of 7.5GeV/c, by the PETRA synchrotron to 40GeV/c
and then by HERA-p to 920GeV /c. This accelerator chain is shown in figure 1.2.
The 4 main challenges for the DESY polarized proton project are therefore

e Production of a 20mA pulsed H™ beam.
e Polarimetry at various stages in the acceleration chain.

o Acceleration through the complete accelerator chain with little loss of polar-
ization.

e Storage of a polarized beam at the top energy over many hours with little loss
of polarization.

Today polarized proton beams can be produced either by a polarized atomic
beam source (ABS) or in an optically pumped polarized ion source (OPPIS). Pulsed
beams with polarization of up to 87% for ImA H~ beam current [38, 39] and up to
60% for HhmA [40], respectively, have been achieved with these sources. Compared
with the 60mA of DESY’s current source this sounds rather limited. However experts
claim that currents of up to 20mA could be possible in OPPIS sources [41, 40]. The
maximal currents of 205mA in DESY III can already be achieved with such a source
current. If DESY III were to become capable of handling more current, then the
transfer efficiency of DESY’s low energy beam transport (LEBT) and of the radio
frequency quadrupole (RFQ) which is around 50% would have to be improved.

For polarization monitoring and optimization, polarimeters will have to be in-
stalled at several crucial places in the accelerator chain. The source would contain
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Figure 1.2: The accelerator chain for HERA-p.

a Lyman-—a polarimeter. This does not disturb the beam [42]. Another polarime-
ter could be installed after the RFQ at 750keV [43]. This could not be operated
continuously since it disturbs the beam. The transfer of polarized particles through
LINAC III has to be optimized with the aid of yet another polarimeter which could
be similar to that of the AGS LINAC [37]. Each of the other accelerator rings will
need its own polarimeter. The polarimeter for DESY III could be similar to the
AGS internal polarimeter.

Since polarization at the DESY III momentum of up to 7.5GeV/c has been
achieved at several labs, the technology of all the polarimeters mentioned so far
is well understood. It is different with the polarimeters required for PETRA and
HERA-p energies; for these high energies there is no established polarimeter. Here
one has to wait and see how the novel techniques envisioned and developed for RHIC

[44, 45] will work.

The problems arising when accelerating polarized proton beams in DESY III
and in PETRA will briefly be discussed, but since polarized beams at these energies
have already been produced by other accelerators, the main emphasis of the work
presented here will be on polarization dynamics in the high energy region which
would be unique to HERA—p. After a polarized proton beam has been accelerated
to the high energy of 920GeV, the polarization has to be stable for several hours in
order to be useful for the experiments H1 and ZEUS. Furthermore the polarization
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in all parts of the beam has to be nearly parallel during this storage time.

After a review in section 2.1 of the various ways of formulating spin motion
which will be used in this report, it will be shown in section 2.2 that the concept
of an invariant spin field is essential to our understanding of both acceleration and
storage of polarized protons. The beam average of this field describes the maximum
polarization available for particle physics experiments during the storage time of
several hours. It will be shown that this maximum polarization depends on the
particle energy and that it can be strongly reduced at critical energies. Furthermore
this field allows to define an amplitude dependent spin tune which is in resonance
with the orbital tunes at these critical energies, and that in turn allows higher—order
resonances to be analyzed. Crossing these resonances while accelerating the beam
can lead to a reduction of polarization. I will derive how the invariant spin field
and the amplitude dependent spin tune can be used to compute the higher—order
resonance strength and to describe this reduction of polarization.

An analysis of the ranges of applicability of linearized spin—orbit motion in sec-
tion 3.1 will show, that higher—order effects have to be taken into account at HERA-
p energies of up to 920GeV. Nevertheless this approximation is successfully used to
find optimal schemes of Siberian Snakes for HERA—p.

Methods for computing the invariant spin field and the amplitude dependent spin
tune non-perturbatively are introduced in chapter 4. They are used to show that
the optimization of snake schemes is important for HERA—p but can not eliminate
all destructive higher—order resonance effects. The phase space amplitudes of parti-
cles for which the polarization is not significantly reduced with the most optimized
scheme of 8 Siberian Snakes leads to a limit for the proton emittance with which a
polarized beam can be accelerated in HERA—p according to current knowledge and
technology.

The novel methods for using the invariant spin field to analyze spin dynamics at
high proton energies which will be emphasized in this report have become the basis
of a very detailed analysis of the acceleration process in HERA—p [46] and are also
becoming adopted by the RHIC group [47] for simulations of polarized beam in the
AGS and of their planned 250GeV polarized proton beam, which is scheduled for
2002.



Chapter 2

Spin Dynamics

2.1 The Equation of Spin Motion

The expectation value of the vector operator representing the spin of a particle
satisfies the equation of motion of a classical spin vector. Viewed in the particle’s
instantaneous rest frame, the direction of this expectation value will here be denoted
by the spin § with |s] = 1. This direction is % times the expectation value. The
polarization P of a beam is defined as the absolute value of the spin average taken
over all N particles of the beam,

1
N 4
J

™=

P = Sil=1]<8>n]. (2.1)

1

The expectation value § changes with the time ¢ of the laboratory frame according

to the Thomas—Bargmann—Michel-Telegdi (T-BMT) equation [48, 49, 50, 51]

d

% = Q‘B]\,[T(T_",ﬁ) X 8. (22)

Wy

The precession vector QBMT(F,[T) depends on the particle’s position 7 and its mo-
mentum p . It can be expressed by the electric and magnetic fields E(F,t) and
é(F,t), by the particle’s charge ¢ and its rest energy mc?, the relativistic factor
v, and by the particle’s anomalous gyro-magnetic g-factor G = (¢ — 2)/2 in the
following way:

Gp- B 1 1 .
D — G px El. (2.3
7(7+ 1)m2c2p ch’y( + 1 ‘|"Y)p X ] ( )

- . 1 -
Gour(7,7) = — L1+ G)B -

All frame dependent quantities are taken in the laboratory frame. The anomalous
g-factor is about 1.793 for protons and about 0.00116 for electrons.

2.1.1 Spin motion in Flat Circular Accelerators

When introducing the components of the magnetic field B, and §|| which are per-
pendicular and parallel to the particle’s momentum, the Lorentz force equation and

12
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the T-BMT equation in purely magnetic fields show some similarities,

d q o
—p = —— B ) 2.4
L m,y{ i PP, (2.4)
d q = = .

In a solenoid magnet, §|l produces a spin rotation around the longitudinal direction.

In transverse magnetic fields, where éll = 0, several conclusions can immediately be
drawn from these equations. This case is relevant, since a flat circular accelerator
has only vertical magnetic fields in the center plane.

e In such a transverse magnetic field, the momentum p rotates in the plane
perpendicular to the field. If 5, describes the spin in a coordinate system which
rotates with the particle’s momentum, the equation of spin motion relative to
the particle motion becomes %5}, = —%GBE)L X &, . The spin rotation relative
to the orbit motion is therefore independent of energy, in contrast to the orbit
deflection which varies like 1/v. For protons with velocity v close to the speed
of light, a fixed field integral of [ Bdl = TE R 5.48Tm leads to a spin rotation
of m. Electrons require a field integral of 4.62Tm for a rotation angle of 7. For
fixed orbit deflections and thus fixed ratio of éL/% the spin precession rate,
however, increases with energy.

o If the orbit is deflected by an angle ¢ in a transverse magnetic field, then the
spin is rotated by an angle Gy¢ relative to the orbit. A Imrad orbit kick for
a proton with 920GeV energy produces 100° of spin rotation. For electrons
with 27.5GeV in HERA-e, such an orbit kick produces 3.6° of spin rotation.

e In a flat ring, the orbit deflection angle of 27 during one turn leads to Gy full
spin rotations around the vertical direction relative to the particle’s direction.
For 920GeV these are 1756 such rotations. This number of spin rotations
performed during one turn along the closed orbit is called the closed-orbit
spin tune vy . A 27.5GeV electron beam in HERA-e has vy = 62.5 .

o Whenever the energy of a proton is increased by 523MeV., the spin rotates once
more per revolution around the ring. For an electron, this energy increase is

441MeV.

2.1.2 Spin Motion in the Curvilinear Coordinate System

The design trajectory of a particle accelerator is described by a space curve E(Z)
with |dé(l)| = dl. A coordinate system is defined relative to this curve with the
second unit vector tangential to the curve and the first and third unit vectors chosen
to obtain a right handed orthonormal set of vectors called an orthonormal dreibein.
The first and third unit vectors therefore lie in a plane perpendicular to the curve.
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The orientation of the unit vectors in that plane is arbitrary and can change along
the curve. The Frenet-Serret coordinate system is defined by

— d — 1 d — — d — — — — — d —

12} (1 —=|—=1 t1 = —p—1 t3=1t xty, T =—13-—1 2.
Where the torsion of the space curve E(l) is given by T . From these definitions and
with (t1 tg) =1y - t1 = =0 it follows that

d - 1~ d - -~ d- -
atl = —Ttg + tg s %tg = —1y X atl = Ttl . (27)

A space vector 7 is specified by [ and by the two coordinates z and y via
7= R(l) + ziy (1) + yls(1) . (2.8)

A space curve is then specified by the two functions z(/) and y(I). The derivative
with respect to [ of such a space curve 7(l) is given by

%F(l) (jl jly —Ta)is+ (14 ,0) (2.9)

To remove the torsion T' from the equation of motion, one introduces the unit

+ Ty)ty + (

coordinate vectors €,, €, €, by winding back the rotation which is due to the torsion,
l ~o : — — —
9 = / Ty, & +ie, = el —ily) &=1. (2.10)
lo

The coordinate system with the unit vectors €, €, €, is shown in figure 2.1 and is
called the curvilinear coordinate system. It follows that

For the right handed orthonormal dreibein [€,, €, €,] of the curvilinear coordinate
system [52, 53], one obtains

d =g

dlB(l) = ¢, r=R()+ ze, + ye, , (2.12)
do _ cosd, d  sind, (2.13)
dlez = P €l , dley = P €l , .
d 1. 1
aé} = —;tl = —;(cos V€, + sinde,) , (2.14)
d L d L d xcost +ysind |
—7r = €,— — 1 . 2.1
gt T Ggttagyri P ) (2.15)

For ease of notation, one can use ¥ = (z,y)’, £ = (cos¥,sind)T /p, and h = 1+ 7%
Vectors like g which have a component in the €3 direction are described by

P = pe€et py€y + pi€ (2.16)
d d . d . d o
P = (apz — Pikg)€x + (apy — Piky) €y + (apz + Pukie + pykiy)€r . (2.17)
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Figure 2.1: The unit vectors €, and &, the curvature vector & of the design curve ﬁ(l)
and the generalized coordinates z, y, and [ of the curvilinear coordinate system. This
system is rotated by # with respect to the Frenet-Serret coordinate system.

To find the equations of particle motion in the curvilinear coordinate system,
the independent coordinates in the equations of motion is changed from time ¢ to
arc length [ by using

dt d d hp

——(&g -—P /(& - —7) = —L 2.18

G LG LR (2.15)
where v is the velocity and p = |p] is the momentum. Properties of a reference

particle moving on the design trajectory are We indicated by subscripts 0 and define
the coordinates of all other particles relative to this reference particle through
_ Ps b P Ko K — Koy

T, a y Y, ) T:(to—t)’—, 4 -

2.19
Po Po Po Ky ( )

where K = mc*(y — 1) is the kinetic energy. These six phase space variables are
denoted by the phase space vector z. The coordinate pairs (z,a), (y,b), and (7,9)
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are canonically conjugate [54, 55]. Since é(l) is the path of the reference particle,
the particle transport is origin preserving, because a particle with 2’ = 0 will continue
to travel along the design trajectory. The equation of motion for these phase space
coordinates with [ as independent variable [55, 53] is obtained by transforming the
Lorentz force equation. Here I neglect the Stern—Gerlach forces since they are very
small in comparison with the Lorentz force and since no practical schemes for using
this force have been found so far [28, 29, 30, 31, 32].

To transform the equations of spin motion into the curvilinear coordinate system,
%t = %pﬂl from equation (2.18) is used. The spin direction § is expressed by its
components in the curvilinear coordinate system and the column vector of these
components is written as S. A potential torsion of the reference curve does not
enter the equations of particle motion in this coordinate system and it also does not
enter the equation of spin motion,

§ = Sp€r+ Sy€, + Sier, (2.20)
d d . d . d .
7t = (an — Siky)€x + (aSy — Siky)€y + (aSl + Spky + Syky)€r
hp =
= PG () x5 2.21
oy (7 P) (2.21)

For the column vector § , the equation of motion is therefore given by

—5 = {QBMT(T7}7)_ — K X 61} xS . (222)
dl vpr

The precession vector depends on the position and the momentum. This can be
expressed as a dependence on [ and on the 6 dimensional phase space variable 2.

2.1.3 Equation of Motion for Spins and Spin Fields

In a circular accelerator with circumference L, it is convenient to choose the azimuth
0 = 2xl/L as independent variable, rather than the arc length [ of the design
trajectory. The coordinate vectors are not changed, with € = ¢€; . All fields are
then 27 periodic in 6. The equation of particle motion is therefore 2m periodic,

d%z = #z2,0), 6(z,0+2r) =320, (2.23)
%5‘ = O(Z,0)x S, QZ,0+2r)=0(z2,0), (2.24)

where the precession vector is obtained from equation (2.22) as

- L = hp
Q(2,0) = —(O r,p)— — K X €]) . 2.25
( ) ) 2’7‘['( BMT( 7ﬁ)vpl l) ( )
A particle starting with an initial phase space coordinate z; and with an initial
spin S; propagates around an accelerator according to the equations of spin-orbit
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motion (2.24). After it has traveled from azimuth 6y to 6, it will have the coordi-
nates Z(6) = M(Z},Ho;ﬁ) and 5(0) = E(Z_},QO;H)S_Y;, where M(Z},Ho;ﬁ) is called the
transport map and the orthogonal matrix R(Z;,0;0) is called the spin transport
maftrix.

This rotation matrix can be computed by tracking three linearly independent
spins along the phase space trajectory starting with 2; at azimuth 6y. Transporting
the nine real coefficients of these vectors is however not an efficient way of simulating
spin motion, since a rotation can be described by three real numbers. Furthermore,
the orthogonal structure of R does not change the angle between two spins which
travel along the same trajectory and it does not change the length of a spin. These
properties can be violated either by numerical errors or by computational approx-
imations when individual spins are propagated. Therefore, more efficient methods
will be introduced below.

A particle beam consists of particles at different phase space positions. Each
particle can have a different spin direction. The function ]?(5, 6) describing the spin
direction for a particle at phase space point Z at azimuth 6 is called a spin field.
The equation of motion for a spin field is thus given by

—

d - . S
S =00 +[7(2,0)- 07 = G(,0) x [ (226)

2.1.4 Equation of Motion for the Spin Transport Matrix

In the following sections I will investigate various methods for describing the prop-
agation of spins and spin fields along particle trajectories. Inserting the relation
S(0) = R(Z;,00;0)S; into the equation of motion (2.24) leads to the equation of
motion for the spin transport matrix

0 Q3 Q
aeﬁ(gia 90; 0) = Qs 0 -0 E(Z“ 90; 0) s E(Z“ 90; 00) = 13 > (227)
- 9 0

where 15 describes the 3 x 3 dimensional unit matrix. The spin rotation matrix
for a particle trajectory which enters the nth particle optical element with 2Z,_ is
computed by multiplying the spin transport matrices R,(Z,—1) of the individual
elements [56, 57]. This method has the same disadvantage as the transport of
three individual spins. Nine real coefficients are transported, where three could
already describe a rotation. Furthermore computational inaccuracies can again lead
to violations of the orthogonal structure of the matrix, which therefore has to be
orthogonalized whenever such violations become problematic.

Using the transport matrix, a spin is propagated by 5(9) = R(Z;, 0o; 9)5; and a

spin field f(Z,0) can be propagated by

— —

F(2,0) = R(Z,00;0)f(Z;,00) with Z; = M(Z,0;0,) . (2.28)

Here the inverse transport map M(E,Q; bo) = M_I(E, bo;0) describing the reverse
motion from 6 back to 6y has been used.
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2.1.5 Equation of Motion for the Spin Transport
Quaternion

As will now be demonstrated, it is more efficient to use an SU(2) representation
rather than the SO(3) matrices when describing the rotations of spins. The matrix
R of equation (2.27) describes the rotation of an initial spin S; around a unit rotation
vector € by an angle a.. Splitting the spin into components parallel and perpendicular
to €, one obtains

S(0) = &S - €) + cosa[S — €S- &)] + sina xS, . (2.29)

With ag = cos § and @ = sin §¢€, the matrix R can therefore be written as [58, 59]

Rij = (ag — @*)bi; + 2a,a; — 2ao¢ijpar (2.30)

where the vector product is expressed using the totally antisymmetric tensor ¢;;p.
The SU(2) matrix representing a rotation around € by the angle « is given by the
quaternion

A= exp(—z§e -d)=agly —1d-d . (2.31)
Here the elements of the vector & are the three Pauli matrices. If a particle traverses
an optical element which rotates the spin according to the quaternion A and then
passes through an element which rotates the spin according to the quaternion B,
the total rotation of the spin is given by

)Ly — i(bod + bag + b x @) - & . (2.32)

-7 = (boly — ib- F)(acl, — i@ - 5)
a

This concatenation of quaternions can be written in matrix form as
bo —bi —by —bs

=5 Co . ag . bl bo — bg bg
C‘(z)_§(5>’-ﬁ_ b by b —b | )
bs —by b1 bo

Sometimes it is useful to have the quaternions appear in reversed order, even though
particles travel first through the optical element corresponding to A,

g —ay3 —daz —das
- ~ b ~ —_
C = ( “ ) —A ( 2 ) A= | @ do G T (2.34)
b a9 —das ao ay
as as —dap ap

Since any quaternion vector has unit length, the matrices B and A are both orthog-
onal.

It has turned out to be useful to represent rotations in terms of aq and d for the
following three reasons:
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1. only 4 components are needed to describe and concatenate the rotation of
spins,

2. even when numerical inaccuracies cause a small error in the computation of
this representation, one can always normalize so that a3 + @* = 1, which then
always leads to a an orthogonal spin transport matrix,

3. only 28 floating point operations are required to compute the combined spin
transport quaternion of two particle optical elements from their individual
quaternions. The multiplication of the spin transport matrices requires 45
floating point operations.

While particles are propagating along the dem_gn curve by a distance df, spins
are rotated by an angle |Q|d9 around the vector Q. After having been propagated
to 0 by the quaternion A, a spin gets propagated from 6 to § + df by the quatermon
B with by = 1 and b = IQdQ The resulting total rotation is given by A + d(9 5 A

and one obtains the dlfferentlal equation

0 -0y —Qy —Of

d (a) 1[92 0 -9 Q ag
@( i ) T2 Q3 0 - a )’ (2.35)
Q3 —0Q, 0

Writing the vector as A and the matrix as Q. the spin-orbit equation of motion takes
the form

d d - ~
—Z=u(Z,6 —A_—QAQA 2.

The starting conditions at the initial azimuth 6y are 2 = Z;, ap = 1, and @ = 0.

=y

Sometimes, an equation of motion for the quaternion A itself is used rather than for
the component vector A,

d
%A = —Z—Q dA , (2.37)

with the starting condition A = 1,. When A(é}, 6o;0) is known, R(Z;,00;0) can be
constructed using equation (2.30) and one can again propagate an initial spin S;
and a spin field f(Z;, 6y) by equation (2.28).

2.1.6 Equation of Motion for Spinors

In the SU(2) representation of rotations, a spin S is written in terms of the spinor

= (1,109)7 as S = U3V where ¥ and 1y are two complex numbers [58]. To have
S =1, it is required that [¢);]|*+]12|> = 1. The spinor represents a spin direction in
polar coordmates v and ¢, which is illustrated by the fact that the following spinor

and the following vector describe the same spin:

9 sy ) sin ¥ cos(¢z — ¢1)
2 s 5 € cos ¢}
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The equation of motion for the spinor is given by

d A =
which leads back to the vector form of the differential equation of spin motion [13],
d = d d
- — (Zyghg Tz
dHS (delll)gkll—l—lllg(dekll) (2.40)
1 - - - - b
= z‘§qﬁ[(ﬂ - 3)E—G(Q-)V =V xFT=0xS5.

If a spin rotates by an angle a around a @ independent unit rotation vector € while
the particle travels to 8, then equation (2.39) leads to the spinor propagation relation
U(0) = exp(—i5€- &)¥;. A spinor is therefore propagated through an accelerator
by the spin transport quaternion of equation (2.31),

U(0) = (aoly — i@ - &)V, . (2.41)

If a spin is parallel to the rotation vector €, it is not changed during the rotation.
The corresponding spinor W, however is changed by a phase factor. To show this,
the polar coordinates ¥ and ¢ of the vector € are used and the free phase of the
spinor is indicated by e,

| 9
U, = 625<C°S2 ) : (2.42)

sin %ei‘b
U(g) = exp(—z§e - 3)VU; = (cos 5 T isino g v, (2.43)
_ cos —z si‘n 5 cos 9 —ie—if6 s‘in S sind cos g ' S it
—ie'®sin Ssind  cos 5+ isin 5 cos v sin %e“b ¢

In the spinor formalism, the phase change of the spinor which describes the rotation
vector can therefore be used to determine the rotation angle a.

Once V; at 6y has been propagated to ¥ at 8, the spin of the particle can be
computed as S = wizy. Alternatively, one can propagate the spinor ¥; = (1,0)7
to obtain U = (ag — tas, —ia; + ag)T from equation (2.41). From the real and
imaginary parts one then obtains the spin transport quaternion, which makes this
method equivalent to the transportation of quaternions in section 2.1.5.

A phase space function \I/f(,?, 0) with |11]* 4 [¢2|> = 1 can describe a spin field
if it satisfies the equation of motion

%xp HZ.0) = 00V AZ2.0) + [5(.0) - 9:](2,0) = —i%[ﬁ(?,@) F)U(Z,0) . (2.44)

In analogy to equation (2.28), such a spin field is transported by the spin transport
quaternion A(Zj, 6y, 6) from azimuth 6, to 6,

U(Z,0) = A(Z,00;0)9(Z;,00) with 2 = M(Z,0;0) . (2.45)

A useful collection of equations for the description of spin motion can be found

in [13].
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2.2 Spin Motion in Circular Accelerators

2.2.1 Spin Motion on the Closed Orbit and Imperfection
Resonances

Before I analyze spin motion on a general particle trajectory in a circular accelerator,
I take a look at spin motion on the closed orbit. If no field errors, misaligned
elements, or energy deviations are present, this orbit is the design trajectory of
the accelerator. After a particle has traveled one turn along the closed orbit from
azimuth 6y to azimuth 6y 4+ 27 the spin has rotated around some unit rotation axis
7io(fo) by a rotation angle 27y . The angle of rotation around 7y divided by 27 is
called the closed orbit spin tune v and does not depend on the azimuth 6y at which
g is determined. In the following discussion g is an arbitrary but fixed azimuth
which will no longer be indicated. This spin rotation for the closed orbit Z = 0 is
described by the spin transport matrix R(0, 6o; 6p+27). In a flat accelerator without
field errors and misaligned elements, the closed orbit is in the horizontal plane and
passes only through vertical fields. Therefore 7iq is vertical and vy = Gvy. When 1y
is close to an integer, a case which is referred to as an imperfection resonance, the
rotation matrix is close to the identity and spin directions have hardly changed after
one turn. Misalignments create horizontal field components on the design orbit of a
flat ring, which produce spin precessions away from the vertical direction. For small
misalignments, these rotations around the horizontal might be very small but they
can still dominate spin motion when the main fields hardly produce any spin rotation
during one turn, i.e. close to integer values of 145. Thus the rotation axis 77y for spins
is vertical away from imperfection resonances but it can be nearly horizontal in their
vicinity. At a fixed azimuth 6y , the rotation axis 1y changes smoothly with vg in
between these extremes.

When a particle’s energy is accelerated such that v crosses an integer value, the
rotation vector 7iy can strongly change with energy. When the spin rotation is much
faster than this change of the rotation vector, then a spin which is nearly parallel
to g is dragged along with the changing 7. The projection of a spin on 7y hardly
changes during this procedure and will be shown to be an adiabatic invariant. To
illustrate this fact, one can imagine that ny changes away from the spin sometimes
and towards the spin at other times while the spin rotates around 73. Due to this
rapid rotation, both cases happen in frequent change and the total effect averages
out. This causes the spin to follow the slow change of 7.

Since it is inadvisable to let misalignments dominate spin motion, imperfection
resonances ought to be avoided. However, since vy = G in a flat ring, the closed—
orbit spin tune changes during acceleration and the crossing of imperfection reso-
nances is unavoidable. There are the following three possible regimes for resonance
crossing [37]:

o If the effects of misalignments are very small, the resonance can be crossed
so rapidly that the spins hardly react and the beam’s polarization is hardly
changed.
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e When the effect of misalignments is very strong, the rotation axis iy changes
very slowly during acceleration since the precession around the horizontal fields
of misaligned elements starts to dominate already far from an imperfection
resonance. Then the spin can follow the slow change of 5. But while the
average spin direction < S >n changes, the change of the polarization P =
| < S >y | is very limited. The change of a spin’s projection on 7iy as 7
changes slowly will be discussed in the next section.

e When the effect of misalignments has an intermediate strength, the polariza-
tion will be reduced.

The following two strategies can therefore be used to limit the reduction of
polarization when imperfection resonances are crossed:

e Careful correction of the closed orbit to limit horizontal field components [37].

o Increasing the horizontal field components, for example by introducing a sol-
enoid magnet. Devices which are deliberately used to increase the effect of
imperfection resonances are referred to as partial snakes [60, 61, 62]. A solenoid
magnet has been installed in the AGS and very effectively avoids polarization
loss at integer resonances of the closed—orbit spin tune. To avoid coupling
between horizontal and vertical motion by the solenoid, a helical dipole partial
snake is now being constructed for the AGS [17].

Since the closed orbit is not very well controlled in DESY III, a solenoid partial
snake for overcoming the vy = Gy = 8 imperfection resonance at 4.08GeV/c can
probably not be avoided. However, it would suffice to have it rotate spins by 14°
around the longitudinal direction [22]. Figure 2.2(left) shows how the spin of a
particle on the closed orbit would change while it is accelerated from G~y = 7.97
to Gy = 8.03 under the influence of a solenoid which rotates the spins by 0.8°.
No misalignments are considered. A realistic acceleration rate of 5keV/turn was
assumed. Figure 2.2 (right) shows that the product s3 = S - i hardly changed
during the slow acceleration. A small change close to Gy = 8 recovers after the
resonance is crossed. This is not due to the adiabatic invariance but due to the
symmetry of spin motion above and below the resonance. The adiabatic following
of g shown in this figure illustrates how a reduction of polarization at imperfection
resonances can be avoided.

For the acceleration process in a simple accelerator model, the change of S - i
at a fixed azimuth 6y is described by the Froissart—Stora formula as will be seen
in section 2.2.10. This formula allows a quantitative computation of the limited
reduction of polarization when either crossing a weak resonance relatively quickly
or when crossing a strong resonance relatively slowly.

2.2.2 The Adiabatic Spin Invariant on the Closed Orbit

It was conjectured above that spins which are nearly parallel to 77g will follow slow
changes of this rotation vector at #y. In this section I will prove this property
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Figure 2.2: The change of S, = S. éy (left) and the change of s3 = S iy (right) during
the acceleration from Gy = 7.97 to G+ = 8.03 for particles on the closed orbit in DESY III
in the presence of a 0.8° solenoid partial snake.

by showing that 5(9) - 1o(#) is an adiabatic invariant of motion. For simplicity, a
coordinate system is introduced which has 7y as one of its coordinate vectors and
in which the spin motion on the closed orbit is as simple as possible.

The precession vector Q(E, 6) on the closed orbit 2 = 0 is denoted by 60(9). The
rotation axis 1ig(fg) of the one turn spin transport matrix is sometimes called the
spin closed orbit [59]; it satisfies

%50(9) = Qo(0) x 7i0(0) , 7io(8) = io(0 + 27) . (2.46)

Such a 27 periodic vector always exists on the closed orbit; it is the rotation axis
of the spin rotation matrix Ry(6) = R(0,0;6 + 27) which describes the rotation of
initial spins S, into final spins gf = EO(H)S';- during one turn around the closed orbit.

Two unit vectors mg(6) and l_g)(e) are now chosen which initially make up a right
handed orthogonal dreibein [%0(90),%(90),50(90)] and propagate around the ring
according to the T-BMT equation on the closed orbit,

d = . d- = -
%mo = Qo(a) X mg , @lo = Qo(a) X lo . (247)

The three unit vectors will always constitute a right handed orthogonal dreibein,
since all three get rotated by the same precession equation. Whereas 1 is periodic
around the ring, the vectors mg and l_g) are rotated around iy by the angle 2wvq after
one turn and the dreibein is therefore in general not 27 periodic in §. Now a 27
periodic dreibein is defined by rotating mg and lo back uniformly by 27y during
one turn [63, 64],

L . d L. .
m + il = ewoe(ﬁ"bo + Zlo) s %(T?L + Zl) = (QO — Voﬁo) X (’I’?L + ll) . (248)
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In this coordinate system, a spin can be written as

—

§(0) = 51(0)m(0) + s2(0)(0) + 53(0)720(0) , s7+s5+s5=1. (2.49)
The equation of spin motion

= = d = _d ~d _ d - . ~
QO X S = %S = m@sl + Z@SQ + TLO%S;), + (QO — Von()) xS (250)

can be decomposed into its components parallel to m, f, and 1y, which leads to

d . . . d

%(31 +182) = 1p(s1 + 1sq) 7%= 0 (2.51)
and describes a uniform rotation around 7y, which keeps sz invariant. It has been
conjectured above that s3 does not change much when parameters of the system are
slowly varied. To show this, the definition of an adiabatic invariant given in [65,
sec.8.1] is used.

Definition (Adiabatic invariant): Consider an ordinary differential equation

j—ef = §(Z,7) with 7 = €0 and ¥ € IR" for a small parameter ¢ so that g defines a

slowly varying vector field. A function /—_1’(;?;’,7') is said to be an adiabatic invariant
of this system if its variation on the interval 6 € [0,1/e] (which implies 7 € [0,1])
is small together with e, except perhaps for a set of initial conditions whose measure
goes to zero with €; that is, for “most” initial conditions:

lim Supgepo 1/ A(F(9), 0) — A(#(0),0)| = 0, (2.52)

where the supremum Sup over the interval [0,1/e] is used.

Sometimes a distinction is made between adiabatic invariants and almost adi-
abatic invariants. The first vary little for all initial conditions whereas the second
allow for exceptional initial conditions from a set which has a measure that tends
to 0 with e [66, sec.4]; this distinction will not be made here.

To analyze whether s3 = S - o is an adiabatic invariant, | consider a precession
vector 60(0, 7) which depends on a slowly changing parameter 7. For fixed 7, the
rotation matrix for one turn has a unit rotation vector 7ig(#, 7) and one can again
define the 27 periodic orthogonal dreibein using this vector together with the unit
vectors m(f, 1) and f(&,T) . Since these vectors have unit length and constitute a
right handed orthogonal dreibein for all values of 7, their variation with 7 can only

be a rotation around some vector 7j(8, 7),
B,ii0 = 7(0,7) X it , Ox(m +1l) = 7(0,7) x (7 +il) . (2.53)

These equations can be rearranged to compute 77 by

1 — —
i = 5 x Ot + T 9,0+ 7ig x D7) (2.54)



2.2. SPIN MOTION IN CIRCULAR ACCELERATORS 25

Now using 7 = ¢, the spin of a particle which travels on the closed orbit while
the parameter 7 varies slowly is analyzed,

d -

Qo(0,7) x § = @5 (2.55)
d —d d - . - d o
= @51+l@82+n0d053—|—(ﬂo—%no)><S—|-(d9 ) X S .

The term with %T = ¢ appears since the unit vectors’ dependence on 7 has been
taken into account. For the spin coordinates, one obtains the following equation of

motion:
. {{oa(r)o — il x 5}
ol 52 = | {lwlr)io —enq] x5} -1 (2.56)
93 { — 577 X S} . ﬁo
e(n3s2 — N283) — vo(T)s2
= e(mss —n3s1) + vo(T)s1 , (2.57)
e(m2s1 — miS2)

with 7 = e and 77 = nym + 77J—|— nafip . For 1 —s3 > A, (A € IRT), the angle ¢
is introduced with s; = y/1 — s3cos ¢ and sy = (/1 — s%sin¢. Using /1 — s%ddeqb =

— sin qﬁ%sl + cos qb;l—esQ one obtains

d (s _ g (m2 cos ¢ — my sin §)y/1 — s3
@( o) ) - ( vo(T)+  e[(n2sin g + my cos 99)%8?) — 1] ) . (2.58)

For small ¢ and when |1g]| is larger than order ¢, this system has the slowly varying
coordinate s3 and a quickly varying phase ¢. It is therefore suitable for averaging
methods. Bringing the equation into standard form for averaging theorems, where
the frequency only depends on slowly changing variables, I make use of the slowly
changing variable 7 with —7‘ = ¢ . To obtain an autonomous differential equation as
used in definition an adlabatlc invariant, I use § = 6 and add the equation %5 =1,

and define

f3(537 957 T, HN) = [712(57 ) Cos ¢ 7]1 )y T Sln ¢] V (259)
f¢(537¢7 T, 5) = [772(57 )Slnqb—l' 771( ) )COS qb] - ’73(577') : (260)
/1 — s%

The equation of spin motion on the closed orbit is then

53 0 f3(537¢7 Taé)
d T 0 1
— = ~ . 2.61
do | ¢ w(r) | fo(s3,0,7,0) 200
] 1 0

It is apparent that this system of ordinary differential equations has two slowly
changing and two quickly changing variables for small €. It is written in the standard
form of averaging theorems for two frequency systems [66, sec.1.8], [65, chapter 4].
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To illustrate the basic idea of two—phase averaging and to show which resonances
can appear, it is noted that fs(ss, o, T, 0) is a 27 periodic function of 0 and that it is
linear in trigonometric functions of ¢ . One can obtain a simpler equation of motion
by transforming to a coordinate s5 = s3 + eu(ss, ¢, T, é) with a function u which
should have the same periodicity properties as fs with respect to ¢ and 8. These
functions, f3 and wu, are now Fourier expanded,

o0

f3(537¢7 T, é) = Z (fk (537 ) k€+¢ —I_f (‘937 )ei(ké—fﬁ)’ (262)
k=—o0c0

u(ss, ¢, é,e) = Z (u:(53,7')ei(k§+¢) —|—u;(33,r)ei(w~_¢) \ (2.63)
k=—oco

which leads to

d

d .~
5% = X AUE i+ GOl 4 il = o)) 2.0

=e Z (U + wfilk + )€ 4 [T+ upi(k — 1))} + 0(e?) .

k=—0c0

If there are no resonances where 145(7) is an integer, then one can choose uf(ss, 7) =
If]j:/(k + 19(7)) and all first-order terms are eliminated leaving j—€§3 = 0(e?). In
general such a transformation removes all terms which are first—order in ¢ except the
zeroth Fourier coefficient ﬁ TR fa(s3, 0, T, g)dqbdg . Therefore the differential
equation after the transformation is called the averaged system. For the case under
consideration, the average of f3 is zero; and for 0 € [0,1/¢], changes of the variable
53 of the averaged system are of order . Changes of s3 are of the same order, since
the difference 53 — s3 = cu is of order ¢. This shows that s3 = S. 1o is an adiabatic
invariant as defined above. However, in this argument it was assumed that vy(7)
never takes on integer values. Since the closed—orbit spin tune changes with energy
(vo = Gy in a flat ring), vy can become an integer during the acceleration process.
Resonance phenomena between the frequencies of the two quickly changing phases
6 and 6 can then occur.

I will therefore here state an averaging theorem for systems with two quickly
changing phases which allows for the crossing of resonances and apply it to spin
motion on the closed orbit. Various multi—-phase averaging theorems could be used
[65, chapters 4-6], [66]. Here theorem 3 of [65, sec.4.1] is used which is attributed to
[67]. A remark is in order: The application of multi-phase averaging to the simple
problem of spin motion on the closed orbit seems more complicated than necessary.
However, I go through considerable detail here while dealing with the closed orbit,
in order to set the stage for adiabatic invariants in the case of spin motion on a
general trajectory.

Theorem (Averaging for two frequency systems): Consider a system of the
form

d - I
@[ = ef(l,¢,0,¢) , (2.65)



2.2. SPIN MOTION IN CIRCULAR ACCELERATORS 27

d - S .
@Qb = V( ) + 59([7 Qbaevg) ) (266)
d -

where [ belongs to a reqular compact subset of Kuclidean IR™ . Fach function on the
right hand side is real, C* (first order differentials exist and are conlinuous) in I
and ¢, periodic with period 27 in ¢ and 0, and each possesses an analytic extension
for o €@, Im{¢} < o and 0ea, Im{g} < o with o > 0. The associated averaged

system is

1

_[:5f(f) > ]%(f> = (27T)2

2 2 o " "
| [ Te0.0ded, 268
o Jo
with starting condition f(()) = f(O) Let every trajectory of the exact (not the av-
eraged) system for which I stays in the range of definition for 0 € [0,1/e] have a
strictly monotonic variation of v(I) with 0, |%1/| > ci1e for some ¢ € RT . Then:
On all these trajectories there exists ¢ € RT so that for sufficiently small ¢

-

SUPee[OJ/e]u(‘g) —1(0)] < ev/e . (2.69)

In general the solution of the averaged system does not approximate the original
system well if § and ¢ are in resonance, which here means that the closed—orbit spin
tune vo(7) is an integer m. A simple example is the system %53 = eccos(¢p — mHN)
and ;—696 = 1p. The averaged system leads to s3 = s3(0) whereas the solution for an
integer vy = m is given by s3 = s3(0) + 6 cos[¢(0)]. The change in s for § € [0, 1/¢]
does not tend to zero for the limit ¢ — 0 and s3 is therefore not an adiabatic
invariant.

This example illustrates that large changes of slowly changing variables can build
up on resonances. The simplest way of avoiding this behavior at resonances is to
consider only systems in which resonances are quickly passed and capture in reso-
nances is avoided. This is the reason why the averaging theorem for two frequency
systems requires |%1/| > 1€ , which is often called condition A. This condition
excludes systems where trajectories pass arbitrarily slowly through a resonance or
cross the same resonance several times.

For spin motion on the closed orbit, the averaged system is ;—653 = f3 =0 and
leads to s3 = s3(0). If |;_0V0(50)| > ¢q€, then

lim Supgepo,i/.]s3(0) — s3(0)] = 0. (2.70)

Cases where S is nearly parallel to 7ip had to be excluded before equation (2.58) by
the condition 1 — s2 > A. For initial conditions with 1 — s3(0)* > 2A, there is an
e* so that 1 — s3(f)* > A for all ¢ < ¢* according to equation (2.70). This is true
for all A € IRT . With the limit ¢* — 0, the set of excluded initial conditions tends
to s3 € {1,—1} which has measure 0. The scalar product s3(0) = 5_"(0) - 1g(0) is
therefore an adiabatic invariant as defined above.
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The condition |0;19(7)| > ¢ requires that the spin tune changes sufficiently
during the adiabatic change of the parameter under consideration and therefore
does not remain at an integer value for a long time while a parameter is slowly
varied. When vo(7) has a finite distance to integers, s3 is an adiabatic invariant
even when 0.19(7) = 0, since then averaging theorems for non—resonant domains
can be applied [66, sec.1.6].

2.2.3 Spin Motion for Phase Space Trajectories and
Intrinsic Resonances

Assuming linearized phase space motion, the particles appear to perform harmonic
oscillations around the closed orbit with the frequencies @), @, and @), for hori-
zontal, vertical, and longitudinal motion when viewed at a fixed azimuth 6, of the
accelerator. These are called the orbital tunes. Some of the fields through which
a particle propagates will therefore oscillate with the orbital tunes. Whenever the
non—integer part of the spin precession frequency is in resonance with these oscil-
lation frequencies of the particle’s coordinates, a severe reduction of polarization
can occur. The spin precession frequency of particles moving on the closed orbit is
determined by the closed—orbit spin tune vq4. In general the spin tune is denoted by
v and depends on the amplitude of a particle’s oscillations around the closed orbit.
Whenever v is a linear combination of the frequencies of the particle’s coordinates,
the resulting coherent perturbation can reduce the beam’s polarization,

V:jOPs ‘|‘]1Qz+]2@y+]3QT ’ Psvjnve W . (271>

A super—periodicity P; of a ring reduces the number of resonances. These reso-
nances are called intrinsic resonances of order n for n = |j1| + |72] + |j3|- The
depolarizing effect of these resonances has been experimentally verified in many low
energy polarized proton accelerators [37, 14]. The first order intrinsic resonances
are the dominant reason for a reduction of polarization after solenoids have been
introduced to eliminate the effect of imperfection resonances. If the first-order res-
onances are avoided, however, higher—order resonances become dominant even for
decoupled linear phase space motion, as will be shown for the case of HERA—p.

It has been explained in section 2.2.1 that the polarization can be reduced at
imperfection resonances due the fact that field imperfections dominate the spin
motion whenever the main guide fields produce an integer number of spin rotations,
and therefore no apparent spin rotation after one completed turn. The depolarizing
effect at intrinsic resonances can be understood in similar terms. For phase space
trajectories which deviate little from the closed orbit, the spin motion is dominated
by the main guide fields on the closed orbit except close to an intrinsic resonance,
where the coherent perturbations described above can dominate over the main guide
fields.

To illustrate for example the vy = @), resonance, the spin directions are expressed
in terms of a coordinate system which rotates by 27 around 7ip during one betatron
period of vertical motion. In this coordinate system the main guide fields produce a
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rotation of the spins by 27 (v — @) during one turn. At vy = @), the spin rotation
due to the main guide fields vanishes and the remaining rotations are due to extra
fields picked up by the oscillating trajectory some distance away from the closed
orbit. At intrinsic resonances these spurious effects dominate over the effect of the
accelerator’s main guide fields. Since the dominant rotation at an intrinsic resonance
is produced by the fields along a particle’s phase space trajectory, it is different for
different particles and the beam will therefore loose polarization under the influence
of an intrinsic resonance.

With the averaging theorem for two frequency systems in section 2.2.2, I have
proved that spins on the closed orbit follow any slow change of 7y as long as the
system does not remain at a resonance for too long. Therefore, a severe reduction of
polarization while accelerating through an imperfection resonances can be avoided
by making the acceleration rate slow enough or by making the change of 7y slow
enough by means of a partial snake as discussed in section 2.2.1.

At intrinsic resonances a reduction of polarization can be avoided by a similar
mechanism. If a strong coherent perturbation is slowly switched on and off, an
effect similar to adiabatically following 7y occurs and polarization is conserved.
While an intrinsic resonance is crossed, perturbations influencing particles in the
tails of a beam will slowly increase already before the resonance and an adiabatic
conservation of polarization can occur. Polarization in the core of the beam will be
only weakly influenced when crossing intrinsic resonances, but in intermediate parts
of the beam, the polarization is reduced. Such a reduction of polarization can be
overcome by slowly exciting the whole beam coherently at a frequency close to the
orbital tune which causes the perturbation [68]. All spins then follow the adiabatic
change of the polarization direction and the resonance can be crossed with little loss
of polarization. The excitation amplitude is then reduced slowly so that the beam
emittance does not change noticeably during the whole process. This mechanism
has recently been tested successfully at the AGS [16, 17]. There, an RF dipole has
been used to slowly excite all the particle amplitudes coherently. Then the dominant
resonances 0+ @)y, 12 + @)y, 36 — @), and 36 + ), were crossed with little loss of
polarization. Finally the RF dipole was slowly switched off. No noticeable increase
of emittance has been observed. An older technique of avoiding the reduction of
polarization at strong intrinsic resonances utilizes pulsed quadrupoles to move the
orbital tune within a few microseconds just before a resonance so that the resonance
is crossed so quickly that the spin motion is hardly disturbed [37].

For the case of a single resonance with frequency k which is crossed by changing
the closed—orbit spin tune according to vy = k 4+ af, the Froissart—Stora formula to
be introduced in section 2.2.11 shows that polarization can be preserved when an
intrinsic resonance is crossed either very quickly or very slowly.

A third method of avoiding loss of polarization at intrinsic resonances uses radial
magnetic fields. The closed—orbit spin tune vq is then no longer required to be G,
in fact it can be made independent of energy and low order resonances can then
be avoided during the acceleration process. It was mentioned below equation (2.5)
that in a fixed transverse magnetic field the deflection angle of high energy particles
depends on energy, whereas the spin rotation does not depend on energy. It is
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therefore possible to devise a fixed field magnetic device which rotates spins by
m whenever a high energy particle travels through it at the different energies of an
acceleration cycle. Such field arrangements which rotate spins by = while perturbing
the orbit only moderately are called Siberian Snakes [69, 70, 71, 72, 73]. Figure 2.3
illustrates how two Siberian Snakes make the spin tune 14 independent of energy
and equal to % in a flat ring. Starting at the far side of the ring, spins are rotated
around the vertical (dashed line) by W = Gy7 while the particles travel through
one quadrant to the left side of the figure. The light arrow represents a spin which
is rotated by ¥ whereas the dark arrow is only rotated by the Siberian Snakes and
not by the fields in the arcs. The difference between the light and the dark arrow
therefore indicates the rotation due to the fields of the quadrants. A radial Siberian
Snake rotates all spins by 7 around the radial direction before the particles enter
the second quadrant. Since the spins have now reversed their vertical orientation,
the rotation due to the first quadrant is rewound during the second quadrant. The
rotation of the third quadrant is rewound during the fourth, due to the longitudinal
Siberian Snake between these quadrants. The rotations of different quadrants cancel
for all energies. As indicated by the dark area, all spins have in total rotated by =
around the vertical by the time they have returned to the far side of the ring. No net
rotation due to the arcs remains and the dark arrow and the light arrow therefore
coincide.

Figure 2.3: Schematic spin motion in a flat ring with a symmetrically arranged longi-
tudinal and radial snake. The one turn spin motion has vy = % and 7o vertical for all

energies.

To be more general, one can consider N Siberian Snakes in a ring where a spin
rotation angle W; around the vertical is produced between the jthe and the j + 1st
Siberian Snake. These angles are in general energy dependent. The rotation axis of
a snake is called the snake axis and the angle of this axis to the radial direction is
referred to as the snake angle ¢; . The spin transport quaternion of one snake is
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therefore i[cos(¢;)o1 + sin(p;)o3] and the total rotation during one turn is given by

R

A = Hze 5% cos(g; )0y + sin(y;)os)] (2.72)

N
= Nemifhos ]___[ cos(p;)oy + sin(p;)os] . (2.73)

Since o3 anti—-commutes with the other two Pauli matrices, the exponent is given
by AU = Uy —Upy_y; £... 4+ ;. The total spin rotation is independent of energy
when the snake locations are chosen to let AU = 0 . A pair of snakes produces a
rotation around a vertical axis of

[cos(p1)or + sin(p)o2] - [cos(p2)or + sin(pa)os] -
= cos(p1 — @2) — isin(p; — @2)03 . (2.74)

An even number of Siberian Snakes therefore produces a vertical rotation vector
fig. The polarization direction on the closed orbit is then vertical in the bending
magnets of the ring and is not deflected in these magnets. For an odd number of
Siberian Snakes, 7ig is in the horizontal plane and rotates by an energy dependent
angle in each bending magnet, even though the total rotation of one turn does not
depend on energy. The number N is therefore required to be even. In this case the
total rotation is given by

A = iNemil5 +8¢)0s (2.75)

3

with Ap = on —on-1+ ... — 1. For N Siberian Snakes in a ring with otherwise
spin rotations only around the vertical, the following three conditions are required:

o AWV = 0, to make 1y independent of energy.
e N is even, to make U vertical in the arcs of the ring.

) Aa,o:%,tomakey():%.

All imperfection resonances and, since the orbital tunes cannot be 1/2, also all
first—order intrinsic resonances are avoided by the insertion of such Siberian Snakes
[74], and polarized beam acceleration to very high energy could become possible.
Siberian Snakes can only be used at sufficiently high energies since their fields are
not changed during acceleration of the beam and they produce orbit distortions
which are too big for energies below approximately 8GeV [75].

The orbit deviation in the Siberian Snakes built for RHIC is up to 3cm at injec-
tion momentum of about 25GeV/c as shown in figure 2.4 (left). The orbit motion
outside the Siberian Snake, however, is hardly changed by the insertion of this de-
vice. One such snake is made of 4 helical dipole magnets of about 2.4m length [76].
Figure 2.4 (right) depicts the design orbit in a RHIC Siberian Snake in three dimen-
sions. It is obvious why these devices, first suggested in Novosibirsk [69] received
their name.
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Figure 2.4: Orbit motion in a helical snake designed for RHIC.

Since DESY III, the first synchrotron in the HERA—p accelerator chain, has a
super—periodicity 8, only 4 strong intrinsic first—order resonances have to be crossed.
They are at momenta of 1.69GeV /c, 2.05GeV/c, 6.05GeV/c, and 6.37GeV /c where
the closed-orbit spin tune vy = Gvis 8—Q,, 04+ Qy, 16— Q,, and 8+, for @), = 4.3.
The polarization can be conserved by jumping the tune with pulsed quadrupoles in
a few microseconds or by excitation of a resonance with an RF dipole, whereas a
solenoid partial snake would be used to cross the one strong imperfection resonance
at Gy = 8 as mentioned in section 2.2.1. All these methods have been tested
successfully at the AGS and it is likely that a highly polarized proton beam could
be extracted from the DESY III synchrotron at 7.5GeV/c .

In PETRA it would be very cumbersome to cross all resonances by the aid of
the tune jumping technique or by RF dipole excitation. Since Siberian Snakes can
be constructed for the injection energy of PETRA [22, 75], the best choice will be
to avoid all first—order resonances by means of two such devices. There is space for
Siberian Snakes in the east and the west section of PETRA [21, 22].

2.2.4 Changes of the accelerator chain for HERA—p

HERA-p is a very complex accelerator and a brief look already indicates 4 reasons
why producing a polarized beam in HERA-p is more difficult than in a conventional
flat ring with some super—periodicity.

1. HERA-p has no exact super—periodicity and only an approximate mirror sym-
metry between the North and South halves of the ring. Therefore Ps = 1 in
equation (2.71) and more resonances appear than in a ring with some higher
super—periodicity. Furthermore, special schemes for canceling resonances in
symmetric lattices [77] are not very effective in such a ring.

2. The proton ring of HERA—p is located above the electron ring in the arcs. The
proton beam is bent down to the level of the electron ring on both sides of the

three experiments H1, HERMES, and ZEUS in the North, East, and South
straight sections. Figure 2.5 (left) schematically shows the dipole magnets
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which bend the proton beam into the plane of the electron beam. On entering a
vertical bend section from the arc, a beam first encounters a super—conducting
magnet called BV which bends vertically downwards. This is followed by 4
identical magnets which are called BH in this report and which bend the
beam towards the center. Finally, the beam is brought back to the horizontal
by three identical vertical bend magnets called BU. The combined effect of
the BV and BU magnets surrounding a straight section is only a local change
in the vertical position of the beam pipe. Nevertheless, the spin motion is
strongly affected as shown by the number of spin rotations performed in each
magnet:

Magnet bend Bending direction Spin rotations at 920GeV
BV 5.7mrad vertically downwards 1.6
BU 1.9mrad vertically upwards (3x) 0.5
BH 15.1mrad horizontal 4.2

HERA-p is therefore not a flat ring and 77 is in general not vertical and will
depend on the particles’ energy, which can lead to a loss of polarization during
the acceleration cycle and during the energy oscillation in every synchrotron
period. This destructive effect of the vertical bends can, however, be elimi-
nated by so—called flattening snakes [78, 79] which make 7ig vertical outside the
non—flat sections of HERA—p. These are radial Siberian Snakes, with a spin
rotation characterized by 101, which are inserted in the center between the BV
and the BU magnets. When the BV magnet rotates spins by the angle ¥, and
a pair of BH magnets produce the angle W;, then the total spin rotation of
the non—flat region is given by the quaternion

- Py .U LUy - Py
2

—i—Loy —ithoy —iXvg  _Eug itvg, - .
€2 Pyoe 2 e 2 7 = 72 Tloe' 2 Tt = oy ; (2.76)

which means that one non-flat region then rotates spins by 7 around the
radial direction. Two non—flat regions, one to the right and one to the left of a
collision point, compensate each other’s spin rotation so that particles on the
closed orbit leave these two non-flat regions with the same spin direction with
which they entered. Since the rest of HERA—p has a horizontal flat design
orbit, the flattening snakes create an effectively flat ring with vertical 7y and
vy = Gy — 6V, /m) . The closed—orbit spin tune vq is less than Gy since the
horizontal bends in the 6 non—flat regions in the North, East, and South do
not contribute to the spin rotation during one turn.

There is space for spin rotators which make the polarization parallel to the
beam direction inside the collider experiments while keeping it vertical in the
arcs, and there is space for a flattening snake in the center of each non—flat
region. There is also space for 4 Siberian Snakes. But installing more than 4
Siberian Snakes would involve a lot of costly construction work. Simulations
have shown that 8 snakes would be desirable. However, it turned out to be
critical to optimize the 8 snake angles since four—snake schemes can be better
than eight-snake schemes when the snake angles are not properly chosen [80].
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S

total: %

Figure 2.5: Left: Interleaved horizontal and vertical magnets in HERA-p which direct
the proton beam into the plain of the electron beam. Right: The radial Siberian Snakes
in between the vertical magnets are called flattening snakes. Every non—flat region with
a flattening snake rotates spins by 7 around the radial direction.

4. The relevant energies, and thus the magnetic fields, are very high and therefore
the spin rotates rapidly.

If HERA—p had been designed for polarized proton acceleration, several parts of the
ring would probably have been constructed differently.

The changes required in the pre—accelerator chain and in HERA—p itself are
summarized in figure 2.6. The polarized H™ source and the polarimeters mentioned
in chapter 1 as well as the partial snake for DESY III and Siberian Snakes for PETRA
are shown in this figure. In HERA—p, the flattening snakes and spin rotators, which
make the spin longitudinal in the experiment, are indicated. Either 4 or 8 Siberian

Snakes are indicated in HERA—p.

2.2.5 The Invariant Torus

The synchrotron radiation in proton synchrotrons which can be built today is so
weak that particle motion can usually be described by a Hamiltonian. It is then
often convenient to consider canonical phase space coordinates Z in one Poincaré
section [81] at azimuth 6y of the ring. 1 assume that action variables .J;(Z) and
angle variables ®;(Z) for each of the three degrees of freedom indicated by j can be
introduced in a domain of the 6 dimensional phase space of equation (2.19). The
actions have not changed after one turn around the ring and the angles advance
by an action dependent phase advance 27Q);(.J ) during one 27 period in 4. In
accelerator physics, the functions ); are the amplitude dependent tunes. A particle
startmg with an initial phase space coordinate Z; will arrive at the final coordinate
Zy = M(Z;) after one turn around the ring; where M( 7) = M(z bo; 00 + 27) is the
transport map for one turn starting at #y. In terms of action—angle variables, the
motion after one turn is described by

—

J(M(2) = J(2) . S(M(2)) = &(2) +27Q(J(2)) . (2.77)
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SS—Siberian snake

SR—Spin Rotator
FS—Flattening snake
SS?—Possible Siberian snakes
for 8 snake configuration

H1
/I\ \ FS SS P —Polarimeters
o ¢

o<l

Figure 2.6: The required changes in the pre—accelerator chain and in HERA-p. (Drawing
taken from [22, 26]).
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Since it will be clear from the context which Poincaré section is under consideration,
the dependence on fy of the one turn transport map and of the transformation to
action—angle variables is not indicated.

A particle with initial action variables J; will travel on the invariant torus deter-
mined by j(é') = J_; at azimuth 6,. If the three tunes and 1 are incommensurable
so that there are no resonances ; C_j = jo for any integers j,, the particle will come
arbitrarily close to every phase space point of the invariant torus. One speaks of an
invariant torus since the set of phase space points on the torus is mapped onto itself
by the one turn transport map. This means that particles starting on an invariant
torus get redistributed in phase space during one turn around the ring, but they
stay on the same torus. Similarly one calls /(Z) an invariant function of motion if
I(M(2)) = 1(2).

For horizontal linear orbit motion, an example is the Courant Snyder invariants
[54] I.(z,a,0) = 3(0)a* + 2a(f)ax + v(0)z* . The invariant curve I.(z,a,8y) = €,
encloses the area me, in the Poincaré section at 6; . These rather well known
concepts are mentioned here since there are much less known analogous concepts
for spin motion.

2.2.6 The Invariant Spin Field

In order to maximize the number of collisions of particles inside the experimental
detectors of a storage ring system, one tries to maximize the total number of particles
in the bunches and tries to minimize the emittances so that the particle distribution
across phase space is narrow and the phase space density is high. If the beam is spin
polarized, one additionally requires that the polarization is high and that it does
not change much with time.

When all particles of a beam are initially completely polarized parallel to each
other, the polarization state of the beam is in general not 27 periodic and the
average beam polarization can change from turn to turn. Spin fields are propagated
by equation (2.28). A special spin field 7(Z, §) which is 27 periodic in 6 is called an
invariant spin field,

S

(2,0) = R(%:, 00;0)i(Z,00) , #(Z,0+2m) = il(Z,0) . (2.78)

If the spin of each particle in a beam is initially polarized parallel to 7i(Z, 6), particles
get redistributed in phase space during one turn, but they will stay polarized parallel
to the invariant spin field. The beam is then in an equilibrium spin state. Particles
change their location in phase space from some initial phase space coordinate Z; in
the Poincaré section at azimuth 6, to some final coordinate after one turn 2y = M(EZ)
according to the one turn map. After one turn, a spin has changed its direction
according to the one turn spin transport matrix R(Z2;) = R(Z;,00; 00 + 27), but it is
now parallel to the invariant spin field at the particle’s new phase space coordinate
Z¢, and equation (2.79) is therefore equivalent to the periodicity condition

A(NE(2) = REZ)A(2) (2.79)
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The invariant spin field was first introduced by Derbenev and Kondratenko [82]
in the theory of radiative electron polarization and is often called the Derbenev—
Kondratenko n—axis. Note that 7(2) is usually not an eigenvector of the spin trans-
port matrix R(Z) at some phase space point since the spin of a particle has changed
after one turn around the ring, but the eigenvector does not change when it is
transported by R(Z).

The guide fields in storage rings are produced by dipole and quadrupole magnets.
The dipole fields constrain the particles to almost circular orbits and the quadrupole
fields focus the beam, thus ensuring that the particles do not drift too far away from
the central orbit. In these fields, spins precess according to the T-BMT equation
(2.22).

In horizontal dipoles, spins precess only around the vertical field direction. The
quadrupoles have vertical and horizontal fields and additionally cause the spins to
precess away from the vertical direction. The strength of the spin precession and the
precession axis in machine magnets depends on the trajectory and the energy of the
particle. Thus in one turn around the ring the effective precession axis can deviate
from the vertical and can strongly depend on the initial position of the particle in 6
dimensional phase space of equation (2.19). From this it is clear that if an invariant
spin field 77(2) exists, it can vary strongly across the orbital phase space.

Once this field 7(2) together with the phase space dependent polarization, its
direction, and the phase space density function p(Z) of the beam are known, one has
a complete specification of the polarization state of a beam of spin 1/2 particles.
Maximizing the polarization of the ensemble implies two conditions: the polarization
at each point in phase space should be high and the polarization vector 7i(2) at each
point should be almost parallel to the average polarization vector of the particles.

At very high energy, as for example in the HERA proton ring [34, 21, 83], it can
happen that 7(Z) for particles with realistic phase space amplitudes deviates by tens
of degrees from the beam average < n > at azimuth 6,. Thus even if each point
in phase space were 100% polarized parallel to 7i(Z), the beam average polarization
could be much smaller than 100%. Clearly it is very important to have accurate
and efficient methods for calculating 7(2) and for ensuring that the spread of 7i(2)
is as small as possible.

However, although it has been straightforward to define 7(2, ), it is not easy to
calculate this spin field in general and much effort has been expended on this topic
[84, 85, 86, 87, 88, 89, 90, 91], but mainly for electrons at energies up to 46GeV. All
methods developed before the polarized proton project at HERA—p were explicitly
perturbative, and either do not go to high enough order [12, 63, 91] or have problems
with convergence at high order and high proton energies [87, 92]. In chapter 4 several
new methods for obtaining 7i(Z, #) will be described and compared. But before that,
some properties of the invariant spin field will have the be derived.
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2.2.7 The Amplitude Dependent Spin Tune and
the Uniqueness of 7i(Z)

The closed—orbit spin tune 1y has been introduced as the rotation angle of one
turn spin motion for particles on the closed orbit. For particles which oscillate
around the closed orbit, this rotation angle can depend on the amplitude of their
oscillation. For the case that the orbit motion can be described in terms of action
and angle variables J and CB, as i1s always the case for stable linear motion, and the
tunes (); are not in resonance on the invariant torus described by j, it will now be
shown how to define a spin rotation angle which is independent of ® on that torus.
Assuming that an ri—axis exists, one can introduce two unit vectors ul( 7) and 52( 7)
to create a right handed drelbem [ul,u2,ﬁ]. The vectors u1 and 1y are therefore
defined up to a rotation around the n—axis by an arbitrary phase space dependent
angle (2 ) The spin direction S is expressed in terms of this coordinate system
by S = 31u1 + 52u2 + Jsni. The coeflicient .Js is called the spin action and does
not change during the particle motion around the ring since the particle transport
matrix R(Z) is orthogonal and ensures that Jg = S .7 is invariant. The spin motion
in this coordinate system is a rotation around the n—axis by a phase space dependent
angle 270 (2).

Sf1 cos(2np(2)) —sin(27(2)) 0 S41
spp | = | sin(270(2)) cos(2n(Z)) O Sio ) (2.80)
Js 0 0 1 Js

If now the complex quantity 5 = ' #(2)(s) 4 is7) is introduced where ¢(Z) is the
arbitrary angle of %; and 4, the spin transport is described by

Sf1tispe = eiQﬂ-ﬂ(g)(Sil +15i2) , (2.81)
e—ié(M(g))gf — )= (2.82)

The one turn transport of phase space motion is described by J_} = J; and <I_5f =
o, + 2#@. Using the symbols QWDf(é) and ¢f(5) to indicate the spin rotation
angle and the free phase of the coordinate system for motion on the invariant torus
characterized by j,

A

i = ¢ (270 {(8) = ¢ H{B)+6 7(B+27Q)) -

The goal of the subsequent manipulation is to chose ¢ 7 ® _‘) so that the spin motion
characterized by the exponent is simplified to the extent that the rotation angle
becomes independent of $. As with any function of phase space, the rotation e'7® )
is 27 periodic in all components ®;. Therefore, the rotation angle ¢ #®) can have

a 27 periodic contribution QDOJ((E) and a linear contribution in the phases

¢7(®) =, (@) +7- @ (2.84)
with some vector ] that has integer components. The phase space dependent spin
rotation e277(®) is also a 27 periodic function of the angle variables. But since on
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the closed orbit (j = 0) the spin motion does not depend on P, ﬁf(é) only has a
periodic component and no component linear in d.

If the orbit tunes Q are not in resonance, then ¢ #® ) can be chosen to eliminate
the phase dependence of the exponent in equation (2.83) completely. This can be
seen by Fourier transformation of the periodic functions o #( _)) and ¢_7(® ) leading
to the following exponent in equation (2.83):

o1 - G+ Y 2ri k) — b, AR)(1 — 2@ FT (2.85)
k

By choosing éoj(l;) = QWDf(E)/(l — eﬂ”]g'@), one can eliminate all Fourier coefficients
except for k=0.

To guarantee the convergence of the Fourier series of ¢(2), I require the orbit
tunes and 1 to be strongly incommensurable [66, sec.1.5], which implies that they
are strongly non—orbit-resonant, defined as follows using the distance to the nearest
integer [...]; and the 1 norm |k|; = S0 |kl

Strongly non—orbit—resonant: The particle motion is said to be strongly non-
orbit-resonant if C,r € IRT exist with [k - Qs > C|k|;"

Strong 1ncommensurab1hty Is a_common requlrement in perturbation theories
and for r > dlm(];) 1 (here dlm(k) 3) the set of Q for which there is no C has
measure 0 [93, 94], [65, appendix 4].

The denominator 1 — e2™@ then decreases with a power law, |1 — e
2|sin(7rl; Q)| > Alk - @)y > AC|k|]7” . 1 further require that the spin rotation
1% f(é) has an analytic extension and therefore that its Fourier components fall off

i27r§~@| —

exponentially with |];|1 [65, appendix 1.1], which counterbalances the denominator
and leads to a converging Fourier series. Alternatively one could have required
sufficient differentiability of 77 ®), which would lead to a sufficiently strong power

law fall off for the 5J~(E) [65, appendix 1.2].

The coordinate vectors @; and @, for this special choice of ¢(Z) are referred to
as Uy and uy. The exponent reduces to v(J) = #0) 4 7 - Q and the spin rotation
of equation (2.83) simplifies to

-

§f = €i27ry(‘])§i . (286)

The goal of constructing a spin rotation depending only on orbital actions but not
on the angle variables ® has now been achieved. The function I/(j) is called the
amplitude dependent spin tune. It is not unique, since one can add an integer jq
and a linear combination j Cj of the orbit tunes. It is interesting to note that for
action variables .J where the integer coefficients of j can be chosen so that

—

v(J)+7-@=0mod 1, (2.87)

one can eliminate the spin rotation completely. Here only the case when this reso-
nance condition is not satisfied will be analyzed. Furthermore, when —7i(Z2) is chosen
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as the ri-axis to which the spin tune refers on a torus, the spin tune v also changes
sign and —v + jo + 7 - @ could alternatively be chosen as spin tune, which proves
the following conclusion:

Existence of V(j): Gliven that an ni—axis exisls, that the system is strongly non—
orbit-resonant, and that the above mentioned analytic extension of the spin rotation
U exists, then a coordinale system [y, Ua, 71| can be specified which defines an amplz-
tude dependent spin tune V(j) This choice is not unique, since £v + jo —|—] Q can
also be chosen as spin tune.

Usually the integers are chosen to let the limit for small amplitudes be equal to
the closed—orbit spin tune vy, which is Gy for a flat ring.

To analyze the uniqueness of the ni—axis, the periodicity condition (2.79) is writ-
ten in the coordinate system [uy, ts, 77,

B cos(2mv) —sin(2wv) 0
n(M(Z)) =] sin(2rv)  cos(2av) 0 | -7(2), (2.88)
0 0 1

with the obvious solution 7(Z) = (0,0,1)7 for all Z. If another fi—axis 715(Z) exists,
then 7y — 7i(ri - 1i3) is non—zero at least at one phase space point and on all iterates
of this point which can be reached during particle motion. This difference vector at
these phase space points is normalized and written as cos(a(2))d; + s1n(a(5))ﬁ2 or
as €9 _ In orbital action-angle variables, the function af(é) =, (CI)) +7-® has
a 27 periodic contribution and a linear contribution; and in complex notation, the
periodicity condition (2.88) reads

gio A B+2nd) _ ilzmv(D)to 4 @) (2.89)

This requires that all Fourier coefficients of aof(é) vanish except & 7(0) . The
resulting equation y(j) =7 Q mod 1 shows that the periodicity condition (2.89)
for 73(Z) can only be satisfied when a spin—orbit resonance occurs, otherwise the
invariant spin field is unique. This is summarized as follows.

Uniqueness of 7i(Z) - no spin—orbit resonance: [f an n—axis and basis vectors
Uy, Uy exist and the spin rolation angle in one lurn is not a linear combination of
orbit phase advances modulo 2w, then the n—axis is unique up lo a sign.

If the orbital tunes are rational, one can also formulate some statements about
the uniqueness of the n—axis. Given that the phase space motion can be described
by action—angle variables and that the orbital tunes on an invariant torus in the
Poincaré section at azimuth f, are rational numbers, @); = :L—JJ where the smallest
possible denominators are used, let N be the smallest common multiple of these
denominators. Then MN(Z) is the identity map whereas M”(E) is not the identity
map for any n < N and the following conclusions can be drawn:
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Uniqueness of 7i(Z) - rational tunes: If for some N € IN, the N turn spin
transport matriz on an invariant torus is not the identity matriz but the N turn
orbital transport map is the identily, then an ri—axis exisls and is unique up lo a
sign on this invariant torus.

To show this, the spin transport matrix Ry(Z) for N turns around the ring
starting at 6 is used. Since it is not the identity matrix, it describes a rotation
around a vector €x(Z) which is unique up to a sign. After N turns, the phase space
transport map is the identity map and the periodicity condition of equation (2.79)
for an ri—axis 77 (Z) of the N turn spin-orbit system becomes niy(2) = Ry(2)nin(2).
The rotation vector €x(2) is therefore the ri—axis 7ix(Z), unique up to a sign. The

—

rotation vector é'N(M(Z) of Ry(M(Z)) is given by £ R(Z)én(Z) due to
Ry (M(2))R(Z)én(Z) = R(MN(2))Ry(2)én(2) = R(2)én(2) . (2.90)

Here the fact that ]\ZN(Z) is the identity map was used. The rotation vectors are
unique up to a sign and ey(2) satisfies the periodicity condition of an fi—axis up to
a possible sign change,

—

Ev(M(2)) = £R(%)en(?) . (2.91)

Since MN(Z) is the identity map, a particle with initial phase space point Z; can
only reach the N phase space points Z(Z;) = Z|M”(Z),n € {1,...,N}} which
will be called the trajectory to z;. Given that the sign for €y(z;) has been chosen,
then the sign of the rotation vectors on the trajectory to Z; is chosen so that the +
sign in equation (2.91) is obtained. This equation is then the periodicity condition
of equation (2.79) for €x(Z) and shows that 7(2) = €x(Z) is an invariant spin field
which is unique up to a sign for each trajectory. Assuming sufficient smoothness of
Ry(2), the rotation vector ey (2) will also vary smoothly over phase space and the
signs on each trajectory is chosen so that 7i(Z) = €x(Z) is a smooth function on the
invariant torus.

Non—uniqueness of 7i(Z): If for some N € IN, the N lurn spin transport matriz
on the invariant torus and also the N turn transport map are the identily, then an
n—axis exislts but it is not unique.

—

To show this, f(Zp) is chosen arbitrarily, where the angle variables corresponding

to 7, are ®y = 0. An additional choice for the spin field fis f(é’) = E(Zo)f(é'o) for

o, = ;i with the smallest possible denominators m; of the rational tunes ); . All

J
—

other values of f(Z) on the set with ®; € [0,27/m;], which covers the complete
torus when iterated N times, are chosen arbitrarily but smooth. If Z; is a point
on this set, then the values of f(M"(Z;)) for the other N — 1 points M"™(Z;) of the

—

trajectory Z(Zz;) are chosen according to f(M(2)) = R(Z)f(Z) so that a spin will

- -

be transported from f(Zz;) by the T-BMT equation to f(Zf) whenever it comes to

—

azimuth y. This function f(2) is therefore an invariant spin field and since it was
chosen arbitrarily for a set of points on the torus, it is not unique.
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2.2.8 Maximum Time Average Polarization

If two particles travel along the same trajectory, the angle between their spins does
not change. Since 7i(Z) is a spin field on the Poincaré section at 6y and is therefore
propagated according to the T-BMT equation (2.28), a particle which is initially
polarized with an angle ¥ with respect to 7(Z;) will have the angle ¢ with respect to
7ii(Z) every time it comes back to 5. This is due to the fact that the scalar product
Js(Z, g) =S. 71(Z) is an invariant of spin—orbit motion. When (Z, SY‘Z) are the initial
phase space point and the initial spin of a particle then the final coordinates after
one turn around the ring give
Js(Z5,5¢) = Js(M(Z), B(2)5:) = [B(Z) 5] - (M (Z))
= [R(%)S]- [RE)(Z)] = S -ii(Z) = Js(2,5) . (2.92)

Whenever the particle comes back to 6y with a phase space coordinate which is close
to Z;, the spin will again have the angle ¥ with respect to n(2;), assuming 7(2) is
sufficiently continuous. Since the components perpendicular to the n—axis average
to zero after many turns, the time averaged polarization at z; will be parallel to
7i1(Z;), and it can only have the magnitude 1 if the spin was initially parallel to the
invariant spin field. However, even if all particles are initially polarized parallel to

7i(Z), the beam polarization is not 1 but | < 17 > | where < ... > denotes the average
over the beam. The maximum time average beam polarization that can be stored
in an accelerator at a given fixed energy is therefore Py, = | < > |. It was first

pointed out in [95] for the Super—conducting Super Collider (SSC) and in [20] for
HERA-p that this maximum polarization can be small at high energy.

To prove in a formal way that the time average polarization is parallel to 7i(Z) if
an invariant spin field exists and if the phase space coordinates stay on an invariant
torus, I assume the beam to have initially the spin field on the Poincaré section
at 0y and perform the time average in the coordinate system [iy, Uy, 7] introduced
in section 2.2.7. Action—angle variables are used and the initial spin field in this
coordinate system is written as ]‘%(5) The action variables .J are constant during a
particle’s motion and will not be indicated in the following derivation.

It is assumed that ]%(5) possesses an analytic extension for ®; € @', Im{®;} < o
with ¢ > 0 , and it is assumed that the system is strongly non—orbit-resonant,
implying [} Q]d > C|j|1_’" for some C,r € IRT. Like the requirement of an analytic
extension and of strong incommensurability in section 2.2.7, these conditions will be
needed to guarantee the convergence of a Fourier series with resonance denominators.
Furthermore it is assumed that the motion is strongly non—spin-orbit-resonant in
the following sense:

Strongly non—spin—orbit—resonant: The particle motion is said to be strongly
non—spin—orbit-resonant if C,r € IR* exist with [v+ k- Qly > C|k|;" . Note that
this is a weaker condition than strong incommensurability of the spin—orbil tunes
and 1 since v is not multiplied by an integer.

As in section 2.2.7, the set of spin and orbit tunes for which there is no C', given
that r > 2, has measure 0.
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As described in equation 2.28, the spin field is transported once around the ring
by the one turn spin transport matrix, which has an especially simple form in the
chosen coordinate system,

o cos(2my) —sin(27v) 0 o .
fi(®) =1 sin(2rv)  cos(2nv) 0 | fi—1(® —27Q) , (2.93)
0 01

where ]E])(Cf))) is the spin field on the Poincaré section at g after N turns around the
ring. The average at g after NV turns in this coordinate system is therefore

[ N cos(j2mv) —sin(j2av) 0\ _
sin(y2nv)  cos(y2nv) O | fo(® —j27Q) .  (2.94)
0 0 1

(@ = oS

The third component of {f}N is Zé\fzo f073(<i)‘ — jQWQ)/(N + 1) and the first and

second components in complex notation are
1 N

{f}N ={fInva+i{ [Nz = m;:o emmfo(cﬁ - jQWQ) ) (2.95)

where fo( ) = foa(® ) +1fo2(P ) In terms of the Fourier components fo(fg) of fo(é)

one obtains the inequality

NI N+1ZZ e ()

_ gy ik-®

- N_I_ 1|Z 622” EQ) fO(k)e |

SR o S — 0] (2.96)
= N_I_l ]—5 |1 _62‘271.(1/_1;_@'” 0 . .

The sum over £ is finite, since ]%(5) was assumed to have analytic extension so that
its Fourier components fall off exponentially with |E |1 . Moreover, the denominator
only falls off with a power law in k since the motion is strongly non—spin—orbit—
resonant. Therefore |1 — eiQﬂ(”_E'Q)| = 2|sin(7(v — k- Cj))| >4lv—k-Qly > Clk;”
As an alternative to requiring an analytic extension of ﬁ;(cﬁ), one could have required
sufficient differentiability which would lead to a sufficiently strong power law fall off
for the fO(E) [65, appendix 1].
Similarly one obtains for the third component of {f}N

1 1 — e—i27r(N+1)EC§

{fIns = fos(0) + N1 g%) Jos(k ) e (2.97)

1 — e—i?wﬁ-@

were the sum over k converges for the given strongly non—orbit-resonant motion.
For large N, {f}~ therefore converges linearly with 1/N to fosni. The time average
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polarization {]F}(Z) = limNﬁoo{f}N(Z) at a phase space point Z;, which is parallel
to 1(Z;), can only be one if the initial spin state was already parallel to this ri—axis
at every phase space point from which a particle can travel to Z; . If {f}(é’) is zero,
there is no time average polarization usable for the particle physics experiment. This
proves the following conclusion:

Time averaged polarization: [f the motion is strongly non-orbit-resonant and
strongly non—spin—orbit—resonant and an invariant spin field ©i(2) exists on an in-
variant torus, then any initial spin field (which salisfies some requirement about
analytic extensibility given above) has a time average polarization al a phase space
point Z which is parallel to 1i(Z) . The mazimum time average polarization of a par-
ticle beam 1is the beam average Py, = | < 71 > | which is only realized when initially
all particles are polarized parallel to 7i(2) .

2.2.9 The Adiabatic Spin Invariant
on Phase Space Trajectories

As described in the previous section, the maximum time average polarization at-
tainable in a storage ring at a fixed energy can be small when 7(Z) has a large
divergence over the beam leading to a small beam average | < 7 > |. It is however
often possible, as will be seen for HERA—p in later sections, to choose an operation
energy where the spread of the invariant spin field over the beam is acceptably small.
But how can a polarized proton beam be transported with little loss of polarization
from low energy through regions with small Py, = | < 77 > |, and therefore small
beam polarization, to a suitable energy where Py, is acceptable? Can the beam
polarization recover to large values at this suitable energy after it was much smaller,
at least as small as Py,,, at lower energies?

This is possible if the spins which are initially parallel to 7(Z) remains close to
the invariant spin field along its trajectory even when parameters of particle motion,
for example the energy, are slowly changed. The invariant spin field (2, 7) on the
Poincaré section at 6, changes when a parameter 7 varies. Of course it is assumed
that an ri—axis exists for every value of the parameter. A beam which is polarized
according to the invariant spin field and initially has the polarization | < 7i(Z,0) > |
will remain closely polarized parallel to 7(Z,7) at changed parameter 7, as long
as the change is slow enough and no very strong resonance effects diminish the
polarization. While the beam is accelerated slowly, the beam polarization can be
low when P, = | < i > | is small, but when the spins follow the slow change
of 7i(Z,7) with the energy parameter 7, the beam can have high polarization later,
when energies are reached where Py, is reasonably large.

I will prove that spins follow slow changes of the invariant spin field by showing
that the product Js = S n(Z) is an adiabatic invariant. On the closed orbit,
the invariant spin field 7i(Z) is parallel to the one turn rotation vector 7iy. It was
shown in section 2.2.1 that the angle between () and the spin 5(9) of a particle
traveling on the closed orbit changes little when the system changes slowly, and
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thereby s3(6) = 5(9) - mo(#) was proved to be an adiabatic invariant. This proof
will now be generalized to show that Jg = S . n(Z,7) changes little along a particle
trajectory while the spin motion S and the phase space motion Z are subject to
equations of motion which change slowly with the parameter 7 = €6 ,

d . . dz =.. -
—az—v(z,H,'r), @S—Q(Z,@,T)XS. (2.98)

It is assumed that action—angle variables j, ® and an invariant spin field 7i(Z, 7)
exist for all fixed parameters 7 € [0,1]. Furthermore it is assumed that a dreibein
[tl1, Ua, 71| exists for all fixed parameters 7 € [0,1]. This leads to an amplitude
dependent spin tune I/(j, 7) which in general depends on 7. These are non—trivial
assumptions, since during the analysis of the existence of I/(j) in section 2.2.7, the
existence of u; and w; was only guarantees when the system is strongly non—orbit—
resonant. It is also taken into account that the tunes Q(j, 7) of phase space motion
depend on the action variables and on the parameter 7 which slowly changes the
system.

Using the phase space dependent 27 periodic dreibein, the spin of a particle with
phase space coordinate z at azimuth 6 is described by S = $1Uy + Sqtiy + Jgri . The
periodic unit vectors depend on 7 and their variation with 7 can only be a rotation
around some vector 7j(Z, 0, 7) when 7 is changed,

aq—ﬁ = 77(5, 0, T) X 1 s 87(171 + Z’ljg) = 77(5, 9, ’7') X (’l_jl + Zl_jg) . (299)
Similar to equation (2.54) 7 can be computed by
1
77: 5(’[21 X @Tﬁl + 172 X 87172 + n X aq—ﬁ) . (2100)

When now the parameter 7 = ¢l changes slowly, the spin changes according to

. . d -
QzZ,0,7)x S = %S (2.101)
L d L d Ld S . 4 d . =
= U1@S1+U2@52+n@Js+(Q—WZ) X S-I—(@T)n x S
For the spin coordinates, one obtains the following equation of motion:
g {[V(J:,T)ﬁ — e % S:} .
| s | = [ vy —en] x S}y (2.102)
do Lt
Js { —enf x S}n
e m3sy — mds ) — V(J:ﬂ')52
- e mds — msi )+v(S,m)s |
e ms1 — msy )

with 77 = nuy + netiy + n3ri and 7 = €6 . This equation is obviously very similar to
the equation (2.57) for particles on the closed orbit and again ¢ is introduced for
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1—J2>A € IRt with sy = /1 — J2cos ¢ and s, = /1 — J%sin ¢ and one obtains

i Js\ e (n2cos ¢ —nrsind)y/1 — J2 (2.103)
o\ ¢ )] |\ v(J,7)+ 5[(U2Siﬂ¢+nlcos¢)ﬁ—%] ' '

A similar equation for the change of Jg with slowly changing particle energy has
been derived in [95]. Since 1j depends on the orbit variables J and CI_)‘, this system has
the slowly varying coordinates J and Jg and the quickly varying phases ® and o. It
is therefore suitable for averaging methods. To bring it into standard form, where
the frequency only depends on slowly changing variables and the right hand side is
2m periodic in all phases, the slowly changing variable T with %7‘ — ¢ is used and 0
is introduced as a phase variable with %5 = 1. To simplify notations, ﬁ(j, <I_5, 0, 7)
is used to define

st(j7§7J57¢7T7é) = [TI2COS¢—TI13m¢]V1—J§7 (2104)

= o ~ Ny . Js
JolT 8, s, 6,7,0) = [npsing+m cosgl—me — s, (2105
) (2.105)
with 7 = €0 . The equation of spin-orbit motion becomes
-f 0 pJ(j:q_)’aTvé)
JS 0 st(Jaq)ajqubaTae)
d T 0 1
—1 2 |=1 % > 55 . 2.106
df ) Q({vT e pq;(J,q),T,a) ( )
¢ v(J,T) fo(J,®,Js,0,7,0)
0 1 0

The small perturbations p; and pg to the motion of the action and angle variables
are due to the variation of the equation of phase space motion (2.98) with the
parameter 7 . For accelerators, the 6 dimensional phase space of equation (2.19) is
considered and therefore this system of ordinary differential equations has 5 slowly
and 5 quickly changing variables for small . It is written in the standard form of
multi-phase averaging theorems [66, sec.1.9], [65, chapter 6].

To illustrate which kind of resonances can disturb the coupled spin—orbit motion,
I perform a coordinate transformation leading to the averaged system in first order
of ¢ . This procedure is very similar to the averaging transformation for the two
frequency system obtained for particles on the closed orbit in section 2.2.1. Here
fJS(j, (1_5, Js, T, ¢, é) is linear in trigonometric functions of ¢ and one can try to find
a transformation Jg = Jg + 5u(j, (1_5, Js, b, T, é) which leads to a simpler equation of
motion. These functions u and f;, are Fourier expanded,

-

Jis = E(ff(j, Js,7)e'l

.7

Jo,J

w o= S(uf (], s, m) e FFRI s (T S, 1) FFHi=0 - (2.108)

7170

-

+iol+4) | fj_(j, Js, T)e"'(]'q;”og_é) (2.107)

?
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which leads to
d - d s d

— o . i(5- 84500+
75 = AT HuliGe 50+ o+ gtV
J5J0
- .~ d 2 . d iG-B+jol—0)
+ [/ ‘tukl(.?'@q)—l']o— @99)]6 }
= ¢ Z{[f;_ + U;_ZG é + Jo + V)]eig@ﬂo@t@
7o
+ 7 4 ui(7 G+ jo — v)]eTEHT=91 L 0(c?) .
If there is no spin—orbit resonance, then one can choose u = zfi/( Q +j0tv)

and all first-order terms are ehmmated except the zeroth Fourler coefficient, leaving

the averaged system JS (%)5 S s fJS(J ®,Js,0, 0, )d@d(bd@—l—@( ). For
the case under cons1derat10n the average of fi15 1s zero; and for § € [0,1/¢], changes
of the variable .Js of the averaged system are of order . Changes of .Js are of the
same order, since the difference Jg — Js = cu is of order ¢, which makes Jg = S. i
an adlabatlc invariant as defined in section 2.2.2. However, for this argument it
was assumed that ; Cj + v does not become integer. Usually however, this cannot
be avoided and resonance phenomena between the 5 frequencies of the 5 quickly
changing phases can occur. In the following, a multi—-phase averaging theorem which
includes the crossing of resonances will be applied to the spin—orbit motion. Here I

use theorem 2 of [65, sec.6.1] which is attributed to [96].

Theorem (Averaging for N frequency systems): Consider a system of the

form
dr _ fid 2.109
= el o8, (2.109)
d—i _‘—i - =
50 = D) +eg(l, ) , (2.110)

where T belongs to a regular compact subset of Fuclidean IR™ and q; € IR" . Fach
function on the right hand side is real, C' (first-order differentials exist and are
continuous) in I and e, periodic with period 2w in all ¢;, and each possesses an
analytic extension for ¢; € @', Im{¢;} < o with o > 0. The associated averaged
system s

271'_,—»_,

1

ST =<j). f<f>=(27r)n | 6,045 (2.111)

with f(()) = f(()) Let the following non—degeneracy condition (called Arnold’s con-
dition) be satisfied: “Assuming the frequency I/n(f) # 0 (with no loss of general-
ity, since in every region at least one frequency will be non—zero), then the map
= (Vl(f), vy (1 ))/z/n( ) has maximal rank, equal to n — 17. Then: for every
conlinuous function p(e) with Ci1\/e < p(e) < Cy, C1,Cq € IRT, the sel of allowed
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inttial conditions V is partitioned V = V'(e, p(e))U V" (g, p(e)) for sufficiently small
¢ such that

—

Supgego,i11(0) = 1(0)] < p(e) (2.112)

for ([_)(0),%(0)) € V', i.e. for initial conditions in V', the separation between the
exact solution and the solution of the averaged system is less than p(e) . Moreover,
the measure of V''(e,p(e)) is smaller than C\/e/p(e) for some C € IR .

When the frequencies are in resonance, the slowly changing variables [ can accu-
mulate large changes and the solution of the averaged system does not approximate
the original system well. In the above theorem, Arnold’s condition ensures that no
slowly changing variable I; can change at a resonance without moving the system
out of this resonance.

I now apply this averaging theorem for N frequency systems to equation (2.106)
of spin—orbit motion. The frequency of the variable 8 is 1 and can therefore be used
as v, of Arnold’s condition. The 4 frequencies (Q(j, ), I/(j, 7)) depend on 4 of the
5 slowly changing variables and I assume that the rank is 4 so that the Jacobi matrix
of the 4 frequencies has non-vanishing determinant, det[a(fﬁ)(é, v)] #0 . A more
detailed analysis of the requirement on the involved function is possible [97].

Choosing p(g) = &'/* one finds that the set of initial conditions for which
Sup66[071/5]|j(0) - j(0)| > ¢'/% has a measure smaller than Ce'/4. The variation

of the action variables J for 6 € [0,1/e] therefore tends to 0 with e, except for
initial conditions from a set with a measure that also tends to 0 with . The action
variables are therefore adiabatic invariants as defined in section 2.2.2, which is a
well known fact. Additionally it is found that the set of initial conditions for which
Supgepo,/4l/s(0) — Js(0)] > £'/* has a measure smaller than Ce'/4
the condition 1 — J2 > A above equation (2.103) excludes a set of initial conditions
with a measure that tends to 0 with ¢ — 0, as argued after equation (2.70); and

. Furthermore

therefore Jg = S. (%) is an adiabatic invariant as defined in section 2.2.2.

2.2.10 The Single Resonance Model (SRM)

In the previous sections, 7, iy, Uz, and v have been introduced and the adiabatic
invariance of Jg has been established for a very general class of systems. Now the
introduced quantities will be computed for an analytically solvable model and the
adiabatic invariance will be illustrated by examining changes of a parameter of this
model.

The spin precession vector for particles which oscillate around the closed orbit can
be decomposed in the closed orbit contribution Qo and a part & due to the oscillation

amplitude, Q(E,H) = 60(9) + &(Z,60) . The one turn rotation axis my precesses
around gy and the 27 periodic dreibein [m, [, 7o) which was introduced in section
2.2.2 precesses according to equation (2.48), %(ﬁz +il) = (Qo — vorig) x (M +1il) .

In this coordinate system, the complex notation § = s; + 185 and w = w; + 1wy is
used, with

—

g = 817'?1 + Sgl + Sgﬁo 5 c_u' = wlﬁi + WQf+ u)3ﬁ0 . (2113)
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The equation of motion for § is obtained from

OxS= @81 + ld082 + n0@53 + (Qo — V()TL()) xS (2114)
by multiplication with m + zf, and taking into account that s3 = (/1 — [§]2,

d
@s = 1(vp + w3)§ —iwy/1 — |3]? . (2.115)

When the motion in phase space can be transformed to action—angle variables,
the spin precession vector JJ’(j ) 9) for particles which oscillate around the closed
orbit is a 27 perlodlc function of ® and 6 . With the possibly amphtude dependent
orblt tunes Q CI) the Fourier spectrum of w has frequencies jq —|—] Q with integers

Jn - The integer contrlbutlons jo are due to the 27 periodicity of & with § and the
contributions of integer multiples of the obit tunes ) are due to the periodicity
of & with ®; . When one of the Fourier frequencies is nearly in resonance with
Vg, it can be a good approximation to drop all other Fourier components. This is
referred to as the single resonance approximation. However, this is not always a good
approximation as will become apparent when HERA—-p is analyzed in section 3.2.1;
it can only be good when the influence of individual resonances is well separated.
That model corresponds to the rotating field approximation often used to discuss
spin resonance in solid state physics [98]. For a conventional flat ring, the first-order
resonance due to vertical motion dominates and therefore most often the resonance
Kk = j0 £ @, is considered.

The amplitude of the one remaining Fourier contribution is called the resonance
strength ¢.. For first-order resonances, where >2°_, |7,| = 1, €. is computed in
section 3.2.1. A method for computing higher—order resonance strength, where
S, = 1%7,] > 1, is presented for the first time in section 2.2.12.

The analytically solvable model which is now considered consists of ﬁo = 1T
and of an @ Wthh only has one Fourier contribution, & = €.(m cos CI) —|— ['sin D) ,
with & = 500 + ] ® + ®,. Since —CI) Q, the frequency is k = jo + ] Q When
the coordinates in the [m, l, M) system are arranged in column vectors [99, 100], one
obtains

d d €, cos ®
@Cb =k, Sp8= QP) x5, Q=] e stCI) . (2.116)
0

Initial coordinates z; are taken into final coordinates z; by CI_)‘f = CBZ'—I—ZWQ’ and there-
fore @5 = ®; 4+ 27k . Now the orthogonal matrix T'(€, ¢) is introduced to describe a
rotation around a unit vector € by an angle ¢. Transforming the spin components
of §into a rotating frame by sg = T'(€;, —®) - §, one obtains the simplified equation
of spin motion

%E’R:Q’Rxgﬁ, ﬁR: 0 s (S:Vo—li. (2117)
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If a spin field is oriented parallel to Op in this frame, it does not change from turn
to turn. Therefore igp = Qr/|Qg| is an f—axis. In the original frame, this ri—axis is

1 €, cos @
n(®) = sig(5)X exsin® | | A=4/02+€ (2.118)
5

where the ‘sign factor’ sig(d) has been chosen so that on the closed orbit (¢, = 0)
the ri—axis 7(®) coincides with 7y = €3. As with any function of phase space, this
n—axis is a 27 periodic function of the angle variables ® and of # . As required, 77 is a

solution of the T-BMT equation (2.116), %ﬁ = sig(d)Q(€zcos @ —€;sin ) = Oxii.

This analytically solvable model can also be used to illustrate the construction
of a phase independent but amplitude dependent spin tune I/(j) which has been
introduced in section 2.2.7. It will be seen that this spin rotation angle, and no
other angle which might be alternatively proposed [13, 101], determines the location
of resonances. Having got an ri—axis, one can transform the components of § into a

coordinate system [, i, 52] . With the simple choice

P —sin® 1 d cos
Uy(P) = ——— =sig(d) | cos® | . @(®)=~]| dsin® |, (2.119)
|€3 X 7| 0 A e

Ty is equal to Ty x 7t and the basis vectors are clearly 27 periodic in ® and in 0 as
required. Since the basis vectors 51 and 62 build an orthogonal dreibein with 7 for
all #, and since 17 precesses around ﬁ, one obtains %52 = (ﬁ — D) X iy for some
function © of phase space. This definition of 7 was already used in equation (2.80).

It is computed by

d - L —Kkcos P + 1y cos® .
U= (%&2 —Q X ay) -y =sig(d)[| —ksin® +vosin® |]-ay =sig(d)A . (2.120)

In section 2.2.7, an additional rotation of 51 and 52 around 7 was used to make
v independent of the angle variables ® and to define the amplitude dependent spin
tune. Here however, i is already independent of @ . In the SRM, ¢, = |6(2)] , and
therefore o depends on the orbital amplitude. The amplitude dependent spin tune
I/(j) can be changed by multiples of the orbit tune, as stated in section 2.2.7. This
freedom can be used to obtain a v which reduces to v on the design orbit (¢, = 0).
This choice is obtained by a rotation of i, and 1, around 7 by —®, which leads to
the amplitude dependent spin tune

v =sig(0)A + & . (2.121)
The corresponding uniformly rotating basis vectors @; and wy become

it = Uy cos® — i1y 5in @ , Uy = fiy cos ® + i1, sin @ . (2.122)
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On the closed orbit, the coordinate system now reduces to
7= i, i —sig(8)m, Gy —sig(d), v— 1. (2.123)

This model leads to the average polarization

Pim = 0 () A=k, S —k (2124
) | < 7(2) > | 1 A v—K vo— kK | )

which is plotted in figure 2.7 (top). The distance of the amplitude dependent spin
tune v from resonance has here been denoted by A, which is equivalent with o =
sig(6)A . In the bottom figure, the spin tune v of equation (2.121) jumps by 2e,
at the resonance where vy = k . This jump of the spin tune could in general be
transformed away since the sign of the spin tune is not uniquely determined, as
described in section 2.2.7. This however requires a change of the sign of 7i. Here the
sign of 7 in equation (2.118) has been fixed by choosing 7ig - 7 > 0 ; and the tune
jump at resonance can therefore not be transformed away.

Py ] — e — . E—
08 | ]
06 |
04 :
0.2 &

0.2 04 K 0.6 0.8 Yo

el - - - I
08 | ]
0.6 | ]
04 | ]
0.2 & ]

0.2 04 K 0.6 0.8 Y

Figure 2.7: P}, and the amplitude dependent spin tune v(e,) for the SRM in the vicinity
of vy =k ,fork =0.5and ¢, =0.1.

For the SRM, we will now go through the steps which were used in section
2.2.9 to describe spin motion when a parameter 7 of the system is slowly being
changed, i.e. %T = ¢. To avoid confusion with ¢, and to use conventional notation
for the SRM, we will subsequently use « instead of €. To obtain the equation of
motion in standard form of averaging theorems, the spin motion was described in
the coordinate system [ty, Uz, 7] . In order to take account for the change of the
basis vectors with the parameter 7, the vector 7 was introduced in equation (2.100),

1
?’72 5(’[_1‘1 X 87ﬁ1 + 72‘2 X 87'62 —I' ﬁ X a’Tﬁ) . (2125)
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Due to vy = Gy in a flat ring, the acceleration process in the SRM is usually
described by a slowly changing spin tune vy = & + 7 with 7 = af while assuming
that k and €, do not change with energy. This leads to the following expressions for
the variation of the basis vectors and for 7:

0;u; = s1g(5)A—n cos® , 0ty = s1g(5)j\—n sin® , d.n= —s1g(5);2 i ,
K 1 . Kk =
7 = sig(d) /6\2 2( Ty — iy cos ® + i sin Q) = —81g(5)%u2 . (2.126)
In a general system, the equation of motion for the coefficients of S = s +
U89 + 1i.Js are described in equation (2.102) as
d S1 al m3sy — mds ) — V(J:,T)SQ
w2 )= al mds — ms1 )+ v(J,T)s . (2.127)
Js a( ms1 — msy )

In complex notation with § = sy 4+ 1159, = 9y + 14 and Js = /1 — |§]2, one obtains

jgs_z[y(* ) — ams)s 4 iamy/1 — [3]2 . (2.128)

For the SRM, the equations (2.126) and (2.122) lead to n = —iags e®, n3 =0, and

d €x

@s = 1[sig(d)A + k]S + aAQ 2 : (2.129)
This equation of motion for the SRM in the coordinate system [uy, i3, 7] describes
how spins follow a slow change of © adiabatically, but it also describes how Js =

\/1 —|8]? is reduced when the resonance vy = & is crossed.

In this equation, the spin tune sig(6)A + & jumps by 2¢, at the resonance. Note
that the dreibein [iy, Uy, 7] has a discontinuity at 6 = 0 where 77 and iy change sign.
When denoting the unit vectors just below the resonance by the index — and just
above the resonance by an index +, the discontinuity in the basis vectors is reflected

in a discontinuity in § at § =0,

g = ﬁl_Sl_ + ﬁ2_52_ + ﬁ_JS_ = ’l_j1+51+ + ’lj2+52+ + ﬁ+JS+ . (2130)
Due to the sign choice for the ni—axis, Jsy = —.Js_ and a particle with upwards
spin far below resonance will have a flipped spin far above the resonance. When
propagating a spin with initial condition §; by equation (2.129), one has to solve
the equation up to the resonance, where the spin coordinate is denoted by §_;.
Equation (2.130) then leads to $4, which is then used as initial condition for a
further propagation of the spin.

2.2.11 The Froissart—Stora Formula

The adiabatic spin invariant was established for general systems in section 2.2.9. For
the analytically solvable SRM the change of this adiabatic invariant can be com-
puted. When the closed—orbit spin tune vy changes during the acceleration process,



2.2. SPIN MOTION IN CIRCULAR ACCELERATORS 53

intrinsic resonances and imperfection resonances have to be crossed. While the spin
is under the strong influence of an approximately resonant Fourier contribution of
w, a reduction of polarization can occur which does not recover after the energy has
increased and the resonance is crossed.

The reduction of polarization during resonance crossing is traditionally described
in the framework of the SRM by the Froissart—Stora formula. To describe resonance
crossing, a changing closed—orbit spin tune vy has to be inserted in the equation
of motion (2.116). For various functions v(6), different approaches are possible
[102, 103, 59, 104]. If the closed-orbit spin tune changes like vy = k + afl, the
corresponding spinor equation of motion (2.39) can be solved in terms of confluent
hypergeometric functions. The equations for arbitrary initial conditions are quite
complicated but when at § — —oc a vertical spin s3(—o0) = 1 is chosen as initial
condition then the vertical component at § — +oc is given by the Froissart—Stora

formula

2
€k

s3(00) =2e 2 — 1. (2.131)
In the case of a strong perturbation ¢, or when the acceleration is very slow, spins
follow the change of #(®). The fi-axis in equation (2.118) has a discontinuity from
- = —€x(€1 cos® + €3sin @) just below resonance to 1y = —ri_ just above reso-
nance. Spins do not follow this instantaneous change of sign, but they then follow
—n adiabatically after the resonance has been crossed. Therefore s3(o0) is close to
—1 for a slow change of vy . When the perturbation is weak or crossed very quickly,
then spin motion is hardly affected and s3(oc0) is close to 1 in equation (2.131). In
intermediate cases, the polarization is reduced.

2.2.12 Froissart—Stora Formula
for Higher—Order Resonances

The Froissart—Stora formula is regularly used to describe the reduction of polariza-
tion during resonance crossing in accelerators where the closed—orbit spin tune vy
changes with energy, normally for flat rings and vy = G'y. Since Siberian Snakes
are unavoidable for polarized beam acceleration in HERA-p, the closed—orbit spin
tune is vg = % in most systems which will be considered here and it does not change
during acceleration. Since the orbital tunes are never chosen to be %, no first-order
resonances vy = jo + Qx can occur. When only linear orbital motion is considered,
@ can however only have Fourier components to the first-order frequencies jo + Q.
Higher—order resonances can nevertheless appear, which will be seen in the examples
of this report which were all computed for linear phase space motion. To use the
Froissart—Stora Formula when Siberian Snakes are in use, a method is required with
which one can obtain the strength of the higher—order resonances. The discussion
so far about the approximation of spin motion by a single Fourier component in w
which is approximately in resonance with vq is therefore usually not useful when
Siberian Snakes are present.

Even when the precession vector & is a linear function of phase space variables

and first—order resonances are excluded by the use of Siberian Snakes, higher—order
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resonances of the form vy = % ~ Jo +f- Q can occur [105, 106, 59]. But when spin
motion in a ring is approximated by a single resonance with k = jo + @}, and then
Siberian Snakes are included in the ring, it has often been noted that only odd order
resonances with k = jo + 5,y appear, i.e. j, is odd. But this is only true for rings
with mid-plane symmetric spin—orbit motion, otherwise also even order resonances
can appear. It can be shown by nonlinear normal form theory that this is a feature
of any ring with mid—plane symmetric spin—orbit motion and is not peculiar to rings
with Siberian Snakes.

HERA-p has non—flat regions, and rings with closed orbit distortions in general
do not have mid—plane-symmetric motion. Then, resonances with even j, can also
be destructive. In fact, the resonances with j, = 2 are the most destructive spin—
orbit resonances in HERA—p after Siberian Snakes are included.

As mentioned in section 2.2.4, HERA—p will require flattening snakes. Addition-
ally at least 4 Siberian Snakes are required. The snake angle ¢; of these 4 snakes can
be chosen quite arbitrarily, obeying only the restriction Ap = ¢4 —p3+p2—p1 = 7
derived in section 2.2.3. Since various choices of snake angles lead to different perfor-
mance of HERA—p for polarized beam acceleration and storage, section 4.1.3 will be
dedicated to finding an optimal choice for these snake angles. To illustrate the main
concepts, two different example schemes having 1 snake in each of the 4 straight sec-
tions will be considered. In the following I will characterize snake schemes by their
snake angles starting with the Siberian Snake in the South and going East around
the ring. The two example schemes are denoted by (£020) and (2£25311) and are
shown in figure 2.8. A pair of non—flat regions is located in the South, East, and
North straight sections of HERA—p and therefore 6 flattening snakes are required.
Nevertheless, it can be useful to symmetrize HERA—p by two additional flattening
snakes in the West section. When referring to snake schemes, the number of flat-
tening snakes will be referred to as 6fs or 8fs scheme. The two example schemes
are:

1. Scheme (5050)6 s with snake angles South: 45°, East: 0°, North: 45°, West:
0°. Such a scheme and similar symmetric schemes were originally considered
advantageous by a popular opinion [107], mostly due to their symmetry.

2. Scheme (2L3I3LI)8fs with snake angles South: 135°, East: 67.5°, North:
67.5°, West: 45°. This scheme was found by the optimization described in
section 4.1.3.

In figure 2.9 the amplitude dependent spin tune and Fj;,, are plotted for an
amplitude of 707mm mrad (green), which shows that many higher—order resonances
can be observed in HERA—p for the luminosity upgrade optics for the year 2000.
The ring was made effectively flat by flattening snakes and 4 Siberian Snakes were
included with the snake arrangement ($0750)8 fs.

While the closed—orbit spin tune remains at %, the amplitude dependent spin tune
v(.J,) changes with energy and is in resonance with 2@), at the second line (red) and
with 5@}, — 1 at the bottom line. In both cases a clearly marked change of P, can
be observed. The drop of Py, at 811.2GeV/c is due to the 2 —5@Q), resonance, which
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Figure 2.8: An originally suggested snake scheme (left) and a snake scheme after the
optimizations described in section 4.1.3 (right). The flattening snakes (small arrows) and
4 Siberian Snakes (large arrows) are indicated with their snake angle.

lies a little below the 2¢), line. At all other energies where this resonance is crossed,
no influence on Py, can be observed since the corresponding fifth—order resonance
strength is very small. At some second—order resonances, P, increases resonantly.
Presumably, two resonant effects are in constructive interference at these energies.
Nonetheless, polarization can be reduced when these resonance positions are crossed
since also a sudden increase of < 7 > might be due to a change of 7i(z) which is too
sudden for the adiabatic invariance of Jg = 7i(2) - S to be maintained. Additionally
one can see in figure 2.9 that the spin tune v(.J,) has discontinuities at some of the
resonances.

In this more general setting where the amplitude dependent spin tune I/(f)
crosses a resonance, the spin motion is described in the coordinate system [u;, w3, 77
by equation (2.128),

d - d
— 5= — g 7 — 512 = —17 . .
d&s i(v(J,7) —anz)$ + iam/1 — |52, « d@T (2.132)

This equation implicitly describes the change of Js = /1 — |§|? during accelera-

tion when 7 is taken to be the reference energy of the circular accelerator. When the
average of Js taken over all N particles of the beam is denoted by < Jg >p, then
even a very small polarization of the beam P =< § >y can in principle always be
recovered to a value close to < .Js >y by changing the invariant spin field sufficiently
slowly so that it is nearly parallel over the phase space of the beam, which makes
Py, close to 1. A small average beam polarization during acceleration is therefore
not destructive as long as Jg stays large for each particle. On the other hand, a
reduction of < .Js >x describes a reduction of polarization which is not reversible
by a slow change of the invariant spin field [108].
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Figure 2.9: Py, (blue) and v(J,) (green) for particles with a 4.20 vertical amplitude
of 70rmm mrad in HERA—p with the (50%0)8fs snake scheme and @, = 0.289. Three
resonance lines cross v and at the crossing F;,, drops and there are jumps in v, bottom:
v =5, — 1, middle: v =2 - 5Q),, and top v = 2Q), .

In the following I will show that equation (2.132) can resemble characteristics of
the equation of spin motion (2.129) of the SRM. If the spin tune v has a discontinuity
from v_ to vy at some energy, then I define a resonant frequency k = %(1/_ +vy)
and a resonance strength as one half of the discontinuity, ¢, = |y — v_|. T now
define A = |v — k|, which does not have a discontinuity and express the spin tune
as v =sig(v —k)A + K .

Since 1] is related to the basis vectors by equation (2.100), it is a 27 periodic
functions of ® and 6, and equation (2.132) has a similar structure as the equation
of motion in the coordinate system [m, l_: o] in equation (2.115) to which the single
resonance approximation was applied. Accordingly, one can analyze what happens
when the Fourier component of 5 at a frequency x with amplitude n,, dominates the
motion of 3. For that analysis, all other Fourier components of n are ignored. For
spins which are initially close to parallel to the ri—axis, § is small and together with

the small parameter a, ans§ can also be ignored. This leads to

%é = i(sig(v — K)A + K)S + 1ang/1 —

which is already quite similar to equation (2.132). If v and 5, are computed in the

A

S

2, (2.133)

vicinity of the energy where the discontinuity occurs and n.(v — x)?* is observed to
be approximately €., one is left with a relation which has exactly the structure of
the equation of motion (2.129) for the SRM. Therefore, the Froissart—Stora formula
can be applied to estimate how much polarization is lost when a polarized beam
is accelerated through the energy region where the spin tune jumps by 2¢, . In



2.2. SPIN MOTION IN CIRCULAR ACCELERATORS 57

the following we will check for some higher—order resonances in HERA—p whether
all assumptions leading to the approximative equation (2.133) are satisfied to the
extent that the Froissart—Stora formula describes the reduction of polarization well.
Checking whether the Froissart—Stora formula can be used to determine depolariza-
tion when a higher order resonance is crossed was largely inspired by a comment of
A. Lehrach during a talk by M. Vogt [126].

The basis vectors 7, 1, and iy, and the amplitude dependent spin tune v can
in general only be computed by computationally intensive methods which will be
described in later sections. The perturbing function 7 is then obtained from

+ .’ljg :ﬁ(—ﬁXﬁg+ZﬁXﬁ1)

‘r]:

e e
|
Ql\_/
[}
_|_

The required differentiation is often prone to numerical inaccuracies. When 7 is
computed by perturbative normal form theory using differential algebra (DA) [92],
the differentiation with respect to 7 can be performed automatically. After n is
computed, the Fourier integral over the complete ring would finally be required in
order to compute €.

If equation (2.132) can be approximated well by a SRM, there is however a dif-
ferent and much less cumbersome method for determining the relevant resonance
strength and the resonant frequency. Observation of the amplitude dependent spin
tune I/(j ) allows the determination of all parameters which are required to evaluate
the Froissart—Stora formula for higher—order resonances whenever a SRM for 7 is ap-
plicable: The spin tune jumps by 2¢,, the center of the jump is located at frequency
k itself, and the rate of change of v with changing energy is used to determine the

parameter a for equation (2.131). This parameter is “7* in the SRM. Here the
corresponding frequency v, which would be observed when no perturbation n were
present, is not directly computed. But it can be inferred from the slope 0, at some
distance from the resonance.

It is important to note that the discontinuity of the spin tune could in general
be transformed away since its sign can be changed by choosing —n as the n—axis to
which the spin tune refers, which was derived in section 2.2.7. If the sign of 7 is
fixed so that the ri—axis 7i_ shortly below and 7, shortly above the resonance have
n_ -1y < 0, then the discontinuity of v at the resonance cannot be transformed
away.

According to equation (2.124), < @i > is given by PSFM = /1 — (=%-)2 in the
SRM. To check whether the observed drop of Py, indeed satisfies the characteristics
of the SRM, the width of the resonance dip in P;%M was obtained from the ampli-
tude dependent spin tune alone and then compared to the width of the dip in the
actual Py, of the system. This analysis was done for a resonance at approximately

812.5GeV/c. For vertical amplitudes of 707mm mrad which is currently approxi-

mately the 4.20 emittance, Py, and v in the vicinity of this resonance are shown
in figure 2.10 (top left). It displays a momentum range of figure 2.9. The low Py,
shows that many perturbing effects interfere in this region. In units of 7mm mrad,
the vertical amplitude of the particles in the top left graph are 70, in the middle
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graphs it is 40 and 60, and in the bottom graphs 80 and 100. The horizontal scale
Ap is the distance in GeV/e¢ from the momentum at the resonance.

In the 4 bottom graphs, Py, and P2FM are plotted for different orbital ampli-
tudes, and the different resonance strengths are obtained from the jump in v(.J,) .

PSEM To allow better comparison,

Only information about v was used to compute P

the rate of change of P2 with momentum and the height of the dip were scaled
to fit the actual Py,,. The width however was not changed. The distance between
spin tune and resonance has been magnified by 10, v* = k + 10 - (k — v) in these
graphs. The tune jump is symmetric to the resonance line v = 2Q),, which shows
that a second—order resonance is excited.

The tune jump scales approximately linearly with the orbital action variable J,
as plotted in figure 2.10 (top right), which is constant with crossing a second-order
resonance. This linear scaling is not exact for two reasons: (1) When the amplitude
is so small that v(.J,) does not cross the resonance line, no jump occurs. (2) When
the amplitude is changed, the momentum at which the resonance occurs changes,
and the resonance strength is in general different at different energies. Deviations
from a linear dependence should therefore be expected. Py, is already very low
away from the resonance at v = 2@),, indicating that other strong perturbations
distort the invariant spin field and can interfere with the resonance harmonic.

Thus I conclude that the resonance width computed by the tune jump 2¢, agrees
surprisingly well with the actual drop in Py, .

Since higher—order resonances show the established and characteristic relation
between tune jump and reduction of P, , it will now be tested whether the Froissart—
Stora formula can be applied to such a case. This would be of great significance for
analyzing the acceleration of polarized beams through such higher—order resonances.

In figure 2.11 (top) Pim and v are shown for the current HERA optics with 4
Siberian Snakes in the scheme (%O%O)Sf& Py, 1s reduced at two resonances with
v = 2(),. The vertical tune had been chosen as (), = 0.2725 so that these resonances
are crossed already for the small 0.750 vertical amplitude of 2.257mm mrad. At this
small amplitude P, is reasonably large.

The spins of a set of particles were set parallel to the invariant spin field at
7ii(Z) so that all had Js = 1 at the momentum of 801GeV /c. The n—axis had been
computed by stroboscopic averaging to be described in section 4.2. Due to the rather
large Py, at that energy the initial polarization was approximately 97%. Starting
with this spin configuration, the beam was accelerated to 804GeV /c at various rates.
The average < .Js >y over the tracked particles is plotted versus acceleration rate in
figure 2.11 (bottom) together with the prediction of the Froissart—Stora formula. As
already explained, the average < Jg >y describes the degree of beam polarization
which could be recovered due to the adiabatic invariance of .Jg when moving into
an energy regime where 7i(Z2) is close to parallel to the vertical.

The resonance strength €, has been determined from the tune jump. The

%ﬁ—gdbﬂ is determined by the tune slope 2% in figure 2.11 (top

parameter o = AL
right) and is proportional to the energy increase per turn dg.
The polarization obtained by accelerating particles through the second order

resonance agrees remarkably well with the Froissart—Stora Formula. For the slow
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Figure 2.10: Top left: Py, and v in the vicinity of the resonance at approximately
812.5GeV /c. Top right: Proportionality between tune jump and orbital action .J, . Middle
and bottom: Correlation between the width of the actual drop of P}, and the predictions
of the single resonance approximation using only the amplitude dependent spin tune. The
distance between v and resonance has been magnified by 10, v* = k+10- (k — v). Vertical
amplitude of particles in HERA-p with the (5050)8 fs snake scheme in units of rmm mrad
from top left to bottom right: 70, 40, 60. 80, and 100. Ap: distance from the momentum
at resonance.

acceleration of about 50keV per turn in HERA—p, the polarization would be com-
pletely reversed on the 0.75 sigma invariant torus. This would lead to a net reduction
of beam polarization, since the spins in the center of the beam are not reversed.

This result on the applicability of equation (2.131) for the resonance strength
and a obtained from the amplitude dependent spin tune is so important for detailed
analysis of the acceleration process that it will be checked in more realistic cases.
In the next example, the HERA—p luminosity upgrade lattice was used, the tune
was adjusted to a realistic value of ), = 0.289 and a 2.50 vertical amplitude of
70mrmm mrad was chosen. At this large amplitude, the second and fifth—order res-
onances already shown in figure 2.9 are observed. Particles were then accelerated

from 812.2GeV/c to 812.6GeV/c with different acceleration rates. Note that the
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Figure 2.11: Top: Py, and v for a second—order resonance of the current HERA—p

optics with a (50%0)6fs snake scheme for ), = 0.2725 and a 0.750 vertical amplitudes
of 2.25mrmm mrad with the (50%0)6fs snake scheme. Bottom: .Js after acceleration from

801GeV/c to 804GeV /c with different acceleration rates (blue points) and the prediction

of the Froissart-Stora formula (red curve) for parameters ¢;g, and « obtained from v.



2.2. SPIN MOTION IN CIRCULAR ACCELERATORS 61

initial condition has a vertical polarization of only 60%. Nevertheless this state of
polarization corresponds to a completely polarized beam, and 100% polarization can
potentially recovered by changing the energy adiabatically into a region where 7(2)
is tightly bundled. Vertically polarized spins would rotated around 7i(z) and would
lead to a fluctuating polarization, even without a resonance and it would not be
possible to establish a Froissart—Stora formula for higher—order resonances.

As shown in figure 2.12, the polarization in this region is reduced down to 0.1
and obviously other strong effects beyond the second—order resonance are present
and overlap with it. Therefore it is again important that the particles which should
be accelerated through the resonance are initially polarized parallel to the invariant
spin field. The bottom figure shows .Jg after the acceleration; it is an impressive
confirmation of .Jg being again described very well by the Froissart—Stora formula
(2.131).

Here the parameter 7 was the slowly changing momentum. This generalized way
of using the Froissart—Stora formula can however also be used when other system
parameters change. An example can be found in section 4.3, where the particle
amplitude is changed artificially slowly in order to compute the invariant spin field
at various orbital amplitudes.

2.2.13 The Choice of Orbital Tunes

When the amplitude dependent spin tune V(j) crosses a resonance, the beam po-
larization is usually reduced. When the acceleration is slow enough to allow for the
adiabatic invariance of .Jg, the spin on the torus given by J is reversed after the
resonance, whereas it is unchanged at smaller phase space amplitudes. This can be
either because the resonance is weaker at smaller amplitudes, or because the v(.J,)
does not cross the resonance for particles in the core of the beam. Often the polar-
ization recovers, since v usually fluctuates with energy as shown in figures 2.9, 2.11,

—

and 2.12 so that v(.J) will cross the resonance for a second time and the polarization
will be flipped back.

Nevertheless, there is some reduction of polarization involved, even after two suc-
cessive resonance crossings. There are three reasons: Firstly, there are amplitudes
where the spin tune only comes into the vicinity of a resonance and then moves
away with energy before the resonance has been crossed completely; and secondly,
the resonance strength is different for different energies. Even though the spin tune
might cross the same resonance condition when returning back to % at a higher
energy, the strength of the two resonances is usually different. If the first resonance
was sufficiently strong on the torus J to reverse the sign of spins, the second reso-
nance might not be strong enough to reverse it again. Thirdly, there are amplitudes
where the resonance has intermediate strength and polarization is neither reversed
nor conserved, but reduced.

Due to these problems occurring at resonance crossings, it is important to find
suitable orbital tunes so that low order spin—orbit resonances are far away from the
operating point. In figure 2.13 (right), the plane of vertical orbit tune @, and spin
tune v is drawn. The resonance lines v = jy 4 7@, are drawn up to order 10. While
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Figure 2.12: Top: Py, and v for a second—order resonance of the luminosity upgrade op-
tics with realistic tune of (), = 0.289 and a large 4.20 vertical amplitudes of 70mmm mrad
with the (50%0)8fs snake scheme. Bottom: .Js after acceleration from 812.2GeV/c to
812.6GeV/ the with different acceleration rates (blue points) and the prediction of the
Froissart-Stora formula (red curve) for parameters €3, and « obtained from v.



2.2. SPIN MOTION IN CIRCULAR ACCELERATORS 63

Qy\

Qy ,

03 ﬂ ° 0.3
0.29 $ y °

0.28 ~L \\\\“'

0.28

0.27 o | 027 / / °

TV
AN N
RARVAN
026 027 028 029 0.3 0.3 0.4 05 0.6 0.7
Qz v

Figure 2.13: Left: the current orbit tunes (¢, = 0.294,Q, = 0.298) or (Q, = 0.298,0), =
0.294) (red) and the new orbit tunes for polarized proton operation (@, = 0.291,Q, =
0.289) or (Q, = 0.2675, @, = 0.271) (blue) in the z—y resonance diagram. All resonances
up to order 11 are shown, difference resonances are indicated in green. Right: The current
vertical tunes (red) and the new vertical tunes (blue) in the spin—orbit resonance diagram.
The odd snake resonances (black) and the even snake resonances (green) are shown up to
order 10 in the vicinity of closed—orbit spin tune vy = % For HERA—p, the resonances of
second order (fat green) and of fifth order (fat black) are most destructive.

the spin tune on the closed orbit is fixed to vy = % by Siberian Snakes the orbital
tune can be chosen to avoid resonance lines. Additionally the dynamic aperture of
proton motion should not be reduced and the tunes have to be far away from low
order orbital resonances. Figure (2.13) (left) shows the Q,—@, tune diagram with
resonance lines up to order 11. The operating point has to stay away from these
resonance lines.

The established tunes of the 1999 HERA-p operation @), = 0.294, ), = 0.298
or @, = 0.298, @, = 0.294 (red points) would be unfortunate choices due to their
vicinity to the resonance v = jo + 5Q),. For the IUCF cooler ring with only a
partial snake, second—order resonances have been observed experimentally [109]. For
HERA-p with Siberian Snakes, several simulations have shown that the resonances
of second order and of fifth order are most destructive. This is supported by figure
2.9. Therefore two new tunes (blue points) are suggested which have an optimal
distance from low order spin—orbit resonances. For the simulations of this report,
the orbit tunes for polarized proton operation where chosen to be (Q, = 0.291,Q), =
0.289). The working point (@, = 0.2675,0Q, = 0.271) would also be a good choice.

To test whether HERA-p could currently operate with these tune, (), was slowly
shifted from the current working point in the direction of the 7th order resonance
to the first choice of polarization tunes. No increase in beam collimation rates or in
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beam loss monitor rates were observed during this procedure.

Moreover, the second choice for polarization with somewhat lower tunes could
be reached. Crossing the 7th order resonance at (), ~ 0.286 did not cause any
problems. However, when crossing the 11th order resonance at @), = 0.273, the
collimation rates increased from about 250Hz to up to 14kHz. After this resonance
had been crossed, the rates fell to about 1.5kHz. Whereas the working point close
to the 7th order resonance would seem unproblematic, more work would have to be
invested in establishing good tunes in the vicinity of % .

2.2.14 Importance of the Invariant Spin Field for HERA—p

After having derived many properties and several applications of the invariant spin
field in this chapter, [ want to summarize why knowledge of the invariant spin field
is essential when analyzing polarized proton beams in HERA—p.

Firstly, when the invariant spin field is known, a much clearer simulation of spin
motion is possible than with simple spin—orbit tracking alone. Figure 2.14 shows the
average vertical polarization of 100 particle which all have different angle variables of
vertical motion but the same normalized amplitude of 47mm mrad. These particles
have been tracked through the current HERA—p lattice for 500 turns while the beam
was initially polarized 100% parallel to 7. Similar kinds of tracking results have
been presented in [110]. Since the spins of these particles are not parallel to the
invariant spin field, the averaged polarization exhibits a strong beat. This figure
also shows that when particles at a phase space coordinate Z are initially parallel to
ii(Z), the averaged polarization stays constant. Therefore, by starting simulations
with spins parallel to the fi—axis one can perform a much cleaner analysis of beam
polarization in accelerators.

After acceleration in HERA—p, the polarized beam has to be stored over several
hours during which the polarization should be invariant and high. Therefore each
particle should be polarized parallel to the invariant spin field 7(2) at its phase space
position Z. To have a high time average beam polarization, every phase space point
must have a polarization direction 7i(Z) which is almost parallel to the beam average
< n > . Figure 2.15 (top left) shows that the invariant spin field at different phase
space points can be rather parallel (leading to high polarization Py, = | < 7 > |)
and suddenly diverges at a critical energy (leading to diminished polarization), even
though only first—order effects have been considered in this figure by using linearized
spin—orbit motion described in section 3.1. The invariant spin field then becomes
parallel again at higher energies.

When particles at different phase space points in the beam are polarized in
significantly different directions, three problems occur:

1. The divergence of the polarization direction reduces the time average polar-
ization available to the particle physics experiments since Py, = | <7 > | is
the maximum time average polarization which can be stored in a ring [111].

2. The polarization involved in each collision analyzed in a detector is strongly
dependent on the phase space position of the interacting particle.
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Figure 2.14: Propagation of a beam that is initially completely polarized parallel to
g leads to a fluctuating average polarization (red). For another beam that is initially
polarized parallel to the invariant spin field @ the average polarization stays constant
(blue), in this case equal to 0.765.

3. Polarimeters which measure the polarization of particles in the tails do not
yield accurate values for the polarization of the beam.

It is clear from figure 2.15 (top left) that in HERA—p, acceptable polarization could
be obtained only over a very restricted part of the energy range even if a completely
polarized beam were delivered at high energy.

The invariant spin field is important during storage of polarized beams but also
during the acceleration cycle. When a change of the invariant spin field 7i(2) during
acceleration from an originally parallel to a divergent spin field and back to the
original 7(2) is fast enough, the spins do not react strongly. If it is slow enough, the
adiabatic invariance of Jg = S - 7ii(Z) expresses that the spins follow the changing
invariant spin field, keeping .Js nearly invariant. In both cases the beam will recover
its polarization after the critical energy region is crossed. The beam polarization is
only reduced in intermediate cases.

Strong divergence of the invariant spin field at critical energies can happen even
when Siberian Snakes are present, as shown in figure 2.15 (top right), even though
first—order resonances do not occur. In figure 2.15 (bottom), the energy dependences
of Py, with and without Siberian Snakes are overlayed, which shows that not all
resonance effects are removed by Siberian Snakes, but resonance structures remain
even with Siberian Snakes. This will be analyzed in detail in section 4.1. Siberian
Snakes smooth the variation of Py, = | < ni(Z) > | with energy. As a result 7(2)
changes more slowly during acceleration when Siberian Snakes are inserted and the
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Figure 2.15: The dependence of the maximum time average polarization Py, = | < 7 > |
on momentum for a vertical amplitude of 257mm mrad, which corresponds to 2.50 of the
beam size, after HERA—p is made effectively flat for spin motion by flattening snakes. Top
left: At numerous intrinsic resonances, Py, drops to small values. Top right: Py, after
the insertion of Siberian Snakes. Bottom: Py, with and without Siberian Snakes in a
wider region of energy. (Snake scheme (50%0)6fs). In all three graphs, Py, is shown for
the South interaction region. Qualitatively similar curves are obtained at other positions
in the ring.

spin can follow this change more easily, keeping changes of the adiabatic invariant
Jg smaller.

A small polarization can occur due to the energy changes associated with syn-
chrotron motion which can lead to a crossing of resonances. In HERA—p at 920GeV,
a lo energy spread of AE—E =1.1-107* creates an associated spread of GA~y = 0.19 .
The spin tune can therefore easily cross resonances during every synchrotron period
when no snake is installed in the ring. The disruptive effect of this periodic crossing
of resonances is shown in figure 2.16 (left) for a particle which moves on a phase space
torus with 1o longitudinal amplitude and %O‘ vertical amplitude of lmmm mrad. The
vertical spin component of a particle with this amplitude changes sign twice every
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synchrotron period, once for every crossing of the resonance Gy = 1758+ (),. When
the spin tune’s dependence on the energy deviation is eliminated, these resonance
crossings are eliminated by Siberian Snakes which make the spin tune independent
of the reference energy as well as independent of the energy oscillation within each
synchrotron period. This is shown in figure 2.16 (right) which was computed with
4 Siberian Snakes.

S3 1 S3 1
0.5 0.5
0 0
-05 -05
-1 -1
1 2 3 4 5 6 7 1 2 3 4 5 6 7
Turns (1000) Turns (1000)

Figure 2.16: The vertical spin component of one particle during 7 synchrotron periods in
HERA-p with 0.5¢ vertical amplitude (1mpm) and 1o longitudinal amplitude (187mm).
While energy of the particle oscillated due to the synchrotron motion, the reference energy
of the ring remained constant. Left: without Siberian Snakes. Right: with 4 Siberian
Snakes in the ($050)6 fs scheme.

An alternative view of the oscillating vertical spin component can be obtained
when considering the invariant spin field 7(Z) on 6 dimensional phase space. In figure
2.16, the beam is not accelerated, therefore Jg = S 7(2) is invariant and should
not even change adiabatically slowly. The changing sign of the vertical polarization
reflects a change of 7i(Z) at the particle’s phase space position from nearly upwards
to nearly downwards. This large spread over the phase space torus is reflected in
a small Py, = | < 7 > |, where the average includes the longitudinal phase space.
The installation of Siberian Snakes drastically reduces this spread, increasing P,
drastically.

Siberian Snakes are therefore necessary for three reasons:

1. They increase Fj;,,, the maximum beam polarization usable at a fixed energy.

2. They smooth the dependence of the invariant spin field on the accelerators
reference energy and therefore improve the possibility to accelerate a beam
while keeping the adiabatic invariant Jg = S - 7i(Z) nearly constant.

3. They reduce the dependence of spin transport on the energy oscillations of
synchrotron motion.

Figure 2.15 was used to show that even with only first—order effects acceptable
polarization could be obtained only over a restricted part of the energy range al-
though 4 Siberian Snakes are used in the (70%0)6 fs snake scheme. As a next step,
I therefore tried to find better choices of snake positions and snake angles.
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This search will be presented in section 4.1.3. Figure 2.17 shows the resulting

improvements for P, = | <7 > | and for the variations of v obtained when going
from the (2020)8fs to the (333X fs snake scheme of figure 2.8. Here a non—

perturbative algorithm described in section 4.1.1 was used to include higher—order
effects and to analyze improvements in the variation of the amplitude dependent
spin tune.

In the following chapters, tools for reliable computation of the invariant spin
field and for the selection of optimal snake schemes will be described. In section
3.3.2, light will be shed on the reasons which make certain snake schemes favorable.
Since special snake schemes lead to comparatively large Py, and small spin tune
spread, it is expected that the reduction of polarization during the acceleration
process is comparatively small for these schemes. In fact, tracking simulations will
show that the snake schemes which T have found allow the acceleration of a beam
with significantly larger emittance that standard snake schemes.
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Figure 2.17: The maximum time average polarization Py, for 2.5¢ vertical motion
(257mm mrad) in HERA-p with a conventional snake scheme (5050)8fs (left) and an

optimized scheme (%%%%)8]‘5 (right). The amplitude dependent but orbital phase

independent spin tune v is shown for (£020)8fs (middle) and for (323232 Z)8 fs (bottom).

From top to bottom, the following resonance lines are drawn, Middle: 1 — @Q,, 3 — 8@,
5 —15Qy, 16Q0, — 4, 2Q), and Bottom: v =16Q, —4, v =9Q, —2, v =2 -5, v = 2Q),.
From tune jumps at these higher—order resonances, their strength can be deduced.



Chapter 3

First—Order Spin Motion

3.1 Linearized Spin—Orbit Motion

At azimuth 6, a spin can be described by a complex coordinate o with

S = Re{a}m(0) + Im{a}(0) + /1 — |o|27(6) |, (3.1)

where the right handed orthonormal dreibein [m, l_: fo] is used which was introduced

in section 2.2.2 [63, 64]. The coordinate vectors m and fsatisfy the equation of
motion

d = = . L.z
7 —(m +1il) = (Qo — vomo) X (M +1il) . (3.2)

The spin of a particle which travels on the closed orbit precesses around Qo and has
rotated 1y times around iy after one turn. According to equation (3.2), m and [ also
precess around ﬁo, but in addition a precession around 7ig is subtracted, leaving no
net rotation after one turn. Therefore, the dreibein [m, l_; fo| is 27 periodic in 6.
When the spin coordinate a and the phase space coordinates 2" are small so that
the equation of spin—orbit motion can be linearized, then one approximates an initial
spin of a particle at azimuth 6y by S R Re{az}m(ﬁo) +Im{a; }1(90) —I—no(QO) and after
the particle has traveled to azimuth 6, one has S = Re{a}m(0) + Im{a}l( )+ 7i0(0)

where « is determined by the 7 x 7 spinforbit transport matrix,

(i) = M+(60; 0) ( N ) _ ( éMT&;;@e)) e%g_%) ) ( ; ) L (33)

where M(6y;0) is the 6 x 6 dimensional transport matrix for the phase space vari-
ables. For a particle on the closed orbit, the exponential describes the rotation of
the spin component a around 77y with respect to i and [. This rotation appears in
equatlon (3.3) since spms precess around Qo for Z = 0, while the coordinate vectors
 and [ rotate around QO — 1piig . The complex row vector GT (00;0) describes
additional spin motion with respect to m and [ due to off closed—orbit fields. The 6
dimensional zero vector 0 shows that the effect of Stern Gerlach forces on the orbit
motion is not considered.

70
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The linearized spin—orbit transport through two successive optical elements is
described by the product of their 7 x 7 matrices. These matrices were derived
long ago [12, 63, 5] for all standard optical elements and were initially used for the
description of polarized electron beams.

Alternatively, the spin transport can be described by a spin transport quaternion
as discussed in section 2.1.5. When linearizing with respect to phase space variables,
indicated by =1, a spin transport quaternion C = C°+ 61(5) is separated into the
quaternion for closed orbit motion €% and a contribution C! which is linear in
the phase space variables. The spin—orbit transport through two successive optical
elements is described by the action of first the quaternion A associated with the
first element and then the quaternion B of the second element. The quaternion c
describing the combined rotation is computed using the orthogonal 4 x 4 matrix A
as described in equation (2.34),

C‘Y’OZANOBE’(J’ 61:ANOEI+ANIEO. (3.4)

The spin transfer quaternion of an optical element does not depend on the basis
vectors [m, f, o] and is therefore the same for two identical optical elements which
are at different locations of the ring. The 7 x 7 matrix of individual optical elements
does not have this advantage. Furthermore, a generalization to quaternions which
depend nonlinearly on the phase space coordinates is straight forward (see section
4.1.4). Therefore, the quaternion method is used in the program SPRINT [112, 100]
to describe spin transport.

The spin transport quaternion can be written as the concatenation of first the
closed orbit spin transport described by (% and then a purely phase space dependent
spin transport which does not change the spin of particles on the closed orbit. With
the quaternion € = (1,0,0,0)7 describing the identity transformation and with a
quaternion D! which vanishes for particles on the closed orbit, the purely phase
space dependent spin transport is described by €; + 51,

0

@&+ DY, Dt=c"cr. (3.5)

(O

C =

Advantage has here been taken of the fact that the 4 x 4 dimensional matrix QO
is orthogonal, as has been pointed out after equation (2.34), and thus inverted by
transposition. The 3 x 3 spin rotation matrix on the closed orbit is written as R°
and the rotation matrix corresponding to the concatenated quaternion in equation
(3.5) is the product RPR® . Equation (2.30) relates the quaternion & + D! with
D! = (d}, JI)T with the rotation matrix RP, which to first order, becomes

RD = [(14+d5)? — (44?85 4 2d}d} —2(1 + db)eijudh =1 (1+2d8)6;; — 2ei50dl . (3.6)

By the total spin rotation R” R, the initial spin S, = fio(fp) is first transported to
iio(0) = R°7o(fy) and then to

St = (1+42d})70(0) +2d " x fig(0) . (3.7)
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When a spin with S, =i is transported by the 7 x 7 spin—orbit transport matrix,

—

then ay = S_"f - [m(8) +11(0)] is given by G - Z which now equates to
G- Z=2[d" x (0)] - [m(0) +il(0)] = —i2d * - [m(8) + il(6)] . (3.8)

This illustrates how the spin—orbit transport matrix M., can easily be computed
when its spin transfer quaternion is known.

3.1.1 The Invariant Spin Field for Linearized Spin—Orbit
Motion

Although it is difficult to compute 77 in general, an approximation for 77 can easily be
obtained [64, 87, 7] for linearized spin—orbit motion on a Poincaré section at azimuth
fo. Tts components perpendicular to 7ig(fp) are written as a complex function n,(2)
and use a 7 dimensional vector 7i; to obtain the first—order expansion of 7i(2). Using
the one turn matrix M, ; = M7y7(6o; 6o + 27), the linearized periodicity condition
(2.79) for the invariant spin field is

ni(2) = (aj_')) , (MZ2)= M1 (2) . (3.9)

z

This equation can be solved for 7i; after the matrices are diagonalized. Let A7! be
the column matrix of eigenvectors i of the one turn matrix M. The eigenvalues
are e*2™@k with the orbital tunes Q5. The matrix A = A M A™' is the diagonal
matrix of these eigenvalues. Now the 7 x 6 dimensional matrix 7" is needed which
is the column matrix of the first 6 eigenvectors of M., and has the form

A—l
T = (_B*T) . TA=MT, (3.10)

where the 7th components of the eigenvectors form a vector B. If a linear function
i1(Z) = KZ of the phase space coordinates can be found which satisfies the peri-
odicity condition (3.9), then an invariant spin field has been determined. Since the
upper 6 components of 771 (2) are Z, the upper 6 rows of K form the identity matrix
lg. Inserting i; = KZ into equation (3.9) and multiplying the resulting condition
K M = M..K by A™! from the right leads to K A™'A = M..K A™' . Therefore
the columns of K A™" are eigenvectors of M., and are therefore proportional to
the columns of T . The upper 6 rows 1,A™" agree with those of T; this requires
the 6 proportionality constants to be 1. Therefore K A™' = T and T conclude that
there exists a unique linear invariant spin field given by

i (2) =T AZ, a,=B-(A7). (3.11)

Now the steps which lead to the amplitude dependent spin tune for a general
system in section 2.2.7 are repeated for linearized spin—orbit motion. Together
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with 7(2) =1 Re{a,}m + Im{o, } + 7o, the following two basis vectors build an
orthonormal dreibein in linear approximation at fy:

71(2) =1 m — Re{an }iio , ia(2) =1 [ — Im{a,}7, . (3.12)

A spin S_Y; =1 Re{a;}m + Im{ai}l_‘—l— Mg is transported to gf =1 Re{G + ™ q; }m +

Im{G + e2mvo ai}l_’—l— no after one turn, where
ﬁl(Mg) =1 7’?L — RG{G—|— eiQWDOOén}ﬁO 5 ﬁQ(ME) =1 f— Im{G—I— eiQWDOOén}ﬁO . (313)

At the initial phase space point this leads to the projections §Z (tr(Z) +iua(Z)) =1

o; — o, and after one turn to gf-(ﬁl(gf)+iﬁ2(5f)) =, €™ (a;—a,) . The amplitude

dependent spin tune v in linearized spin—orbit motion is therefore simply given by
g .
The eigenvector condition

M, Bki =e Bki (3.14)

leads to G- o + €2™0 B = 272 B Therefore a,, diverges at first-order intrinsic
resonances where vy = jg £ Qi due to

Bif = G - 0F(e*2 — 2o (3.15)

In the normal form space belonging to the diagonal matrix A, the coordinates
are given by the actions .J; and the angle variables ®; with

A7 — (\/jleﬁbl’\/716—@17\/726@2’\/Ee—i®2’\/73€i®3’\/j3€—i‘1>3)T ' (3.16)

The average over all angle variables on an invariant torus is described by < ... >3.
It leads to the average opening angle of

3
< I(n, 1) >g~ atan(y/< |a,|? >z) = atan (\l (B + |B,:|2)Jk) . (3.17)

k=1

where the B are the 7th components of the eigenvectors in equation (3.10). The
maximum time average polarization is approximately

3
Piim =< cos(d(,70)) >z~ [14+ D _(|BF > + By |*)Jx] "2 . (3.18)
k=1
These approximations for 7i(Z), < ¢ >, and Py, can only be accurate if |a,| is small.

In a ring with midplane symmetry, the one turn spin—orbit matrix M, . has
a block structure with 2 x 2 matrix blocks and 2 dimensional zero and non-zero

vectors,
£ 0 = 0
0+ 00
My = « 0 £ 0 (3.19)
07 ¥ 07
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The 6 x 6 dimensional phase space transport matrix has a chequer—board structure,
since there is no coupling between vertical motion and the other two degrees of
freedom in a midplane-symmetric ring; and @ has only contributions from vertical
motion since a spin with S’; = 7lo (o = 0) is not deflected out of the vertical unless
the particle flies through horizontal magnetic field components, which only happens
for particles with a vertical oscillation amplitude. The opening angle < ¥ > and
Py, then only depend on the vertical action .J,,.

3.1.2 Spin—Orbit—Coupling Integrals

Instead of computing the one turn matrix M77 as the product of spin—orbit trans-
port matrices of individual elements or by concatenation of their spin transport
quaternions, one can also solve the linearized equation of motion for a directly. To
obtain simplified formulas, now the dreibein [, l_(‘), 7o) is used which was introduced
in section 2.2.2. The vectors 1Mo and [y are perpendicular to 1ig, precess according
to the T-BMT equation on the closed orbit, and are therefore related to m and fby
a rotation around 7y with m + il = ei”o(e_go)(ﬁ’m + z'l_g)), which was already derived
in equation (2.48). Here it is assumed that the two dreibeins coincide at azimuth 0.
Whereas the dreibein [m, l_: Mo| constitutes a coordinate system which is 27 periodic
in 6, [ﬁzo,l—é,ﬁo] does not.

The precession vector for spins can be separated into a part for particles on the
closed orbit and a part due to phase space amplitudes, Q(E,@) = 60(9) + &(Z,0).
The spin direction and the phase space dependent part & of the precession vector
will be written in complex notation in the dreibein [y, Z), o] as

S = Re{aohiio + Im{ao}o + fioy/1 + |aol? (3.20)
& = Ref{wo}ro + Im{wo o + fows - (3.21)

The first equation differs from the equations (2.113) and (3.1) since aq refers to mg

and [y whereas a referred to m and [ . Inserting this into the T-BMT equation
(2.24), one obtains

— = d e d = d bad = d — -
OxS= @S = Re{@ao}mo + Im{@ao}lo + TLO@\/l — |Oéo|2 + QO xS . (322)
This leads to a differential equation for ag,
d pcd - pd -
= u_j . [iaoﬁo + \/1 — |Oé0|2 (Z_E) — Z?’Tlo)] = —Z.(UO\/l — |Oéo|2 + iaowg .
Linearization with respect to 2 and ag leads to %ao = —iw}, where the su-
perscript signals the first-order expansion of w(Z,6) with respect to z. Since a =
aoeiyo(e_ao), and since o; = 0 at azimuth 6, is transported to oy = G - Z; after one

turn, one now obtains

G-z = —i¥™ /6”2# wy(Z(0),0)do (3.24)
[ 0 ’ ’ .
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where the trajectory Z(0) has started with Z; at azimuth 6.

In flat rings it is advantageous to use the comoving dreibein [€,, €3, €,] introduced
in section (2.1.2) with €, vertical and with € parallel to the closed orbit. In such
a ring, 7o and Qo = Qoe, are vertical, and for a particle on the closed orbit, a
spin has rotated by the angle ¥ = fgeo Qodf between azimuth 6y and . Therefore
mo + il_(‘) = e‘”’(é’f +1€,) and W} = e"”’(w; + 1wp) -

In a midplane-symmetric ring, there are no skew elements or solenoids and
horizontal components of & only occur when a particle oscillates vertically around
the closed orbit. When linearizing in Z, these components are produced by the
quadrupole focussing strength k& (k > 0 for a horizontally focussing effect). The
spin rotations in these fields are (G 4 1) larger than the orbit deflections created
by the quadrupoles, and one obtains widfd = (G~ + 1)e™"Vykdl , where L is the
circumference of the ring and [ = L% is the path—length of the design trajectory.
In terms of the vertical betatron function 3, and the betatron phase ®,, one has

y = /2J,8,co8(®, + ®,;). This has lead to the definition of the one turn spin-
orbit—coupling integrals [3, 4, 113]

. 1 lo+L i(—
I = —i(Gy + 1)7§f[§0 -V, 3 Ll (3.25)

where W(6y) = 0 and the initial betatron phase is ®,(6y) = 0. When the initial phase
space coordinate Z; has the vertical phase ®,;, and the Courant-Snyder invariant [54]
2.Jy, equation (3.24) leads to

—

G- Z =™ (If e 4+ I7e ") [, . (3.26)

With z; = \/Jiy(ﬁ';e@yi—l—ﬁg e~'®v) one obtains G-TF = ¢'2mvo [j. Spin—orbit—coupling
integrals are therefore useful for analyzing linear spin—orbit motion in the case of a
midplane-symmetric ring. They will be used in section 3.3.2 for the optimization of
Siberian Snake arrangements.

In a general setting, where &'(Z(),0) not only has radial components, gener-
alized spin-orbit—coupling integrals at 6, are defined as [ = e~ 2o . vE . This
brings them into close relation with the components BE of the 7i—axis, which can
be written as

3 ; _ [:I:
a, = kz_:l VI(BFe®™ + Bpem®) | Bf = T (3.27)

So far eigenvectors of the one turn matrix have only been used at the initial
azimuth fy. Now the eigenvectors 7 (f) of the one turn matrix at 0 are needed
which lead to the trajectory z(f) for a particle which started with the initial phase

variables ®; at azimuth 0,

3
2(0) = 32 T[T (0) QO ()i (Q0—t)+ )] (3.28)
k=1



76 CHAPTER 3. FIRST-ORDER SPIN MOTION

By inserting this into equation (3.24) and taking advantage of the linearity of wy,
one obtains

. o fo+2m o .
If = e 2™G . §F = —z'/ SHTE(0),0) - (m 4 il)e'Emm) =) gg  (3.29)
o

It has been suggested ad hoc in [78, 114] that |IF]? + |15 |? be used as a qual-
ity factor for polarized proton synchrotrons. Due to the central importance of
the invariant spin field for the acceleration process and for storage of polarized

beams, it now becomes clear that the quality factor should in general rather be

3 171 |IE 12
2kt [ Trian o) + S0 intrinsic resonances where £Q = vo
integer for some k, the opening angle of the n—axis diverges in linearized spin—orbit
motion.

| . Close to intrinsic resonances where +Q — vyg is

3.1.3 Restrictions of Linearized Spin—Orbit Motion

The approximation of linearized spin—orbit motion is no longer justified when P,
is not close to 1, which happens close to intrinsic resonances in the figures 3.1.
Linearized spin—orbit motion can be applied even when the resonances are not well
separated, but when computing the average polarization of a polarized beam, |a,|
must be small enough to justify the underlying approximation. If |a,| < 0.5 is
accepted, the average polarization computed with linearized spin—orbit motion is
only trustworthy as long as it is above about 87%.

Figure 3.1 shows for DESY III (top) and for PETRA (bottom), that at most
energies spin dynamics can be described well by linearized spin—orbit motion.

For the luminosity upgrade optics of HERA—p with non—flat regions as they
are today, figure 3.2 (top) shows that linearized spin—orbit motion leads to a Py,
which deviates strongly from 1 over a wide range of energies, so that linearization
in « cannot be applied. When the flattening snakes are introduced as described in
section 2.2.4, Py, increases somewhat and a regular resonance structure can clearly
be seen (bottom). Nevertheless, linearization cannot be accurate over a large range
of energies.

The decreased Py, at intrinsic resonances shows that Siberian Snakes have to be
used to make the closed—orbit spin tune independent of energy, so that no first—order
intrinsic resonances have to be crossed.

3.2 First—Order Resonance Spectrum

3.2.1 The Resonance Spectrum

The spin dynamics close to intrinsic resonances can be analyzed by Fourier expand-
ing the field components &(z, #) which perturb the spin of a particle that oscillates
around the closed orbit. For spins parallel to the rotation vector on the closed orbit
7io(0), only the components of &(Z,6) which are perpendicular to 7y perturb the
polarization.
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Figure 3.1: Py, as approximated by linearized spin—orbit motion for DESY III (top)
and for the high energy end of PETRA (bottom). The dips have been cut in order to
magnify the interesting region where |a,| is small.

As described in section 2.2.10, a depolarizing resonance occurs when a Fourier
component of &(Z(8),0) rotates with the same frequency around rig as the spins so
that there is a strong perturbation. In the 27 periodic coordinate system constituted
by [, l_: 70|, the Fourier component of w = J)’(ﬁl—l—lf) for the frequency & is computed
by

27N

. : 1 > —ikf
= ]\P_I)%O m/o w(Z(0),0)e™""do . (3.30)
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Figure 3.2: Py, as approximated by linearized spin-orbit motion for high energies in
HERA-p with non—flat regions as they are today (top) and after the installation of flat-
tening snakes (bottom)

A warning is needed. The picture of perturbing effects suggests that the beam
is slowly depolarized after it has been injected with 100% polarization. In fact the
spins get deflected from their initial polarization direction 7y during one turn, only
because the ni—axis 7i(Z) is tilted away from the closed orbit spin direction 7. If
an ensemble of the spins had started parallel to their invariant spin field, no net
deflection due to the perturbing fields would have occurred and no reduction of
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polarization would be noticed after one turn. However, since 1i(2) is tilted away
from iy, the average polarization Py, = | < ©(Z) > | for such an initial distribution
is smaller than 1 to start with.

For each energy of the particle, there is in general a different Fourier spectrum of
w. Since at each energy the most important frequencies k are those which are close
to resonance with v, it is customary to compute €,z = [&, ()|, which is called
the resonance strength, for all energies of the acceleration cycle. Obviously, ¢,,(g) is
zero, except when a Fourier frequency of w(Z(6),0) at energy F is equal to vo(F).
The resulting line spectrum of over F is called the depolarizing resonance spectrum
of an accelerator.

For the three proton synchrotrons at DESY, these resonance strengths ¢,, are
shown in the top figures 3.3, 3.4, and 3.5. They were all computed for an oscillation
amplitude of Z(6) corresponding to the 2.50 vertical emittance of 25mmm mrad.

It is possible to recover the first—order isolated resonance strength from the one
turn spin—orbit transport matrix. For a spin which was initially parallel to 7,
equation (3.23) yields

a - . -
ao(8) ~ —i/o wodf | wo =3 - (o + ily) = =% - (17 + il) . (3.31)

Comparing with equation (3.30), one can express the resonance strength by ¢, =
limpy o ﬁao(QwN) . The resonance strength can therefore be computed from
#Mé\; for large N. The computation becomes very efficient if one uses MZY =
(MN)? iteratively.

The coordinate vectors mig(27) and fg(ZW) to which ag(27) refers have rotated by
2wy, whereas the final spin coordinate oy computed by M refers to the coordinate
vectors m(0) and fO(O). Therefore ag(2nN) = afexp(—i2nNvg). The resonance
strength ¢€,, can most easily be computed when the powers of the one turn matrix are
evaluated in diagonal form using the diagonal matrix A with the elements e*27@x,
For ease of notation, C?k is used with QQk_l = @ and ng = —Q,

N —
- . 1 1 —iN2mug M 0 z
Go = I Seo@rN) =i SR O G ) (o)
- 1 Nt (N_jo1) ~7 ,
_ <1 —tN2myg (N—7—1)2m1g —1 A7 =
= z]\lgréoe 9N EZ [e G" AN AZ
LS oni@ew)
_ —227r1/0 G A= A o 1 1215 (Qr—vo 3.32
; 1A AkmZ2 1 S Om N ]Z:;J € ( )

where one has to sum over equal indices [, and m. This formula shows that the
resonance strength is always zero, except at a resonance condition vy = k = jo £ Q.
At such a closed—orbit spin tune, the resonance strength is given by

ome, = |GTA diag(0...1...0)AZ] = |GTAT(0...\/Je..0)]

— |G FEN T = [TE I (3.33)
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and &,, = €,,¢?"*®=»)  The 1 in the diagonal matrix is in position 2k — 1 for

vg = Jo + @k and at position 2k for vy = j9 — Q) . Here A_l(O...\/J_kei@k...O)T
is the initial value for a phase space trajectory which has only Fourier components
with frequencies +@Q);, plus integers and the eigenvector ’E}f of M has been used. The
infinite Fourier integral in equation (3.30) has been reduced to the scalar product
between the bottom row vector of M., and an eigenvector of M which happens to
equal the absolute value of the spin—orbit—coupling integral in equation (3.27). This
very simple formula is used in the program SPRINT [112, 100].

After the first—order resonance strength for a frequency s has been computed,
one can investigate the influence of only the one corresponding Fourier contribution
of w to the spin motion. The resulting single resonance model (SRM) has been
described in section 2.2.10.

3.2.2 Limitations of the SRM

Approximating the spin motion by the SRM is only accurate if the resonances are
well separated so that one Fourier harmonic of w dominates the dynamics. When
a ring is not flat and has no exact super—periodicity, the first-order resonances
appear when the spin tune comes close to jo + @, where the tunes @)y of all three
degrees of motion can appear. HERA-p is not flat, but after the installation of
flattening snakes, the first—order spin motion is very similar to that of a flat ring,
where only resonances due to vertical motion appear. With a vertical orbit tune
of approximately % in HERA—p, the variation of 14 between resonances is % or %
The resonance strength is related to the width of the resonance as shown in section

2.2.10; and to justify a single resonance approach, the resonance strength of two
1
3
In linearized spin—orbit motion, the opening angle of the invariant spin field is

neighboring resonances should therefore be significantly less than

approximately given by equation (3.17). In figure 3.3 the peaks in the resonance
strength (top) are located exactly at the peaks of the big opening angles com-
puted with the linearized approach (bottom); furthermore the widths of the peaks
in opening angle are correlated with the resonance strengths. The resonances are
well separated and in DESY III, first—order theories for analyzing polarization dy-
namics along with classical means of controlling depolarizing effects [22] are therefore
applicable.

The corresponding figure for PETRA shows again that large opening angles of
linearized spin—orbit motion are correlated with large resonance strength. However,
the first-order resonances are getting so close at the high energy end of 39GeV
that several pairs of resonances are close to overlapping. It has been observed
experimentally [115] that Siberian Snakes can stabilize spin motion in the presence
of overlapping resonances. The resonance strengths are still far away from PETRA’s
fractional vertical tune of about 0.2 and therefore also in this energy regime classical
means of controlling depolarizing first-order resonances can be applied.

In HERA—p the situation changes even with flattening snakes as shown in figure
3.5. The first resonance which is stronger than % for a normalized vertical amplitude
of 25mmm mrad appears at about 150GeV /c and resonances start to overlap. Since
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Figure 3.3: Resonance strength (top) and opening angles of linearized spin—orbit motion
(bottom) for particles with a normalized vertical amplitude of 257mm mrad in DESY III.
The number of resonances is very low due to a super—periodicity 8.

there are over 3000 first—order resonances on the ramp of HERA—p from 39 to
920GeV /c, this effect can only be seen when looking at a smaller energy range as in
figure 3.5. The resonances are strongly overlapping and the average opening angles
of the invariant spin field are so big that linearized spin—orbit motion and the SRM
for first-order resonances are not trustworthy anymore. Therefore methods which
include higher—order spin effects have to be applied.

The average polarization computed with either of these two models, linearized
spin—orbit motion or the single resonance model with first order resonances, is in
any case only accurate if there are only effects which are dominated by first-order
resonances. Effects which are not related to first-order resonances cannot be sim-
ulated by a first—order resonance strength or by linearized spin—orbit motion and
therefore the first-order theories cannot be used to decide whether non—first-order
effects are small or not. In general, therefore, a higher—order extension is needed to
decide about the validity of the first-order theories.
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Figure 3.4: Resonance strength (top) and opening angles of linearized spin—orbit motion
(bottom) for particles with normalized vertical amplitude of 257mm mrad in PETRA.

3.2.3 First—Order Resonances in HERA—p

While the general approach described in section 3.2.1 can be applied to flat as well
as to non—flat rings, but usually the single resonance model is used for midplane—
symmetric rings, which have a vertical 1. There the resonance strength ¢,, =
%Kﬁ - U] in equation (3.33) is only nonzero for the vertical degree of freedom
due to the block structure described in equation (3.19). This reflects the fact that
particles which stay in the midplane do not traverse horizontal fields and their spins
are not deflected away from the vertical 7.

HERA-—p is not midplane-symmetric. Its design trajectory does not even lie
in a plane, due to the non—flat regions required to bend the proton beam to the
level of the electron beam. This was already described in section 2.2.4, together
with flattening snakes which are inserted at the center of each non—flat region to
make the spin motion effectively that of a flat ring by forcing iy to be vertical
outside the non-flat regions. Nevertheless, 7y is non—vertical inside these regions
and the spin—orbit—coupling integrals for horizontal and longitudinal motion are not
identically zero so that more resonances occur in HERA—p than in other rings. Since
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Figure 3.5: Resonance strength (top) and opening angles of linearized spin—orbit motion
(bottom) for particles with normalized vertical amplitude of 257mm mrad in HERA-p.

the vertical motion leads to the dominant perturbations of spin dynamics, first the
resonances of this degree of freedom will be considered.

A flat circular accelerator with a super—periodicity P; has a betatron phase
advance (including the integer part) of %Qk and a spin phase advance of P%G’y for

each super—period. A resonance occurs whenever the non—integer part %Qk — [%Qk]
has a resonance condition with P%G’y: P%G’y = joi(%sé?k—[%s@k]), or Gy = P,ntQy
for some integers jo and n. The number of resonances is therefore reduced by a factor
P.

HERA—p has no exact super—periodicity and therefore all resonance Gy = n+ Q)
can occur. There is only a very approximate super—periodicity 4, since the 4 arcs are
identical. It is reasonable to make HERA—p as close to super—periodic as possible.
Inserting flattening snakes in the non—flat regions South, East, and North is a step
in this direction, since this makes the regions more similar to the flat West section.
This lattice with 6 flattening snakes will be referred to as the 6fs snake scheme.

In this scheme, however, the spin rotation across the West quadrant is larger
than the rotation across the other quadrants. The non—flat regions produce two
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spin rotation angles W}, as shown in figure 2.5. The two non—flat regions around the
interaction points, taken together, do not produce any net spin rotation, since they
are compensated by the flattening snakes as derived in section 2.2.4. While spins
rotate by 7G'y across the West quadrant, they only rotate by 7Gv — 4}, across the
other three quadrants. This violation of periodicity can be compensated by using
two more flattening snakes in appropriate regions around the West interaction point.
These two flattening snakes do not compensate a vertical bend, they simply reduce
the spin rotation. This choice of 8 flattening snakes is referred to as snake scheme
8fs.

In figure 3.6 (top), the resonance strength ¢,, for v = jo + @), are drawn for the
6fs scheme. The middle figure describes the resonance strength of HERA—p from
40 to 1000GeV/c for the 8fs scheme. While the strongest resonances are somewhat
smaller in the 6fs scheme, there are more of these very strong resonances clustering
together around critical energies, leading to more overlapping strong resonances.

In a completely four—fold symmetric model of HERA—p, where the south quad-
rant has been repeated 4 times, such a clustering of resonances does not appear, as
shown in figure 3.6 (bottom). Each of the very strong resonances consists of only
one line. So there is no interference of several very strong resonance effects. The
red points show the sum of the resonances in the 6fs scheme which are very close to
the critical energy. This sum is smaller in the 8fs scheme (blue points) since there
is some remnant periodicity recovered by the addition of the two Siberian Snakes in
the West.

The very strong resonances which appear in all three figures at about 34 critical
energies are most destructive for the acceleration of polarized proton beams. It is
therefore important to understand how these very strong resonances are produced.
To obtain a clearer picture of the structure of these resonances, the resonance spec-
trum is separated into two spectra in figure 3.7. Both, those corresponding to a
frequency kK = vy = jo + @, (left) and those to k = vy = jo — @, (right) have a
regular structure of equally spaced very strong and medium strength resonances.
In both graphs, the distance between two such resonances is 58.01GeV/c. A bend
of 60.42mrad produces one complete extra spin rotation for every 58.01GeV/c in-
crease in momentum. Since the bend angle of one of the HERA—p FODO cells is
60.42mrad, this indicates that the strong resonances are due to the constructive
interference of spin perturbations in every FODO cell. Such an interference is seen
in every circular accelerator built from identical elementary cells [59].

The mechanism leading to these very strong resonances is most easily derived
from the spin—orbit—coupling integral, ]yi x [ @ei(_WiQy)kdl. The arc in HERA—p
is a regular structure of identical FODO cells of alternating focusing and defocusing
quadrupoles QX and QY. In between these quadrupoles there are bends ¢p =
30.21mrad with weak quadrupole windings for adjusting the tunes. The relative
spin phase advance over one FODO cell is GyA, with A, = 2;% and the relative
orbit phase advance (phase/27) in a HERA—p FODO cellis about A = 1 . Whenever
the phase advance —GyA. £+ A in the spin—orbit—coupling integrals [j in a FODO
cell is an integer, the perturbation of spin motion in each FODO cell directly adds
to that of the previous one.
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Figure 3.6: Top: The (red) line spectrum of resonances for HERA-p with 6 flattening
snakes, one for each non-flat region. Middle: The (blue) line spectrum of resonances
for HERA-p when symmetrized by 8 flattening snakes (8fs scheme). Bottom: A model
of HERA—p with super—periodicity 4 has only well separated very strong resonances at
critical energies, whereas for realistic models several overlapping strong resonances cluster
at these energies. The points show the sum of the resonance strengths which are not well
separated for two such models: This sum is larger (red) for the 6fs scheme than for 8fs

(blue).
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Figure 3.7: The resonance strength ¢,, for a HERA-p model with super—periodicity 4
for vy = jo + Qy (left) and for vy = jo — @, (right). The numbers N,qq + A indicate the
spin phase advance in one FODO cell which leads to a very strong resonance.

There are therefore strong resonances due to a large coupling integral I around
N+A
GA.

energy with v = % . The FODO phase advance is not exactly 7 for the current
HERA-p lattice but a A of 0.243 produces exactly the position of the observed very
strong and medium strength resonances.

This however does not explain why these resonances come in alternating pairs of
stronger and weaker resonances. This effect is due to an alternation of constructive
and destructive interference of spin perturbations in the focusing and the defocusing
quadrupoles. Given a relative vertical phase advance of A; from QY to QX. The

every energy with v = and due to a large coupling integral /= around every

spin perturbation in the QY magnet is counteracted by that in the QX magnet when
the phase advance —%GVAC + Ay of the spin—orbit—coupling integral [yi between
these quadrupoles is an integer. This leads to a pair of weaker resonances. But
at the other critical energies, where —GyA. + A is approximately an odd integer,
the spin perturbations of the QX and QY add to each other, leading to a pair
of stronger resonances. When the FODO cell is symmetric, so that A = 2A4, a
cancelation occurs whenever —GyA, + A = 2N. However, the HERA—-p FODO
cell is not completely symmetric, due to a slight geometric asymmetry and due to
two additional small quadrupoles of unequal strength for tune control. But the
approximate symmetry is sufficient to cause the observed alternation between very
strong and medium strength resonances. At each of the very strong resonances, the
relative spin phase advance per FODO cell is therefore

—G"}/Ac = Nodd :|: A (334)

for odd integers N,44. These values are indicated at each of the resonances associated
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with IF (left) and [ (right) in figure 3.7.

When operating HERA—p with polarized beams, one should choose an energy in
between two medium strength resonances to limit the influence of the very strong
resonances during the many hours of storage time. A good momentum in that
respect would be 870GeV /¢, where spins rotate 16 times in each FODO and the
energy is just between the medium strength resonances at GyA. =16 + A.

Resonances due to vertical motion can only occur at energies where 1y + @), is
an integer. At these energies, the resonance condition for each FODO cell will in
general not be satisfied exactly, but the resonances with —GyA,+ A & N,4q will be
very strong. In the model with super—periodicity 4, the resonance strengths were
shown as lines in figure 3.6 and only one resonance is very strong at each critical
energy. Here the distance to the next resonance which is allowed by symmetry is
4 times larger than the distance in a ring without super—periodicity. This explains
why several very strong and overlapping resonances cluster at critical energies in a
realistic model of HERA-p.

As has been shown in figure 3.6, the number of these overlapping resonances
can be reduced by adding two flattening snakes in the West. The advantage of
symmetrizing HERA—p by these additional magnets is also apparent in the resonance
effects which appear due to radial motion with the tune @), and due to longitudinal
motion with the tune @, .

Figure 3.8 displays a point for every resonance vy = jo = (), . The left figure
for the 8fs scheme shows a much clearer structure than the resonances for the 6fs
scheme. The average strength of the resonances are however similar.

The overall structure of these resonances can easily be explained. When the
coordinate system [, l_é),ﬁo] coincides with [€;, €3, €,] just before the BV magnet,
which bends the beam downwards by ¢y = 5.74mrad as shown in figure 2.5, then
mo = €, and l_é) = €pcos ¥, — €, sin ¥, just behind the magnet, with ¥, = Gv¢py.
Subsequently these vectors rotate around the vertical in the horizontal bends of the
non—flat region. These rotations leave mg - €, = 0 and l_é) - €, = —sin ¥, unchanged.

Particles which oscillate horizontally around the closed orbit experience a vertical
spin precession vector @ with &- (ﬁ”LO—I—il_E)) = —iw, sin ¥, . The horizontal spin—orbit—
coupling integral over the non—flat regions is therefore If = —isin U, ( f; w, (¢7)df —
Jyw, (07)d0) , where the first integral runs over the first half of the region, until
the flattening snake rotates Iy and leads to a subtraction of the second integral.
Using the eigenvector 5 (#) in this integral leads to I according to equation (3.29).
Note that the spin phase advance W, is outside the integral here, and that therefore
IT = (IH)* since o7 = (v7)".

Note that the integral has a very simple energy dependence. The integrand w,

is proportional to \?J_y where the numerator comes from the equivalent term in the

BMT equation and the denominator reflects the adiabatic reduction of the emittance
with energy. For high energies, one is therefore left with a contribution to the spin—
orbit—coupling integrals which is proportional to sin(Gy¢pv)\/y . The absolute
value of this function is plotted in figure 3.8 (red) and is exactly proportional to
the curves of the resonance strength. This graph shows that all resonance strengths
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€, With vy = jo £ @, fall onto 4 curves which all have this variation with energy.
This effect is due to 4 different ways in which the spin perturbations of the non-flat
regions can add to each other as I now explain.

Let the contributions to the horizontal spin—orbit—coupling integrals I;” over the
South, Fast, and North be denoted by I, I, and I3 . The resonance strength at
Vo = jJo + @, is then given by

VT

0 27

with ¢sp = —Vsg 4+ @55 and Yy = —VEy + PuEN .

While the horizontal orbital phase advances ®,sg from the South to the East
and ®,gxn from the East to the North non—flat region do not depend on energy, the
corresponding spin phase advances do have energy dependent values. In the non—
symmetrized HERA—p ring with 6 flattening snakes (6fs scheme), the spin coupling

I}, I =TI + serf 4 Wsetien) [+ (3.35)

integral is therefore the sum of the three contributions with quite arbitrary phase
factors, leading to a spread of resonance strength in figure 3.8 (right).

When the 8fsscheme is used to symmetrized HERA—p however, the phase factors
are not arbitrary but the spin phase advances between the straight sections must
be a quarter of the total spin phase advance, ¥sp = Tro = T(jo + Q) . With
£ = Pusp — 5Qp and & = Opsp + Pupy — @, this leads to exactly 4 possible

combinations of phases in equation (3.35) depending on the non—integer part of jzo:

e¥sn et —4et6r — et Jeet

ei(ll/SE-HZJEN) eié2 _ %2 eié2 _ e

Correspondingly one finds 4 possibilities of phase factors for the integral /;” which
are complex conjugated to the given factors. Therefore, the resonance strength for
Vg = Jo — @, are located on the same 4 curves as those for vy = jg + @), in figure
3.8 (left) for the 8fs scheme of HERA—p.

It becomes clear from figure 3.8 (top) that the spin motion is least disturbed by
the synchrotron motion at magic energies where sin(Gy¢pyv) = 0. This is the case
whenever 7ig is vertical inside the non—flat region. In that respect, the most appro-
priate momentum would be 858GeV /c. Close to this momentum there is a medium
strength resonance for vertical motion, but at the favored value of 870GeV/c, the
factor sin(Gy¢py) = 0.17 is still small.

The resonances due to synchrotron motion at vy = jo £ @), shown in figure
3.8 (bottom) have high peaks around the energies where a pair of very strong res-
onances due to vertical motion is located. Therefore the number of spin rotations
N within the bends of a FODO cell are some odd integer in the region of these
high peaks. Additionally there are regions with medium strength resonances in each
second gap between the strongly resonant regions. In these regions the number N
is even, but not divisible by 4. In the rest of the gaps, where the number N of
spin rotations within the bends of a FODO cell is divisible by 4, the very small
resonance strengths €,, for vy = jo £ @, indicate that there are only very weak or
no perturbations of spin motion due to longitudinal particle motion.
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Figure 3.8: Top: The resonance strengths at vy = jo £ @, in HERA—p with the 8fs
scheme (left) and the 6fs scheme (right). Bottom: The resonance strength at vg = jo+ Q-

in HERA-p with the two schemes 8fs (left) and 6fs (right).

Also this structure of the resonance spectrum can be explained by an investi-
gation of the spin—orbit—coupling integrals. They describe the spin perturbation
during one turn for a particle which has the initial spin 7ip and an amplitude in
longitudinal phase space. Here we choose the angle variable in longitudinal phase
space to describe a particle with energy deviation 4. Since HERA-p has no vertical
dispersion except in the non—flat regions, the particle travels in the horizontal plane
through vertical magnetic fields and the spin is not deflected away from the vertical
fig. Except in the non-flat region where 7y is not vertical and where the horizontal
dispersion leads the particle through vertical fields in the quadrupoles which deflect
the spin away from 7ig. However, the spin perturbations due to horizontal disper-
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sion in the two non—flat regions, one right and one left of an interaction point, have
opposite sign and cancel each other. This can be seen as follows: At the interaction
point g = €, is vertical, just before the BV magnet upstream of the interaction
point €, cos U, + €y sin ¥,,, and just after the BV magnet downstream the interaction
point 7y = €, cos ¥, — €gsin ¥, . The horizontal component of 7y in the non-flat
region to the right and to the left of the interaction point is therefore antisymmetric.
Since the horizontal dispersion and the quadrupole strengths in these regions are
both symmetric with respect to the interaction point, the deflections of a spin away
from 77y in the two non—flat regions compensate each other. Spin perturbations for
particles with energy deviation are therefore solely due to the vertical dispersion in
the non—flat regions.

The structure of the vertical dispersion in a non—flat region is shown in figure
3.9 and will now be used to illustrate what gives rise to regions with very weak
resonances in figure 3.8 (bottom). For that it is important to note that there are
4 horizontal bending magnets in each non—flat region which have been called BH
in section 2.2.4, as has been shown in figure 2.5 (left). Each of these BH magnets
bends by 15.11mrad, one quarter of the bending angle in a FODO cell. At energies
where the number N of spin rotations within the bends of a FODO cell is divisible
by 4, each BH leads to an integer number of rotations and therefore has no net
effect on spin motion, so that the spin is only influenced by the quadrupoles. While
a particle with energy deviation follows the dispersive trajectory with its vertical
slope D}, the spin direction is then tilted by (Gy + 1)D; away from 7ig. Since D is
matched to zero at the end of the non—flat region as shown in figure 3.9, the total
tilt after this region is zero and €,, = 0 at these special energies.

As with the resonance strength due to horizontal motion, also the resonance
strength due to longitudinal motion have a clearer structure when the 8 fs scheme
of 8 flattening snakes is used, as shown in figure 3.8 (bottom-left). Similar to
equation (3.35), the resonance strength for vy = jo + @ is given by

Nan

o= ML =10 Ve [ 4 el Wsetven) [E (3.36)
™

€y

with ¥sg = —VUsg + ®,55 and Yy = —Vgy + ¢.gn . Due to the low synchrotron
tune of approximately 7 - 1072, the phase advances ®, are nearly zero and vy ~ jo.
Depending on the non—integer part of jzo, the phase factors e¥s? & e¥EN are +i or
+1 . Since the spin—orbit—coupling integrals Is, Ig, and Iy have nearly the same
magnitude, the total spin—orbit—coupling integral I is close to either I's of 315, and
these two curves are seen in figure 3.8 (bottom-left).

The shape of these curves can be obtained by computing the dreibein [1my, Z_E), o)
for the non-flat region to the right an to the left of an interaction point by rotating
it in the vertical bends by ¥, and in the horizontal bends by ¥, . When the change
of D; produced by the four regions with quadrupoles is denoted by AD’, then the
spin—orbit—coupling integral is found to be proportional to Ci}jf [AD] + (AD} +
AD%)cos Uy, + ADScos(2Wy)] , where the denominator takes account of the fact
that the energy deviation § decreases with 4y~%/% during the acceleration process.
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Figure 3.9: Vertical dipole magnets BV, BU, horizontal dipole magnets BH, and verti-
cally focusing and defocusing quadrupole magnets QY and QX in the non—flat regions of
HERA-p. The vertical dispersion and its slope at the end of this region is matched to
7ero.

One feature should be noted here: The influence of synchrotron motion on spin
dynamics is zero in first—order approximation at a magic momentum of 870GeV/c,
where the spins make complete turns around the vertical in the horizontal magnets
of the non—flat region, which are called BH in this report. It is not just a lucky
coincidence that the preferred momentum for small vertical perturbations and the
preferred momentum for small longitudinal perturbations are equivalent. As de-
scribed above, the perturbation of spin motion due to vertical particle oscillations is
small when spins rotate 16 times around the vertical in a FODO cell at 870GeV /c.
Then at this energy, spins precess 4 times in a BH magnet so that the spin per-
turbations for particles with an energy deviation are canceled within each non—flat
region.

Considering all resonance strengths, it seems best to operate HERA—p around
870GeV/c. In addition to avoiding the influence of very strong resonances while
storing polarized beams, this choice of a somewhat reduced momentum avoids the
need of accelerating through the region of 913GeV /c, where a very strong resonance
due to vertical motion is excited. In any case, keeping the current momentum of
920GeV /c is not advisable at all, since this energy is just between two very strong
resonances.
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3.3 Optimal Choices of Siberian Snakes

It has been pointed out several times that Siberian Snakes are indispensable if
polarized proton beams are to be accelerated in a high energy synchrotron such as
HERA-p. There were several reasons for this statement:

1. Siberian Snakes fix the closed—orbit spin tune to % during the acceleration
cycle so that no first-order resonances have to be crossed. Crossing first—
order resonances can lead to a severe reduction of polarization by an amount
described by the Froissart—Stora formula in section 2.2.11.

2. Siberian Snakes severely reduce the influence of energy variations on spin dy-
namics within a synchrotron period as has been illustrated in figure 2.16.

3. Siberian Snakes reduce the variation of 71(2) for particles which oscillate ver-
tically and therefore pass through horizontal fields which perturb the polar-
ization. An example of this reduction and the associated increase in Py, was
shown in figure 2.15.

4. When 72 changes rapidly during acceleration, the adiabatic invariance of Jg =
n(Z) - S might be violated and polarization would be reduced. It is therefore
important that Siberian Snakes smoothen the rapid changes of i during the
acceleration cycle as shown in figure 2.15.

5. Siberian Snakes can also compensate perturbing effects of misaligned optical
elements [69, 110, 59] but this report will not cover the effect of misalignments.

There will be little reduction of polarization during the acceleration process
and all particles will be polarized in nearly the same direction at high energy if
the accelerator has an invariant spin field 7(Z) which changes slowly during the
acceleration process and which is nearly parallel for all relevant phase space points.
Achieving this is one of the non—trivial tasks of Siberian Snakes. However, there is
so far no reliable formula for determining the number of Siberian Snakes required for
an accelerator [116, 117]. To make things worse, for any given number of Siberian
Snakes there are very many different possible combinations of the snake angles which
lead to an energy independent closed—orbit spin tune of % and to a vertical 7y in
the accelerator’s arcs. And so far there is also no reliable formula for determining
which of these snake schemes leads to the highest polarization.

There used to be a popular opinion that, owing to their symmetry, 5 standard
choices of the snake angles for 4 Siberian Snakes are advantageous for HERA—p.
These choices are not optimal, as will be shown. For reasons why these standard
schemes were considered useful see for example [107]. RHIC with its two snakes, will
be operated with a similar standard scheme [118]. The energy dependence of P, in
HERA-p produced by these 5 snake schemes is shown in figure 3.10. They seem to
produce rather similar but very low maximum time average polarization P, in the
critical energy regions where very strong resonances are excited. The observation of
such rather small differences in the r—axis lead to the investigation of the influence
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Figure 3.10: Py, of linearized spin—orbit motion for 5 standard choices of 4 Siberian
Snakes in HERA-p. A flattening snake was inserted in each non—flat region of the lumi-
nosity upgrade lattice. The right column shows an obvious notation to describe the snake
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of snake schemes on Pj;,,. Figure 3.11 (left) shows Py, as computed for linearized
spin—orbit motion by equation (3.27) for 4 other choices of schemes with 4 Siberian
Snakes which were chosen to demonstrate that very different values of Py, can be
obtained depending on the snake scheme. In the following, I will try to improve
Py, by investigating methods of determining the optimal snake arrangement for an
accelerator. Initially the approximation of linearized spin—orbit motion will be used
and then higher—order effects with various snake schemes will be analyzed.

It turned out that large increases in Py, can result from the choice of a suitable
snake scheme. This is shown in figure 3.11 (right) where Py, curves for the vertical
motion with two different Siberian Snake arrangements in HERA—p are superim-
posed. For this figure, the betatron phase advances in the vertical optics had been
specially tuned in a way to be described in section 3.3.2. For this special optics, the
snake scheme (0777)8fs leads to an especially favorable maximum time average
polarization even at critical energies as shown by the blue curve. Another snake
scheme which is not suitable will produce a reduction of Py, at all critical energies

during the ramp, as shown by the red curve. This example, given here mostly for
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motivational purposes, is somewhat extreme since the vertical optics was custom

designed for the (0777)8fs snake scheme, but nevertheless it demonstrates how

great the differences of P, for snake schemes can be.

Pind | — | Primd :
0.8 0.8 ' Lk v
0.6 0.6 \ . ‘ ‘ ‘
0.4 0.4 ‘ ‘ \
0.2 0.2 ’ H
0 0
800 810 820 830 100 300 500 700 900
p (GeV/e) p (GeV/e)

Figure 3.11: Left: Py, for 4 different snake schemes which lead to an extremely different
maximum time average polarization for the standard HERA—p lattice. Right: P, for the

standard scheme (5050)6fs (red) and for the (0575 5)8fs scheme (blue) after the vertical

optics in HERA—p has been changed so that the contribution of the arcs to the spin—orbit—
coupling integrals cancel when the latter scheme is used.

Comparing these figures with the resonance strengths of HERA—p shown in figure
3.6, the residual resonance structure after the installation of Siberian Snakes, which
was already mentioned in section 2.2.14, can clearly be seen. Special snake schemes,
however, are able to eliminate the influence even of the strongest resonances when
only linearized spin—orbit motion is considered. In the following the reason for these
large differences between different snake schemes will be analyzed and optimal snake
schemes for HERA—p will be investigated.

3.3.1 Spin—Orbit—Coupling Integrals with Siberian Snakes

For the introduction of spin—-orbit—coupling integrals in flat rings in section 3.1.2,
no was initially assumed to point vertically upwards, and the coordinate system
[€x, €5, €,] Was used. Now Siberian Snakes will be considered, which rotate all spins
(and also 7ig) by 7 around some axis in the horizontal plane. Then it is convenient
to use the coordinate system [€,, 7o X €,,70] . The second vector €, corresponds
to €5 when 1y is vertical upwards and to —e€y after a Siberian Snake has rotated
ng downwards. In this new coordinate system, I again use the complex notation
$ = s1 + 183 . When a particle with spin parallel to 7y travels along the trajectory
y = +/2J,0, cos ®, through a quadrupole of focusing strength &£ with a vertical beta
function 3, and betatron phase ®,, then its spin direction is deflected from 7y by
the angle (Gy 4 1) Jquaqa ¥kdl , leaving a change A3 in the spin coordinates of

As = —i(G 1 \/2J,3 b, kdl 3.37
s l( v+ ) Quad yPy COS By ( )

where positive values of & describe vertically defocusing quadrupoles. When 7
points vertically upwards and a spin is initially parallel to 7, then a vertically
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defocusing quadrupole rotates the spin in the direction of —€y = —€, . When 7ig
points vertically downwards, the spin rotates in the direction of €5 = —é&, leaving
equation (3.37) correct for both cases.

After the spin component § has been created by the deflection of a spin which
was parallel to g when the particle entered a quadrupole, it subsequently rotates by
V() = f;; Qoy(é)dg . This describes spin precession around the vertically upward
direction, independently of the fact that 7y might be pointing downwards. When
iip is pointing upwards, the disturbed spin rotates to 3e'¥, whereas it subsequently
rotates to 3e™*Y when 7y is pointing downwards.

The change of the spin away from 7y accumulated after a section of the ring

from 6y to 8y in which there is no Siberian Snake is given by

>

. th .
= Ce"q’(al)/e k2,/J, B, cos ®,e~ (O dp (3.38)

with C' = —i(Gy + 1)
it is given by

% , when iy points upwards. When 7y points downwards,

S

2

3= 0O [" 42, 1,5, 08 0,670 (3.39)
0
To compute the spin change that accumulates over the whole ring, 7y is initially
taken to be upwards.
In section 3.1.2, the spin—orbit—coupling integrals of the complete ring were de-
fined. Here spin—orbit—coupling integrals of a subsection of the ring which does not
contain a Siberian Snake is defined accordingly as

1 .
I* = 0/6 k[B,e ) dp (3.40)

where the initial phases are chosen to be ¥(6y) = 0 and ®,(6y) =0 .

It is now assumed that there are n Siberian Snakes in the ring and that n is even,
to make 1y vertical in the arcs of the ring. The azimuth at the position of these
snakes are denoted by 6#; and the spin phase advance around the vertically upward
direction between snake 7 and j + 1 is denoted by W;. The spin phase advance
after the jth Siberian Snake is W;(#) with W;(#;) = 0. The deviation of the spin
accumulated between just after the jth snake to just before the (j 4+ 1)st snake is
denoted by 5;.

For simplicity 8y = 0, 8,11 = 27 is used, and denote is the spin phase advance
from azimuth 6, to the first Siberian Snake by Wy . Since the vector 7 initially
points vertically upwards, one obtains

. 4 .
50 = 062%/ "k 3, cos CI)ye_"%(e)dH . (3.41)
fo
By considering the direction of 7y after the jth snake, one obtains

. 9] 1 . j
5 = Cei-rYs / " ke /B, cos B e PO g (3.42)

9
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Subsequently, a Siberian Snake with a snake axis which is in the horizontal plane
will be referred to as horizontal Siberian Snake. And for historical reasons a snake
which rotates spins around the vertical by some rotation angle will be referred to as
type Il snake. A horizontal Siberian Snake with a snake angle ¢, is equivalent to a
radial Siberian Snake followed by a type III snake with rotation angle a = 2¢ since

—i(o1 cosp + oasinp) = (cosp — io3cos )(—ioy) = e_i%‘”’(—ial) . (3.43)

The radial Siberian Snake does not change 3, since it changes the axis €; = 7ig X €,
along with the longitudinal component of the spin. The subsequent rotation around
the vertical takes the spin from § to de™** for downward 7, after the snake and to
5e' for upward 7y after the snake.

The angle of the jth Siberian Snake is ¢; = < and the horizontal spin component
accumulating over a complete turn from 0 to 27r is

§ — ‘§‘TL _|_§n_1el(an+‘1}n) _|_§n_26i(—an—l—\pn—l +an+\pn)

_I_ . +§1ei(a2+qj2—a3—‘1}3ﬂ:...) _I_éoe’i(—ozl—‘lil+a2+\ll2_a3_\lr3:|:.“)
n . n k
— ZéjeZZkzj.H(_) (ak‘}“l’k)
j:

LA 041 _
= Ozel(_)]‘l}j/ + k‘ By cos @ye—z( ) d@elzk ]+1 O‘k‘}"ljk)

]:O 6]

o

with 377 ;... =0.

As shown in section 2.2.3, the spin phase advances between snakes must satisfy
S o(—)F¥) = 0 to make the closed-orbit spin tune independent of energy and the
snake angles must satisfy > j_,(—)*¢s = I to make the closed-orbit spin tune g
equal to % .

For simplicity ap = 0 is used, although there is no Siberian Snake at 6. This
leads to

n G511 .
5 = CZ@ S (rt ) i1, / "k /By cos @,V VO g

J

0] 1 . j
= —C’Ee =i e a’“"'q”“)/@ "k 3, cos CI)ye_"(_) (Vi (O)+e5) gp (3.44)

J

The spin—orbit—coupling integrals for a ring with horizontal Siberian Snakes are
therefore defined as

— —C’Ze o) et ) / ki [B,e Y @Ok el g (3 45)

In terms of the orbital phase advance ®,; between snake j and 7 4 1, one obtains

= _CZ ¢ hco Fok+ 0k )20y / \/7 (8)+a;) £y, (0)] g (3.46)
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A corresponding formula has been used in [78] to introduce so—called strong
spin matching, where Siberian Snakes are used to produce a cancelation of spin
perturbations in different FODO cells. It is expected that the spin motion on vertical
betatron orbits is relatively stable when a spin which is initially parallel to 75 comes
back to that direction after one turn, this means §(27) = 0. This is achieved in linear
approximation for all trajectories when both spin-orbit—coupling integrals vanish.
The ring is then said to be spin matched or spin transparent.

3.3.2 Snake Matching in Rings with Super—Periodicity

The spin perturbations in different parts of the ring can compensate each other
when these parts have similar spin—orbit—coupling integrals. In the following, the
process of finding a snake scheme for which such a compensation occurs will be
referred to as snake matching. 1t will be demonstrated how Siberian Snakes can
be used to adjust the spin phase advances in such a way that spin—orbit—coupling
integrals of symmetric parts of a ring cancel each other. After demonstrating the
idea for type III snakes, which simply rotate spins around the vertical by some fixed
angle with little influence on the orbit motion, I will demonstrate two quite general
results:

1. A ring with super—periodicity 4 can be completely snake matched using 8
Siberian Snakes, i.e. a snake scheme can be found for which the spin—orbit—
coupling integrals are zero due to a complete cancelation of spin perturbations
in different parts of the ring. There are exactly two such possibilities which
lead to energy independent snake angles.

2. Such a ring can also be snake matched using 4 Siberian Snakes. Then, however,
the snake axes must depend on energy and have to be changed during the
acceleration process. Such Siberian Snakes with variable snake axes can be
constructed [119].

Snake Matching with Type III Snakes for Super—Periodicity 4

For a flat ring without horizontal Siberian Snakes the spin-orbit coupling integral
for vertical motion was defined as

L .
Tt = / key/B, e VS ] | (3.47)
0

For ease of notation the constant C' in equation (3.40) is now dropped and the arc-
length [ = L% is used rather than the azimuth #, where L is the length of the ring.
Furthermore, the index y on the spin—orbit—coupling integral and on the vertical
tune will no longer be indicated, to simplify the following equations. In any case,
the methods for canceling spin—orbit—coupling integrals by a special choice of snake
angles which will now be derived can also be used for transverse and longitudinal
motion. For a ring with super—periodicity 4, I* can be computed from

/4 ,
IF o= / NSl (3.48)
4 0
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I£ = IE[] 4 @)/ 4 i2(cnE)/4 4 (i3(-n@)/4) (3.49)

where 1y = W(27) is the spin rotation angle during one turn and @ is the orbital
phase advance during one turn. These are 27 times the closed—orbit spin tune and
2m times the vertical orbit tune, used in this section to simplify formulas. Spin
transparency requires that I+ as well as I~ vanish. Thus the bracket in equation
(3.49) must vanish. This is only possible when e'(=0xQ)/4 {5 either —1 or i. Choosing
the first possibility to eliminate It and the second to eliminate I~, one obtains

(=n+@Q)/4 _ 1 i-w=Q)/4 _ (3.50)

el ,
This leads to €?/2 = i and cannot be satisfied in a realistic ring. Therefore, a
four—fold repetitive symmetry cannot lead to spin transparency at any energy.

The reason for this is that, except at very special orbital tunes, there is no energy
where the spin disturbance of one quadrant of the ring cancels the spin disturbance
of another quadrant in I+ as well as in I~. However, either one of these integrals of
one quadrant can cancel against that of another quadrant whenever the spin phase
advance between these quadrants is appropriate.

The situation changes if type III snakes are installed. It was first found in
[21] that type III snakes can improve the spin dynamics in HERA-p by increasing
Pim = | <@ > |. They can be used to manipulate the spin phase advance to
make the spin—orbit—coupling integrals of different parts of the ring cancel. To
demonstrate this, 4 type I1I snakes are installed regularly spaced around the ring.

There are three possibilities for canceling the spin disturbances between quad-
rants of the ring. The quadrants whose destructive effects cancel are connected by
arrows in figure 3.12.

P N

N

Figure 3.12: The three possibilities for canceling the depolarizing effects of quadrants of
a ring with super—periodicity 4. The arrows indicate which quadrants cancel.

When the type III snake at [ = ]% has the rotation angle ;, then the spin-
orbit—coupling integrals are

[ﬂ: — [f(l 4+ e’i(—voﬂ:Q)/‘l—lZ)l 4+ e’iQ(—UoiQ)/‘l—lZ)l—% + ei3(—U0iQ)/4—¢1—¢2—¢3) ) (351)

To snake match the ring, It as well as I~ must vanish. Therefore the bracket on
the right hand side has to vanish in both cases. A sum of 4 complex numbers with
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unit modulus can only vanish when it consist of two pairs of numbers which cancel
each other. This is shown in figure 3.13.

A;

191

12

193

Figure 3.13: Four complex numbers with modulus one can only add up to zero when
they consist of two pairs which individually add up to zero.

The three possibilities of cancelation demonstrated in figure 3.12 are given by
the following three sets of equations:

. (—+Q)/4 - =mand (—vp+Q)/4 — 3 =,
2. 2(—V0:EQ)/4—¢1—¢2%7TELH(1 ¢3é¢1,
3. 3(—1/0:&@)/4—;/)1—77/)2—;!)3%7rand (—1/0:‘:@)/4—77@2%’/7'.

The symbol = indicates equivalence modulo 2. To snake match, one of these three
conditions has to hold for (—vp + @), which causes It to vanish and another of the
conditions has to hold for (—vg — @), which causes I~ to vanish. /™ and I~ cannot
vanish due to the same condition if restrictions on the allowed orbital phase advance
() are to be avoided. There are therefore three possibilities:

1. IT™ = 0 due to condition 2 and I~ = 0 due to condition 3 requires

Y2 = T+2(—o+Q)/4A—1, P3=1b, (3.52)
vy = T+ (—r—Q)/4, Ys =2 —Q)/4—tr.  (3.53)

The first and the third of these equations requires that ¢, = (—vy + 3Q)/4
whereas the second and the fourth equation requires that v = (—1p — Q)/4.

These two requirements are in general not compatible and the ring cannot be
made spin transparent in this way.
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2. I =0 due to condition 1 and I~ = 0 due to condition 3 requires

(0N T+ (—r+Q)/4, ¢Ys=1, (3.54)
(0 T+ (—vo—Q)/4, 3 =2(—vo—Q)/4— 1 . (3.55)

The first and the last of these equations together require 13 = 7 — (3Q — 1) /4.
This is in conflict with the second equation. Thus this way also cannot lead
to a spin transparent ring.

3. I =0 due to condition 1 and I~ = 0 due to condition 2 requires

Yy T+ (—ro+Q)/4, s =1y, (3.56)
o T4+2(—1vo—Q)/A—1, s =1 . (3.57)

These 4 equations are compatible and lead to ¢ = th3 = 7+ (—1p + Q)/4 and
2 = (10— 3Q) /4.

The type III snake at [ = 0 has the rotation angle v, which is chosen in such a
way that the closed—orbit spin tune of the ring does not change due to the snakes,

U1 + Py + 3 + 14 = 0. The required rotation angles are

=3 =m+(—1+Q)/4, Ya=(—1—3Q)/4, Ya=(Q—3—w)/4. (3.58)

Obviously a change in sign of @ leads to ™ = 0 due to condition 2 and to I~ =0
due to condition 1. There are therefore exactly two possibilities for making a ring
with super-periodicity 4 spin transparent by means of 4 type III snakes. These
possibilities are shown in figure 3.14. However, the scheme of 4 type III snakes
presented here cannot be a practical snake scheme, since it does not make the
closed—orbit spin tune independent of energy. But it was described here to illustrate
how type III snakes can be used at fixed energy to make spin perturbations from
different parts of the ring cancel each other. This feature can be used in combination
with Siberian Snakes which have been installed to make the closed—orbit spin tune
independent of energy.

Snake Matching with Type III Snakes for Super—Periodicity 4 and Mirror
Symmetry

In particle optical systems, mirror symmetries are often used to cancel perturbative
effects [52, 120, 121, 122]. Therefore it is interesting to see whether mirror symmetry
can lead to the compensation of a spin—orbit—coupling integral when 4 Siberian
Snakes are installed at the symmetry points of the ring. If one super—period is
mirror symmetric, then

+ L/s (—U+P
o= / ey /B, el g1 (3.59)
8 0

L/g . L/4 -
[f = /0 k(l)«/ﬁy(l)el( YOES (1) g1 4 k(1) ﬁy(l)e( T(1)£3,() g

1 L/8
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Figure 3.14: The two only ways to snake match a ring with super—periodicity 4 by 4
type III snakes. The number between 0 and 27 which equals z modulo 27 is written as
[z]. The vertical tune times 27 is denoted by () and vy = Gy27.

- /OL/S k(DB (e OOl

L/s T,
b L gt o0
_ [j:+/ e<—(W<%)—\D(z))i@/zl—@y(z)))dl (3.61)
= [E 4 (IE)e- uOiQ)/4_ (3.62)

With % = (—vy £ Q)/4 one obtains for the complete ring

I = (IF 4 (IE) ™) - (14 ™ 4 £25F 4 555 (3.63)
8 8

Thus snake matching the ring with super—periodicity 4 is not influenced by the fact

that the ring might have a mirror symmetry since the bracket in equation (3.63) is

equivalent to the corresponding bracket in equation (3.49) for rings without mirror

symmetry.

In this report, type IIT snakes will not be considered further, since a horizontal
Siberian Snake with snake angle ¢ can be decomposed into a radial Siberian Snake
and a type III snake with rotation angle 2, as pointed out in equation (3.43). A
type III changes the difference between orbital phase @, and spin phase, and that in
turn changes the phase in the spin—orbit—coupling integral. This phase can be used
to cancel the perturbation in one part of the accelerator against the perturbation
in another part, but this can be achieved just as well and with less expense by a
slight change of betatron phase advance ®, in the vertical optics of the ring. This
technique will be used in section 3.3.3.
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Snake Matching with Fixed Axes of Siberian Snakes at All Energies for
Super—Periodicity 4

The snake matching technique with type I snakes has the great disadvantage that
these snakes have to be ramped with the rest of the ring in order to snake match
at each energy. Also horizontal Siberian Snakes can be used to manipulate the spin
phase advance between parts of the ring and it will now be investigated how such
Snakes can be used for snake matching.

Schemes with 4 Snakes: For 4 horizontal Siberian Snakes the spin—orbit—coupling
integral in equation (3.46) is

* = / ky[B, e - 70%00) g (3.64)
Lo —\I'O:E:Qyo)/el k\/ﬁj# Uit £®,1) g7
L (Yot U (0 +,0)) /6263 k\/ﬁ»yei(—%—azi%z)dg
L i Totan T —n —Us (Do By +8y2)) /63Lk\/@ei(\l'3+a3:t<by3)dl.

For a ring with super—periodicity 4 and with 4 equally spaced horizontal Siberian
Snakes one obtains with vy = W(I), ¥; = ¥(/)/4, and ®,; = Q/4 the relation

o= / ey /B, el g1 (3.65)
E— ]1ﬂ:(1_|_e( Uoto14T - a2i(¢y0+¢y1))) (3.66)

_I_ ([?:)*62(_‘1}0+a1iq>y0)(1 _I_ ei(‘ljl—Ozg—‘lJ2+Ozg:f:((I>y1+q>y2)))

[il:(l _I_ ei(oq—ozg:l:QQ/4)) _I_ ([T)*el((—uoiQ)/4+a1)(1 _I_ ei(—a2+a3:|:2Q/4)) .

Spin transparency of the ring is therefore obtained when
ar —a; £2Q/4 = 71and —ay+ a3 +2Q/4 =7 . (3.67)

This cannot be satisfied in general since a; —ay+2Q) /4 = 7 and oy —ag— 2Q/4 =
have to be true simultaneously, which implies Q) = 0.
In the case of mirror symmetry in the ring it was shown that I and Iy are
4 4

related by equation (3.62) as

IF = If 4 (If) e/t (3.68)
([:1|:)* — ([T)* + [iFe—i(—Uo:FQ)M — (([:f)*ei(—uo:FQ)M + [le)e—i(—uo:FQ)M

= [Feil-wFQ)/1 (3.69)

With a mirror symmetric quadrant the spin—orbit—coupling integral then simplifies

to
[:I: — [it(l 4 ei(al—agiQQM)) 4+ [?:(1 4+ ei(—a2+a3:i:2Q/4))ei(alzl:QQ/4) (37())
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and again this additional symmetry does not simplify the compensation of the spin—
orbit integrals.

Schemes with 8 Snakes: The same procedure can now be repeated with 8 snakes.
For that purpose 4 more horizontal Siberian Snakes are placed at the locations

jL/A+ Al 5 €{0,1,2,3}. From

Zezz Jeren i%k]/ k\/> (D)2 Ol (3.71)

the spin—orbit—coupling integrals are obtained

F o= [ kB ffz/ kB, (3.72)
0

IF = IF(1 4 - YotontTi-oat (@) 4 (3.73)
_I_ ( qj0+a1+qjl_O‘2:F---_an—2i(®y0+~~~+q)y'n—3)))
_I_ [itez(_‘ljo—}_aliq)yo)(l _I_ei(‘ljl_a2_qj2+a3:t(q>yl+q>y2)) _I_ (374)
_I_ e’i(‘l'l—012—‘1'2+043:|:...+Ozn_1:l:(q>y1-I—...+(I>yn_2))) .

If there is an additional mirror symmetry and the snakes are all placed in the symme-
try points, equation (3.62) implies I = (IF)*e(-%*@)/4 which again does not lead
to simplifications. The complete spin phase advance of the ring is 3=7_,(— Y (W5 +
;) = 7. Since this phase advance is required to be independent of energy, >=7_(—)"¥;
has to vanish. Because of the super—periodicity this requires ¥y = Wy, and all
the spin phases U, in the equations (3.74) cancel. With the difference angles
Ajr = a; — oy spin matching the ring therefore requires

14 ei(iQ/4+A12) + ei(iQQ/4+A12+AS4) + ei(iBQ/4+A12+A34+A56) =0 , (3_75)
1+ ei(:tQ/4—A23) + ei(iQQ/4—A23—A45) + ei(iBQ/4_A23_A45_A67) =0. (376)

Again these 4 complex numbers with modulus 1 can only add up to zero by the
three schemes shown in figure 3.12. The equations (3.75) and (3.75) have the same
structure as the matching conditions of equations (3.51) and the relations (3.58) can
therefore be used to obtain the following two possibilities to satisfy equation (3.75):

AIQ
AIZ

Ass 21 —Q/4, Az 230Q/4, (3.77)
A5627T—|—Q/4, A34é—3Q/4 (378)

[}
[}

Here equation (3.78) resulted from reversing the sign of @) in equation (3.77). There
are also exactly two possibilities for solving equation (3.76),

Apg=Ner =7+ Q/4, Ays=-3Q[4, (3.79)

AggéAG'réﬂ'—Q/ll, A4523Q/4 (380)

There are now 4 possibilities to snake match the ring; these are obtained by com-

bining the equations (3.77)&(3.79), (3.77)&(3.80), (3.78)&(3.79), or (3.78)&(3.80),
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Figure 3.15: The two possibilities by which the individual parts of the ring cancel the
spin—orbit—coupling integrals. Changing the sign of @ leads to two corresponding snake
schemes. The symbols 16", Iy, I1+7 and /] indicate which part of the spin—orbit—coupling
integrals are canceled.

where the last two possibilities result from the first two by reversing the sign of ).
Figure 3.15 shows how parts of the ring cancel the depolarizing effects of other parts
in these snake matching schemes.

Since only differences in the snake angles appear, one of the angles can be chosen
arbitrarily. This then fixes all other snake angles. For simplicity I choose a; = 0.
This leads to the following possibilities:

Combination of the equations (3.77) and (3.79):

ap = 0, av=74+Q/4, az=0, ay=—-3Q/4, (3.81)

as = 0, ag=7+Q/4, ar=0, ag=7+Q/4, (3.82)
Combination of the equations (3.77) and (3.80):

ar = 0, ap=a+Q/4, az3=2Q/4, ay=—-QJ4, (3.83)

as = —4Q/4, ag=T—3Q/4, ar=-2Q/4, ag=7—Q/4. (3.84)

The values for ag were obtained from ag — ar + ag — as + aq — as+ag —aq = 7. The
last snake scheme can be simplified by decreasing all snake angles by 2@Q) /4, leading
to

Q/4, ay=m+2Q/4, a3=3Q/4, a,=0, (3.85)
—3Q/4, ag=7—2Q/4, ar=—-Q/4, ag=T. (3.86)

aq

o
o

(071

These snake schemes are shown in figure 3.16. There account has been taken of the
fact that the actual angle between the snake’s rotation axis and the radial direction



3.3. OPTIMAL CHOICES OF SIBERIAN SNAKES 105

is @/2 . Furthermore advantage has been taken of the fact that the angle a/2 only
needs to be known modulo 7.

3q 2q
W q
3q

3q 32(]

Figure 3.16: Two of the 4 ways to snake match a ring with super—periodicity 4 using 8
horizontal Siberian Snakes. The number between 0 and 7 which equals /8 modulo 7 is
denoted by ¢. The vertical tune times 27 is denoted by ) and v = Gv2n. The other two
possible snake schemes are obtained by reversing the sign of (. When all snake angles
are increased by the same amount, then the ring remains spin transparent. Note that the
snake angle is independent of v and thus of energy.

Here it is very important to note that the snake angles are independent of v = G
and therefore that a snake match has been achieved for all energies. With 4 Siberian
Snakes such an energy independent spin match is not possible.

One can now try to repeat the same procedure for a layout with 6 horizontal
Siberian Snakes or with combinations of, for example, 6 horizontal Siberian Snakes
and two type III snakes. These can be investigated using the methods already
presented.

3.3.3 Snake Matching HERA-—p

When the spin—orbit—coupling integrals starting at an azimuth 6, are minimized,
then the opening angle of the invariant spin field at 6y in the approximation of
linear spin—orbit motion is also minimized since

I

ei?’l\’(Qk—lIo) _ 1 :

3
Piim = [1 4+ Z(|B2k—1|2 + |Bar*)Jx]72 , Bp = (3.87)
k=1

according to equation (3.27).
When snake matching a ring with super—periodicity according to the previously
described technique, then all spin—orbit—coupling integrals are zero at one azimuth of
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the ring and in linearized spin—orbit motion, the invariant spin field is then parallel
to 1ig at @y for all particles. It has been seen from the example of a ring with
super—periodicity 4 that 8 Siberian Snakes can be used to snake match the spin-
orbit—coupling integrals to zero at one azimuth of the ring for all energies. This could
be achieved since the snake angles were used to adjust the spin phase advances in
such a way that perturbations in one part of the ring are compensated by identical
perturbations in one of the identical super—periods of the ring.

Since HERA—p does not poses such a symmetry, it is in general not possible
to find snake angles which completely compensate all spin—orbit—coupling integrals.
However, in section 3.2.3 it was demonstrated that the 4 identical arc sections of
HERA dominate the resonance strength of vertical motion; and the perturbing effect
of these identical arcs can cancel each other.

The spin—orbit—coupling integrals from the first regular FODO cell to the last
FODO cell of a regular arc in HERA—p are denoted as j;’ and fy_ and the azimuth
of the beginnings of the 4 regular arcs as 6y, 62, 03, and 4. The central points
of the Fast, North, and West straight sections are denoted by K, N, and W. To
compensate the spin phase advance between the arcs, the snake angles ¢z, ¢y, and
¢w are used. The spin phase advance between 6; and 6; is denoted by W;;. These
notations are indicated in figure 3.17.

AWy, = 2(99W — ¥N

Vs = 2(99N - iPE)

Figure 3.17: The spin phase advance from the beginning of one regular arc to the
beginning of the regular arc on the opposite side of the ring.

With Siberian Snakes in each of the straight sections, the spin phase advance
from 6, to 03 is given by Vi3 = V15 — 205 — Ygn + 2¢n + Y3 In the 8fs schemes,
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the spin phase advance is identical in all quadrants of the ring and the total spin
advance is solely determined by the snake angles and is therefore independent of
energy: Vi3 = 2(pny — ¢g) and Way = 2(ow — @n) . The orbital phase advance
®,(05) — ®,(6;) also does not depend on energy. For simplicity, ®,(6;) — ®,(6;) will
now be denoted as ®;; .

The spin—orbit—coupling integrals at the South interaction point therefore con-
tains the following contributions from the 4 regular arcs:

]:;CS — [A+ei(—‘y51+®51)(1_I_ei[Q(WE_WN)‘}‘q)lS]) (388)
+ (A— *ei(QkPE—‘l’SE+‘I’E2+<I>S2)(1 + ei[Q(ww—wN)-I-q)M])

I-.. = j—ei(—q’51—¢51)(1_|_ei[2(kPE—kPN)—¢>13]) (3.89)
+ (A+)*ei(2¢E_‘1JSE+‘I"E2_@52)(1 T ei[Q(ww—wN)—q)M])

This shows that it is always possible to cancel one of the spin—orbit coupling
integrals by a suitable choice of Siberian Snakes. The spin perturbation produced in
one of the arcs is then canceled by the arc on the opposite side of the ring. Since |1
and |I~| are different, neighboring arcs can in general not compensate each other.

It is however possible to use the eight—snake scheme found for symmetric lattices.
The two special 8 Siberian Snake schemes which lead to an energy independent snake
match in a ring with super—periodicity 4 will not spin-match HERA—p completely,
but the spin perturbation from the arcs, which has been shown to be the dominant
perturbation in section 3.2.3, will be compensated exactly. This possibility of having
a set of Siberian Snake angles which do not have to be changed with energy and which
lead to a tightly bundled invariant spin field is on the one hand very attractive; on
the other hand it requires 8 Siberian Snakes; 4 of them would have to be installed at
the centers of the HERA—p arcs, where technical requirements of moving cryogenic
feed-throughs and super—conducting magnets would be very costly. If possible, a
four—snake scheme should therefore be found.

Whereas it was shown below equation (3.67) that a four—snake scheme cannot
cancel both spin—orbit—coupling integrals in a ring with super—periodicity, a cor-
responding cancelation of the spin perturbation due to the arcs in HERA-—p can
nevertheless be achieved. This is possible since the orbital phase advance between
the arcs can be manipulated individually, while these four phase advances are equal
for a lattice with super—periodicity 4.

To cancel both spin—orbit integrals in equation (3.90), 4 phase factors have to
be —1, which requires

2 —enN) + P13 = 7, (3.90)
2ep—pn) = P13 = 7, (3.91)
20w —nN) + Py = T, (3.92)
2w —on) = Qa2 = 7. (3.93)

For arbitrary betatron phase advances, this equation cannot be solved by a choice
of Siberian Snakes, since there are only two free parameters which contain the snake
angles. However, the betatron phase advances can be changed appropriately to
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obtain a complete spin match of the arcs in HERA—p. Subtraction of the first two
equations leads to the requirement that the betatron phase advance from 6, half way
around the ring to f3 is an odd or even multiple of 7. The same is true for the phase
advance from 6 to 4. Correspondingly, the spin phase advance over these regions
has to be a an odd multiple of @ when the orbit phase advance is an even multiple
and vice versa. With a rather benign change of the vertical optics in HERA-p which
does not change the vertical tune, even in a four—snake scheme, the contribution of
the regular arcs to both spin—orbit—coupling integrals is canceled.

A snake scheme (0577)8fs leads to Wy3 = 0 and Wyy = 0 . For this snake
scheme, the betatron phase advances from #; to f5 and from 6, to 8, were adjusted
to be odd multiples of 7. The maximum time average polarization Py, is plotted
(blue) in figure 3.18 for the complete range of HERA—p momenta and for the critical
momentum regions above 800GeV/c.

As a comparison, these curves are displayed together with Py, for a standard
snake scheme (7050) (red). The complete snake match of the arcs in HERA—p in
deed eliminates all strong reductions of Py, over the complete momentum range.
Nonlinear effects will be analyzed later, but as far as the linear effects are concerned,
this snake matched lattice of HERA—p would be a rather promising choice for the
acceleration of polarized proton beams.
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Figure 3.18: Improvement of Py, by matching snake angles and the orbital phases. The

snake arrangement is (055 5)8fs (blue). As a comparison Py, from linearized spin-orbit

motion is shown for the same HERA-p optics with a (7050)8fs snake scheme (red).



Chapter 4

Higher—Order Spin Motion

4.1 Higher—Order Resonances and Snake Schemes

At the critical energies, where the maximum time average polarization is low during
the acceleration process, linearized spin—orbit motion and the SRM do not describe
spin dynamics well and simulation results obtained with the computationally quick
linearization of spin motion should always be checked with more time consuming
non—perturbative methods if possible. This is also true for the snake-matched lat-
tice of HERA-p with low Py, described in section 3.3.3, even though it avoids large
variations of the invariant spin field 7i(Z) over the phase space of the beam in lin-
earized spin—orbit motion. When first—order effects are canceled, the higher—order
effects become dominant and the quality of the snake-matched lattice of HERA—p
can only be evaluated with higher—order theories.

Until 1996, when stroboscopic averaging [100] was introduced, there was no
non—perturbative method of computing the r—axis at high energy in proton storage
rings, where perturbative methods are usually not sufficient [123]. In addition, the
method of anti-damping was derived, which also computes 7i(Z) non—perturbatively
and which can be faster when the ri—axis is required for a range of phase space
amplitudes. Both methods of computing the invariant spin field are implemented
in the spin—-orbit dynamics code SPRINT, by which also the amplitude dependent
spin tune I/(f) can be computed once 7i(Z) is known. Since stroboscopic averaging
and anti—-damping are based on multi-turn tracking data, they are applicable to all
kinds of circular accelerators and they are especially efficient for small rings and for
simple model accelerators.

Recently a non—perturbative algorithm for computing 7(Z) and V(j) has been
derived [124]. Tt is called SODOM-2 since it was inspired by the earlier perturbative
algorithm SODOM [86]. With some routines provided by K. Yokoya, SODOM-2 was
incorporated into the program SPRINT [112, 100, 125] and leads to results which
agree very well with those of stroboscopic averaging. For motion in one degree of
freedom, SODOM-=-2 is often faster than stroboscopic averaging, especially for large
rings like HERA—p where particle tracking is relatively time consuming. But for
orbit motion in more than one degree of freedom or in the vicinity of spin—orbit
resonances, SODOM-2 becomes exceedingly slow and then stroboscopic averaging

110
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and anti—-damping are needed and will be introduced later.

4.1.1 Computing 7 and y(f) by SODOM—-2

For phase space motion on an invariant torus, the final angle variables are (l_ﬁf =
o, + 27r@ where the tunes Q can depend on J. A spin field f(é, 6) can be described
for action—angle in terms of a spinor Q(é, 6) as f‘(Cl)’, 0) = UTGW . Since the action
variables .J are constants of motion, they are not indicated here. A multiplication
of ¥ with an arbitrary phase factor does not change the corresponding spin field.
According to equation (2.45) the spin field after one turn can be described by

(P + 27,0 + 27) = A(D)U(D, by) (4.1)

where A(é) is the phase space dependent spin transport quaternion for one turn
around the ring starting at azimuth 6.

Let an invariant spin field on the Poincaré section at 6y be described by the
spinor ¢n(5) If the initial spin S; of a particle is parallel to ﬁ(cl)’z), it is described
by ¥, ( _’2) After one turn S’} is then parallel to ﬁ(cl))z + QWQ) and can be described
by A(®;), (P 2) as well as by 1/%( ; + 27TQ) These two spinors therefore have to

agree up to an arbitrary phase,

A@)o(B) = e 7Py (& + 276 | (4.2)

By choosing an appropriate function ¢j(§), new spinor \Iln(cl)‘) = ei%(bf({ﬁ)@/)n(
can now be found for which the phase factor in the periodicity condition (4.
does not depend on the angle variables ® . Thus (%(5) needs to make 1/(])
2m0 (@ ) oA ) + qu(CI) + Q”TQ) independent of ® . Such a function oA ) was
already required in equation (2.83) to find the amplitude dependent spin tune and
it was shown that 27v is the zeroth Fourier component of Dj(cl)‘) . This new spinor
of the invariant spin field then satisfies the periodicity condition

A(®)U,(B) = e ™ W, (¢ +27Q) . (4.3)

The one turn spin transport quaternion A(é) can be determined numerically by
transporting particles with spin around a model of the circular accelerator. It is
then a 27 periodic function of ® and can be written as a Fourier series. The spinor
W, of the invariant spin field will also be written as a Fourier expansion,

EA iie Zq;n;eﬁ’. (4.4)

The periodicity condition then reads as

i@ ZA* U= e~y . (4.5)

n7]

This is an elgenvector equation for the infinite dimensional matrix with coefficients
e=i2mi: Q/—l . When an eigenvector with coefficients W, ~ for the eigenvalue e™*" is
bl
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-

found, then the spin tune v and the spinor W, (® ) >V, % can be computed,
which in turn leads to the n—axis.

-
For some vector of integers [/, the vector with coefficients W/ 2= =W, - risalsoan
1,

eigenvector corresponding to the eigenvalue e="(*=20'@) gince

—227r] Q ZA_‘ _,\I;/ — —27r( fé)\l} i (46)

7]

This leads to the spin tune v — - O and to the spinor \II;L(CB) = eiﬁéllln(i)‘) , which

also represents 7(2) .

The spinor ¥ = 10,V represents 11"’ = —1i(Z), since
A= i — (\I;//T—;LII//) \I/TG'QG' o,V, = _\I;;rbéq;n =7, (47)
where use was made of the relations O';r = 0, and 05 = —oy . This spinor has the

Fourier coefficients \Il:;; = 10,(V, _ ]) Similarly, the Fourier coefficients of A* are

(A*); = (A_z)". Thus when ¥} = —ig, V] is inserted into the complex conjugation
of equation (4.5), one obtains

2m5-Q "o "
AT Ay oW = e s
E
Now, with g,A*cy = oy(ag + id - a_)*)QQ = ap—1d-d = A and after reversing the
sign of 7 and k, one finds
—iQW;-Q Lo L — et
€ Z:A]—kq;n,g = € \Iln,; . (49)
£

The vector with coefficients ¥ . is therefore an eigenvector to the eigenvalue e,
which leads to the spin tune —v.

When all Fourier harmonics above a given order NV are neglected in equation
(4.5), this is an eigenvector problem for a square matrix with coefficients e=i2mi: QA~ 7
Since the square matrix can have several eigenvectors and eigenvalues, the result is
not unique.

So far there are no rigorous arguments or proofs about properties of the eigen-
value spectrum of the matrix in equation (4.5) for a given N. If the number of
considered Fourier coefficients is large, one would expect, even though no proof has
been given so far, that each eigenvalue of the matrix leads to a good approximation
of one possible spin tune. And again for high enough values of N, each eigenvector
of the matrix should usually be a good approximations of one possible spinor ¥,
and all eigenvectors should then, up to a sign, correspond to the same ri—axis with
high accuracy. It has turned out useful to find the eigenvector with the largest zero-
Fourier harmonic |\Iln(07070)| and to determine the spin tune v from the corresponding
eigenvalue.

In fact, it has been shown numerically that the various v computed with SODOM-
2 really do differ by multiples of the orbit tune to a high accuracy [124] and that the
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n—axis and v obtained by SODOM-2 agree well with those obtained by stroboscopic
averaging or anti—-damping described in section 4.2 and section 4.3.

For all results which were obtained with the SODOM-2 method and which will
be presented below, only vertical motion was considered and 81 Fourier coefficients
were used. All spin tunes v which will be given correspond to the spinor with the
largest Fourier coefficient |W,,(0,0,0]-

4.1.2 Nonlinear Spin Dynamics for Vertical Particle Motion

To check whether the improvements of spin motion obtained in the framework of
linearized spin-orbit motion presented in section 3.1 survive when higher—order ef-
fects are considered, Py, and v has been calculated by the SODOM-2 algorithm
with the code SPRINT. For one of the standard Siberian Snake schemes which used
to be considered advantageous by a popular opinion the result is shown for the
South interaction point of HERA—p in figure 4.1. Four Siberian Snakes were chosen
in the (§0%0)6fs scheme. Some of the features of Py, were already revealed by
linearized spin—orbit motion in figures 2.15 and 3.10. At many higher—order reso-
nances a strong reduction of Fj,, does along with a strong variation of the amplitude
dependent spin tune v. Especially in the critical energy region where already lin-
earized spin orbit motion in section 3.3 reveled very small Py, due to a coherent
spin perturbation in all regular FODO cells. Many higher—order resonances overlap
in these critical energy regions of figure 4.1 (top). This goes along with spin tune
jumps in figure 4.1 (bottom). The strongest spin tune jumps occur in the critical
energy regions, mostly at the second order resonance v = 2Q), which is indicated by
the top line [126]. Here only 6 flattening snakes were used and one might think that
symmetrizing the ring by 2 additional flattening snakes in the West might reduce
the spin tune spread and might lead to an increase of Py,,. But since the orbital
phase advance between different sections of the ring is not matched by the snake
angles in the standard snake schemes like (70%0), the symmetry recovered in the
8fs scheme does not lead to a significant improvement. Moreover the special choice
of the vertical betatron phase advance described in section 3.3.2 together with the
(%0%0) snake scheme does not lead to a significant improvement of P, and v ei-
ther as shown in figure 4.2. This is not surprising, since this vertical betatron phase
advance was custom designed for a snake scheme (0777)8fs.

Py, and v for higher—order spin dynamics in the snake—matched and phase—
advance-matched HERA—p ring are shown in figure 4.3. While the overall behavior
of Py, over the complete acceleration range of HERA—p looks similar to the re-
sult obtained with linearized spin—orbit motion, which was displayed in figure 3.18,
higher—order effects become very strong at high energies, especially in the vicinity of
the critical energies where perturbations of spin motion in each FODO cell accumu-
late. The spin tune spread at momenta below 400GeV /c is small and higher-order
effects seem to be benign even at these critical energies. A comparison with figures
4.1 and 4.2 shows that the special scheme obtained by matching orbital phases and
snake angles would be a very good choice for HERA-p up to 300 or 400 GeV/c. For

linearized spin—orbit motion, this snake-matched scheme does not produce a strong
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Figure 4.1: Py, and v for particles with a vertical amplitude corresponding to the
2.50 emittance in the HERA—p luminosity upgrade lattice with the ($0%0)6fs scheme.
Top: The maximum time average polarization Py, for the complete acceleration range
(left) and for the critical energy range above 800GeV /c which has to be crossed when
accelerating to the proposed storage energy of 870GeV/c. Bottom: the corresponding
amplitude dependent spin tune v(J,). The second—order resonances v = 2Q), and v =
1 —2Q, are indicated (red).

reduction of P, at any critical energy, but the higher—order effects become so dom-
inant at the top energies of HERA—p, that this advantage does not survive. In fact,
Py, in figure 4.3 (top-left and middle) shows even more resonant drops than in the
previous figures. For the amplitude dependent spin tune v in figure 4.3 (bottom)
an advantage survives however. It comes close to a second order resonance at fewer
places and does not exhibit spin tune jumps which are as strong as those in the
previous figures.

In this snake-matched scheme, the influence of higher—order effects can be seen
very clearly, because the first—order effects have been matched to be very small.
Unfortunately this analysis shows that completely snake matching the spin pertur-
bations in the arcs of HERA-p with 4 Siberian Snakes is not advantageous for Py, ,
since reductions of Py, due to higher—order effects can be increased by this measure
and dominate at high energies. Even around 300GeV/c there are resonant dips of
Piim in figure 4.3 (middle) but they are less pronounced than those in the previous
figures so that the snake matched scheme should be very advantageous at these
energies.



4.1. HIGHER-ORDER RESONANCES AND SNAKE SCHEMES 115

0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0
100 300 500 700 900 800 810 820 830
p (GeV/c) p (GeV/c)
v , IR ; . v
06 . | 06
W !
05 uquuWwﬁ!%% ‘ 0Sh AN UL
0.4 04
100 300 500 700 900 800 810 820 830
p (GeV/e) p (GeV/e)

Figure 4.2: Py, and v for particles with a 2.50 vertical amplitude in the HERA—p lu-
minosity upgrade lattice after the betatron phase advance between opposite regular arc
structures was adjusted to be an odd multiple of w. Together with the snake scheme
(0557%), this would lead to a cancelation of the perturbations of linearized spin-orbit
motion produced by the arcs. But here results for the standard scheme (50%0)8fs are
displayed. Top: The maximum time average polarization P, for the complete accelera-
tion range (left) and for the critical energy range above 800GeV /c which has to be crossed
when accelerating to the proposed storage energy of 870GeV /c. Bottom: the correspond-
ing amplitude dependent spin tune v(J,). The second-order resonances v = 20, and

v =1-2Q, are indicated (red).

4.1.3 Filtering of Siberian Snake Schemes

When trying to optimize Py, and the spin tune spread of v one is therefore faced
with two problems: The effect of linearized spin—orbit motion has to be minimized
while the higher—order effects are not allowed to build up too strongly.

Since there are no analytical methods for comparing the higher—order effects of
different snake schemes, an empirical computer algorithm for finding optimal snake
schemes has been employed [100, 127].

The Filtering Algorithm

To find out which directions of the rotation axes of Siberian Snakes would be ad-
vantageous, the following automated filtering algorithm was introduced:

1. Determine a set of snake angles from which the best snake scheme should be
chosen. Over 10° schemes were investigated.
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Figure 4.3: Py, and v a 2.50 vertical amplitude after the betatron phase advance

between opposite regular arc structures was adjusted to be an odd multiple of w. The

(055 %)8fs scheme is used. The resonances v = 2Q), and v = 1 — 20, are indicated (red).
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2. Find all snake combinations for a flat ring which lead to a spin tune of vy = % .

The requirement for these schemes is given below equation (2.75).

3. Allow only snake combinations with an even number of horizontal Siberian
Snakes and therefore vertical 7ig. The use of type III snakes was also investi-

gated [21, 128].

4. Compute the maximum time average polarization < 7 > over the whole energy
range of HERA—p using linearized spin—orbit motion and filter on high average

values of PV the approximation of Py, obtained by linearized spin—orbit

lim
motion.

5. For the most promising remaining snake schemes, i.e. those with the highest

average Plgr)b, compute now Fj;,, and v non—perturbatively for a vertical oscilla-
tion amplitude by the SODOM-2 method. 1 have usually used a 2.50 vertical
amplitude, which contains 95.6% of the beam if it has a Gaussian distribution
in the vertical degree of freedom and all longitudinal and radial amplitudes
are allowed. The snake scheme which leads to the smallest spin tune spread is

then chosen for further analysis.

6. Use stroboscopic averaging, anti—-damping, and spin—orbit tacking as described
in the next sections for further analysis of the snake scheme.

The steps 1 to 4 of this filtering algorithm have been very efficiently automated
in the code SPRINT [112, 100]. During the investigations the snake angle of each
of the 4 snakes were allowed to vary in steps of 22.5°. During the filtering analysis
in [21] it was found that type III snakes can be helpful and But for reasons already
described below equation (3.58), type III snakes will no longer be considered here.

Also schemes with 8 snake were tested but for snake angles which are multiples
of 45°. Schemes with 8 Siberian Snakes have been described in [80]. To put Siberian
Snakes at the centers of the arcs of HERA—p would be very costly and therefore one
should try to avoid schemes with more than 4 Siberian Snakes.

The most destructive energy range which has to be crossed to reach the proposed
operation momentum of 870GeV /c is located between 800 and 835 GeV/c. This is
due to the very strong resonances corresponding to GyA. = 17 £ A in figure 3.7.
It should be noted that the result of filtering depends strongly on the energy range
over which Py, and the spread of v are optimized. If one filters snake schemes for
an energy range in which there is only one very strong resonance at which the spin
phase advance and the orbit phase advance have the relation —GyA, + A = N,y44 of
equation (3.34), then filtering will mostly compensate the perturbation described by
the spin-orbit coupling integral responsible for this resonance, either If or I, by
adjusting the spin phase advance between sections appropriately. This can be seen in
figure 4.4 (left), for which filtering had been performed in the momentum range from
790GeV/c to 820GeV /c. In figure 4.4 (bottom) one sees that for linearized spin—orbit
motion the destructive influence of all very strong resonances due to GyA, + A =
N,4q have been strongly reduced over the whole of the HERA—p momentum range,
while these effects for GyA. — A = N,y4g have been increased. Correspondingly,



118 CHAPTER 4. HIGHER-ORDER SPIN MOTION

filtering over an energy range from 820GeV /¢ to 850 GeV/c reduces the effects due
to GyA, — A = N,q4q in figure 4.4 (right) while it does not lead to improvements at
energies where GyA. + A = Nyy4.
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Figure 4.4: Py, and v for linearized spin motion of particles with a 2.50 vertical am-
plitude in the HERA—p luminosity upgrade lattice after implementing filtered 4 snake
schemes. Left: Snake angles (top) and Py, (middle) for the snake scheme (3ZZIZ)8fs
found by filtering the 6 fs scheme in the momentum range from 790GeV /c to 820GeV /c.
Right: The (Z22IZZ)8fs scheme found by filtering for the energy range from 820GeV /c
to 850GeV/c. Bottom: Py, for the (g%%g—”)é%fs scheme for the complete momentum

range.
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Filtering therefore has to be performed over sufficiently large energy ranges. Af-
ter a very efficient implementation of the filtering algorithm in the program SPRINT,
filtering was performed for the complete energy range from 40GeV/c to 900GeV /c.
Figure 4.5 shows Py, and v for the best snake schemes found for HERA—p with 6
flattening snakes and with 8 flattening snakes. While both snake schemes perform
better than all the standard schemes, the tune spread is a bit smaller in the 8fs
scheme where the ring is symmetrized by two flattening snakes in the West.

The best snake scheme found by filtering over the complete momentum range
from 40 to 920GeV after HERA—p has been symmetrized by 8 flattening snakes is
the (%%%%)st scheme. Pj;,, and v obtained with the SODOM-2 method for this
scheme are shown in figure 4.6. Compared with the other snake schemes discussed
so far, Py, is high and v has a remarkably small spread around the closed—orbit spin
tune vy = % for most energies. However, at the critical energies the spin tune spread
is larger than in the snake matched scheme. In particular the small spread of v is
very favorable for polarized proton acceleration, since fever higher—order resonances
will be crossed during acceleration. Since the loss of polarization at higher—order
resonances can be described by a Froissart-Stora formula for every isolated higher—
order resonance crossing as shown in section 2.2.11, the reduction of the spin tune
spread can directly lead to less reduction of polarization during the acceleration
cycle.

However, the full energy can only be reached by acceleration through the very
strong residual resonance structures at around 804GeV /c and around 832GeV/c; and
to find out whether the optimized snake schemes can lead to higher polarization at
high energy than standard schemes, the process of acceleration through the critical
energy regions has to be simulated by a tracking program.

4.1.4 A Note on Spin—Orbit Tracking

The comparison in section 4.1.2 of linearized spin—orbit motion and non—perturbative
computations of 7i(Z) for one degree of phase space motion has shown that more ac-
curate simulations of spin dynamics in HERA are required. The more advanced
methods which will be described in the following sections evaluate single particle
spin—orbit tracking data to determine the invariant spin field and the amplitude de-
pendent spin tune. Various methods of particle tracking have been developed for an-
alyzing properties of particle optical devices in general [129, 130, 131, 132, 133, 134].
For proton storage rings, tracking methods for dynamic aperture and lifetime stud-
ies have been brought to a high level of sophistication [135, 136, 137, 138, 139, 140].
If Stern—Gerlach forces are neglected, the orbit motion is not influenced by the spin
motion and these established techniques of symplectic particle tracking can be used.
While these programs are normally used to analyzed stored beams, for the analysis
of polarized proton motion the acceleration process is of particular importance [141].

Since here the average polarization of the beam is being investigated, and since
that gets its main contribution from the core of the beam, spin—orbit motion in the
tails of the beam does not have to be simulated very well. In fact, the sophisticated
tools which were developed to analyze dynamic aperture and lifetime are custom
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Figure 4.5: Py, and v of particles with a 2.50 vertical amplitude in the HERA-p
luminosity upgrade lattice after installation of the two best filtered schemes with 4 Siberian
Snakes. Left: The snake angles (top) for the (32ZZZ)6fs scheme found by filtering when
6 flattening snakes are given lead to a favorable Py, (middle) and v (bottom). Right: The
best snake scheme found by filtering when HERA-p is symmetrized by 8 flattening snakes
(top) is (33732 7)8 fs and leads on average to an even higher P, and to an even smaller
spread of the amplitude dependent spin tune v. The second-order resonances v = 2¢),

and v = 1 — 2(), are indicated (red).

designed for particle motion in the tails of the beam and are not necessary when the
average beam polarization is studied.

In the HERA—p ring, the 1o normalized emittances corresponding to one stan-
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Figure 4.6: P, (top) and v (bottom) for the (2F3Z3X2)8 fs Siberian Snake scheme.
Together with the snake—matched scheme, this is the most promising scheme of Siberian
Snakes found so far by the filtering algorithm. The second-order resonances v = 2¢),, and

v =1-2Q, are indicated (red).

dard deviation of the beam size are typically approximately 4mmm mrad in the
horizontal and vertical direction and around 17.57mm rad in the longitudinal direc-
tion, which corresponds to 1o values of § = 1.1 - 10™* and 7 = 16cm.

For the linearized spin—orbit motion in chapter 3 and when analyzing higher—
order effects in chapter 4 up to here, particles with a 2.5¢ phase space amplitude
were studied. For one degree of freedom, this amplitude contains 95.6% of the beam
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if it has a Gaussian distribution and arbitrary phase space amplitudes in the other
two degrees of freedom are allowed. One might argue that it would suffice to study
smaller phase space amplitudes, since a loss of polarization for 4.4% of the beam can
be tolerated. This view has not been adopted here, since (1) computational analysis
of an accelerator should leave room for some imperfections in the description of the
accelerator and (2) since the polarization can be reduced for particles at large phase
space amplitudes in all three degrees of freedom, and only 87% of the particles in
a Gaussian beam have phase space amplitudes below 2.50 in all three degrees of
freedom.

As explained in section 2.1, spin is most efficiently propagated along a particle’s
trajectory using quaternions. This is done by starting the following iterative proce-
dure with an initial phase space point Zy at the entrance of the first optical element
and with an initial spin transport quaternion of Ay =1, :

Zo=Mu(Zs1), Ap= Bu(Zu1)Any (4.10)

where Mn(g) is the transport map for the phase space coordinates and B, (Z,_1) is
the transport quaternion of the nth optical element.

Without beam—beam interaction, at 2.5¢ the dynamics is often described well by
linear phase space motion. Although nonlinear terms in the transport maps Mn(,?)
of the optical elements are not essential in the core of the beam, the nonlinear
dependence of the spin transport quaternions B,(Z) on phase space coordinates
can be important. The spin transfer quaternion of the individual elements can be
computed in a power expansion with respect to the phase space variables 2.

The equation of motion for the quaternion (2.36) has the form

d - . .
A= 0(2(0),0)4 . (4.11)

where the antisymmetric 4 x 4 matrix £ is constructed from the precession vector Q.
The starting conditions are 2(0) = 2, A= (1, 6)T The quaternion /Y(H) depends on
the initial phase space coordinates Z; and can be expanded in a Taylor series with
respect to these coordinates. In the following I devise an iteration method for A,
which is the Taylor expansion to order n of A [142].

The precession vector Q is split into its value on the design curve and its phase
space dependent part as Q(Z’, ) = 60(0) —|—621(Z’, ). The spin motion on the design
curve is given by %/YO(H) = QO/YO(Q). Small phase space coordinates will create a
rotation which differs little from /YO(H) and the phase space dependent rotation is
written as a concatenation of Ay and the Z: dependent quaternion (1 + 4, 5) which
reduces to the identity for Z; = 0 since the aberrations ¢ and § vanish on the design
curve. With equation (2.33) one obtains

Z:Ao(lgé). (4.12)

The quaternion A is now inserted in the differential equation (4.11) to obtain

d 146 d (145Y o, on 146
@A()( 5 )+Ao@( 5 )—(Q +0=7) A il (4.13)



4.1. HIGHER-ORDER RESONANCES AND SNAKE SCHEMES 123

Taking into account the equation on the design curve and the fact that Al describes
the inverse rotation of A,, one obtains

%(ng(gﬁ)(l} ) : (4.14)

—

with Q = AOTQEIAO . Writing the Taylor expansion of (§,4) to order n in Z; as
(0, 05) , one finally obtains the iteration equation

( ; ) = [ a(.00).0 (1 ;5)659 , (g) —0, (4.15)

where =, describes the equivalence up to order n. The first order of this iteration
method was used for the spin transport in the program SPRINT [112, 100] and was
evaluated up to second order using MATHEMATICA in [143, 144]. These second-
order quaternions are ready to be used for an analysis of nonlinear spin aberrations of
individual optical elements. The Taylor coefficients of § and § are the spin aberration
coefficients. The aberrations are not fully independent but they are related by the
equation (1 + 5)2 + 62 = 1.

The iteration equation shows that in every iteration order of equation (4.15), Qis
multiplied once. This matrix contains terms which are linear in GGy, due to the trans-
verse field components in the T-BMT equation (2.5). The matrix Q) additionally
contains nonlinear parts in 2; due to nonlinear fields which make Q(Z, 6) a nonlinear
function of 2 and due to the nonlinear phase space motion, which makes 2 itself a

. = . ~ ~ ~>
nonlinear function of Z;. After separating the first-order part, Q = Ql + Q‘Z, one
can observe that the first—order part contributes n times to §,, leading to terms of

(G~)™. The higher—order terms of QZQ contribute to aberrations of order n already
after fewer iterations and therefore lead to smaller powers in Gy. For large values of
G~ = 1756 in the case of HERA—p, this observation explains why nonlinear phase
space motion and the contribution of nonlinear fields to Q are not very important
when computing the spin-transport quaternion of individual elements. For all the
spin—orbit tracking presented here, the higher—order spin motion in the linear fields

of Ql was included.

4.1.5 Polarization Reduction During Acceleration

It has been observed in section 3.2 that the non—flat regions lead to significant
spin perturbations. In fact, when simulating HERA—p without non—flat regions, the
destructive spin tune jumps at second order resonances disappear completely. To
reduce these perturbations, the East region of HERA—p will now be simulated as
flat since the HERMES experiment located in this region does not require that the
proton beam is on the level of the electron beam.

When a particle is accelerated across the critical momentum region from 800
to 806GeV /c with a typical acceleration speed of 50keV per turn, the adiabatic
invariance of Jg = i - S can be violated and the level of violation will depend on the
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orbital amplitude and the snake scheme. This violation is illustrated in the graphs
in figure 4.7 which, for three different snake schemes, show the average spin action
Js for three particles at 806GeV /c which had initially Js = 1 at 800GeV/c before
they were accelerated.

The change of Jg in the critical energy region depends on the initial phase space
angle so that if .Jg had been computed only for one particle, it could by chance have
had an angle variable for which .Js does not change although it would have changed
for other points with the same vertical phase space amplitude. To avoid that Jg
seems to be invariant due to such a chance effect, three particles were accelerated
and the average Js is displayed in figure 4.7.

At small phase space amplitudes, Js is nearly invariant and therefore Jg = 1.
For each of the three snake schemes, there is a phase space amplitude Jy,,,, above
which Jg < 1 and the regions of the beam with an amplitude above .J,,,,, lead to a
reduction of the beam’s polarization during the acceleration process.

For the standard snake scheme (0507)4fs, only the part of the beam with less
than 17mm mrad vertical amplitude can remain polarized. For the filtered scheme
(%%%%)st, phase space amplitudes up to 4rmm mrad are allowed. Finally the
snake matched scheme has the most stabilizing effect for spin motion and figure 4.7
shows that vertical amplitudes of up to 8tmm mrad are allowed. This shows that

Js 1= Js 1leeeos Js Lleeseooooes -
08} -« . . 0.8 . 0.8
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Figure 4.7: The average spin action Js of 3 particles at 806GeV for particles starting
with Js = 1 at 800GeV/c for three different snake schemes. Left: (05075)4fs, Middle:
(323232 7)8 fs, Right: (502Z)8fs scheme. Particles with an amplitude above 1 (left), 4
(middle), and 8 (right) lead to a reduction of polarization when the beam is accelerated

through this critical energy region.

the snake matched scheme is superior to the other four-snake schemes studied so far.
It stabilizes spin motion for 10 times larger phase space amplitudes than some other
snake schemes. Nevertheless, 87mm mrad is not enough to allow high polarization
at top energies in HERA—p.

I have performed two different snake matches for eight—snake schemes. Snake
matching eight—snake schemes for rings with super—periodicity 4 has been illustrated
in figure 3.16. Since HERA—p has no super—periodicity, the snake matching has to
be modified in a way similar to that for four-snake schemes in section 3.3.3. This
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snake match leads to very high Py, and to a very small spin tune spread. But to
demonstrate that it is possible to further stabilize spin motion in HERA—p by such
schemes, figure 4.8 shows the vertical phase space amplitudes for which Js remains
invariant. The more effective of the two snake scheme stabilizes spin motion up to
a vertical amplitude of 147mm mrad.
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Figure 4.8: The average spin action Js at 806GeV for particles which started with
Js = 1 at 800GeV /c for 2 different snake matched eight-snake schemes. Particles with
an amplitude above 13 (left) and 14 (right) lead to a reduction of polarization when the
beam is accelerated through this critical energy region.

These results for the various snake schemes are collected in figure 4.9, where
it becomes clear that snake matching either with 4 or with 8 snakes leads to a
significant improvement. But it follows from the discussion in section 4.1.4 that it
does not suffice to avoid a reduction of .Jg for particles with less than 147mm mrad
amplitude. It would therefore be very helpful to use electron cooling in PETRA
[145, 146, 147, 148] so as to reduce the emittance in HERA-p and to allow for an
acceleration without loss of polarization for most particles in the beam.

These results show that a simple formula for the number of snakes which are
required for a given accelerator cannot be given since different snake schemes lead
to very different stability of spin motion.

Such a formula has been sought using the following very simple argument: the
Siberian Snakes should dominate the spin precession produced by closed orbit dis-
tortions and betatron oscillations. The resonance strength [103] ¢, is a measure for
that precession and is shown in figure 3.5 for 1o vertical betatron oscillations in
HERA-p. Then one obtains the rule of thumb that the number of snakes has to be
sufficiently larger than 5e, [149]. This would lead to more than 4 Siberian Snakes
in HERA—p. However, it has become apparent that the efficiency of four—snake
schemes depends very much on the snake angles of the individual snakes [21]. Fur-
thermore it has been shown that 8 snakes are not necessarily better than 4 snakes for
the non—flat HERA-p ring [80]. But if eight-snake schemes are spin-matched, they
can produce a significantly larger Fj;,, reduce the fluctuation of Py, and v with
energy, reduce the overlapping of resonances in the critical regions, and ultimately
enable the polarization of particles with larger phase space amplitudes be preserved
during the acceleration process.
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Figure 4.9: The average spin action Jg at 806GeV for particles which started initially
with Jg =1 at 800GeV /c. Violet: The standard scheme which stabilizes spin motion for
particles within 177mm mrad, Cyan: the filtered four—snake scheme stabilizes 4Trmm mrad,
Red: the snake-matched four—snake scheme stabilizes 87mm mrad, Green: the snake-
matched eight—snake scheme which stabilizes 137mm mrad, Blue: and the snake-matched
eight—snake scheme which stabilizes 147mm mrad of vertical phase space amplitude.

4.2 Obtaining 7(2) by Stroboscopic Averaging

For linearized spin—orbit motion in flat rings, there is no effect of radial and longi-
tudinal motion on spin dynamics. But it has been observed [123, 27, 80] that these
degrees of freedom become important around critical energies when higher—order
spin dynamics is taken into account. The SODOM-2 algorithm has been used to
analyze vertical motion in optimized snake schemes in section 4.1.3. For one de-
gree of freedom, the use of 83 Fourier coefficients has turned out to be sufficient
for amplitudes of up to 2.5¢ in HERA—p. For more degrees of freedom, this al-
gorithm requires an extremely large number of Fourier coefficients and then needs
large amounts of computing power. For such cases, the following algorithm [100]
provides an efficient way to compute an fi—axis for all three degrees of freedom.

—

Consider a particle beam with a spin field f(Z,0) . Its initial spin field in the
Poincaré section at 6 is ]E(;(Z) = f(Z, fp) . In section 2.2.8, it was shown that the
time average polarization at a phase space point Zy in that Poincaré section has no
component perpendicular to the invariant spin field if this field exists. The time
averaged polarization is therefore either zero or parallel to 7(zy). This knowledge
can be used to compute the invariant spin field. The infinite sum involved in the
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time average polarization at Z(6y) = Zy can be approximated by a sum over N turns,
{1} (F0:00) = {fin(.00) = > f(Z0,00 + 2mj) (4.16)

1=0

1 N . . . L |
— m ZE(Z(% — 2#])700 — 2my; 90)f0(2(90 — QWJ)) )
7=0

If |{f}N| does not vanish, this yields the following approximation of the r—axis:

{f}N(207 90)
[{/ 3 (Z0, 60)]
This method of computing an ri-axis is called stroboscopic averaging [100].

For ease of computation, usually the special choice for the initial spin field is
fo(Z) = 7y at azimuth 6y and one can simplify { f}x to

i(Zy, 00) ~

(4.17)

o 1 XN
{/In(Z0,00) = N1l ZE(E(% —2mj), 00 — 2mj; 0o)rio(bo) - (4.18)

Equations (4.16) and (4.17) define an algorithm for obtaining an 7i—axis. The fol-
lowing two kinds of pathologies can occur:

1. The ri—axis is not unique: if the proposed algorithm converges, then the result
could depend on the choice of fo(2).

2. The stroboscopic average {f}N vanishes for N — 400 or the sequence in
equation (4.16) does not converge.

Both pathologies can be studied with the algorithm. The first situation occurs when
the spin tune is in resonance with the orbit tunes and therefore the ri—axis is not
unique, as described in section 2.2.7. In almost all examples studied so far, the
stroboscopic average seems to converge, implying the existence of a spin field which
satisfies the periodicity equation (2.79) to high accuracy. The second case is not
only problematic computationally but describes a beam with no polarization usable
for experiments. In such a beam the time average polarization is zero and there is
little average polarization available for particle physics experiments during most of
the approximately 2 billion turns for which protons are typically stored in HERA—p.

In equation (4.18), one can see that the only information needed from tracking
is the set of the N + 1 phase space points Z(6y), 2(0g — 27),...,Z(0y — 27 N) and
the N matrices R(Z(0y — 2m), 00 — 2m;60), R(Z(0g — 4m), 00 — 47;6), ..., R(Z(0 —
27 N), 00 — 2w N;0y) . Each matrix is a product of one turn spin transport matrices
R(Z,00; 00+ 27) and describes the spin transport for a particle which finally arrives
at 2 .

Since only knowledge of spin and phase space coordinates at y are required,
one can reformulate the algorithm in terms of one turn maps M with which Z(6o +

—

21) = M(Z(6y)) and one turn spin transport matrices R(Z) with 5(90 + 27) =
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E(E(@O))g(ﬂo) . All other quantities which depend on  are also taken at the specified
azimuth 6y. For simplification, this azimuth is not indicated in the following. In
terms of the one turn map, the periodicity condition for the invariant spin field

R(2)() = (M (2)) (4.19)
has already been stated in equation (2.79). Using the one turn map and the one

turn spin transport matrix, the stroboscopic average of equation (4.18 ) is written
as

{]F}N(Zo, bo) = NLH 2_: lj E(M_k(zo))ﬁo . (4.20)

Here the convention [[)_, B = 1 is used and [T ( ~*(Zy)) is taken to mean the
following order of multiplication: R(M (% )) (M 1(Z)).

The following algorithm shows how an n—axis at Zy and 6y can be obtained by
evaluating this formula in the case of linear orbit motion:

1. Compute the linearized one turn phase space transport matrix with Z(8, +

2m) = MZ(6,).
2. Compute the set of N 4 1 phase space points

C={&=(M")yzlje{0,....N}}. (4.21)

3. Compute the rotation matrix R(Z.,.) which describes the one turn spin mo-
tion starting at 6y for particles on the closed orbit Zz., () and extract the
corresponding rotation vector 7.

4. Starting with a spin parallel to 7y at every phase space point in ', track until
the phase space point Z is reached. For a given j this requires tracking j turns
starting at ¢;.

5. Compute the set of spin tracking results as

—

B = {bo(Z) = 0, bi(%) = R(&)... R(E)iiolj € {1,...,N}} .  (4.22)

6. Compute the average of the elements in B, S_"N(ZO) = N}H ZN b; i(Z0) and for

|Sy| # 0 compute 7

The vector gN(ZO) is equivalent to {f}N(ZO, fp) in equation 4.16, if the initial distri-
bution of spins is given by 7y as in the equations (4.18) and (4.20).

4.2.1 Convergence properties

The average Sy has been defined by

Sn(Z) = S Z f[ R(&)7o - (4.23)
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To check how well Sy satisfies the same periodicity condition (4.19) as that for the
n—axis, one can calculate

. . 1 N . .
SN(MZO) = m Z E(Ck—1)no
7=0k=1
1 N-1 ﬁ
= (Mo + R(&)no) , (4.24)
N + 1 7=0 k=0
. 1 N 7
E(Z0)Sn(0) = §7 > I B(&)iio (4.25)
7=0 k=0
- o = - 1 ST .
R(Z0)Sn(20) — Sn(MZ) = m(ﬁ( 0)bn(Z0) — 7o)
L Sy o

For large N, the error becomes arbitrarily small. But this does not yet establish
the accuracy to which the approximation iy of the ni—axis satisfies the periodicity
condition. To derive this accuracy, it is assumed that the angles between 77y and the
vectors Z;]-(EO) are smaller than some positive number £ < 7/2 forall j € {1,..., N+
1}. As shown in figure 4.10, the length |5N+1(MZO) — 7| is then smaller than
2sin(€/2). The length of Sy is at least cos(£); and here it becomes essential that
there is a limit of 7/2 on the angle £. The approximation iy of the f—axis then
satisfies the periodicity condition to the following accuracy:

T L Sn(Z) Sn(MZ)
Ay = |R(zo)nn(20) —nin(Mzo)| = |R(20)—= - —
B(Zo)in (7o) = (M)l = \B(zo)yz 2 mmw‘
1 s SN ME = 1SN 5
= = B 20 SN Zo) — SN MZO = SN MZO
TRENT R(%)Sn(%0) (MZ) + TRGVERT (Mz)
< |§Ntﬁ)|<|ﬁ<zo>§]v<zo>—§N<Mzo>|+||ﬁ<zo>iN<zo>|—|§ (M2)]])
9 LG ey & - 4sin(£/2)
S G RSN G0) = WM < T Yoy (427)

The error Ay by which the vector iy (25) violates the periodicity condition (4.19)
of the fi—axis is therefore smaller than 2sec(£/2) tan(§)/(N + 1) and converges to 0
for large V.

If one can prove the existence of a suitable number ¢ < 7/2 for some spin
transport system, then 7y satisfies the periodicity condition (4.19) for the ri—axis
up to an error which is smaller than or equal to 2sec(¢/2)tan(¢)/(N + 1). Since
evaluating B by equation 4.22 requires tracking 7' = (N +1)N/2 turns, the accuracy

is bounded by 1/2/T sec(£/2) tan(€). This slow convergence with the square root of
T is a very serious limitation and in the next section it will be demonstrated how
the rate of convergence can be considerably improved.
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Figure 4.10: Estimation of convergence speed. To guarantee convergence of the strobo-
scopic average, the angle £ between the direction of 7y and the transported spins has to
stay below 7 /2.

Having shown that A, converges to 0 linearly with 1/N, it is interesting to see
how 7y converges to the ri—axis, if an invariant spin field exists. The following
derivation is very similar to that in section 2.2.8 which established that the time
average polarization is parallel to 7(Z) . It will be assumed that the phase space
motion can be described in terms of action—angle variables and that the motion is
strongly non—orbit-resonant and non—spin—orbit-resonant according to the sections
2.2.7 and 2.2.8. The stroboscopic average is now performed in the coordinate system
(t1,tz, ) which has been introduced in section 2.2.7 and in which one writes §N =
SNty + sy 2tz + syani. First the tracking points ¢; are established. Note that the
amplitude dependent spin tune I/(j) = v(¢;) is the same for all tracking points since
the action variable .J is an invariant of motion. In the coordinate system (1, tz, 1),
the vector components of the 27 periodic spin 7ig on the closed orbit are not constant
but depend on the phase space position. This vector is transported from the phase
space points ¢; to Zoﬁ(ci)), j) by the rotation matrix

cos(j2rv) —sin(y27v) 0
sin(j27v)  cos(j27v) 0 | (4.28)
0 0 1

leading to the stroboscopic average

[ N cos(j2nv) —sin(j27v) 0 n071(CI)’ —jQWQ)

sin(j2mv)  cos(j2nv) 0 no2(® —j27Q) | . (4.29)
1

0 0 n073(<§ —]Qﬂ'é)

Sy = ——
YTN+I &
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Here the dependence of 7y on ® in the coordinate system [u7, Uy, 7] is explicitly indi-
cated. The dependence on J is not indicated since the action Variables are constant
during the particle tracking. The third component of Sy is E] —0 N+1 ~—=no3(P —jQWQ),
the first and second components in complex notation are

1 N

SN—SNl-l-ZSNz—Ni_I_1

e (CI) — j27rQ) (4.30)

where fzo(cﬁ) = n071(<ﬁ) —I—inog((ﬁ). In terms of the Fourier components ﬁO(E) of ﬁo(é)
one obtains the inequality

e ‘mzem”“"“@)Zﬁo@)em

ZE: 1 — eiQﬂ(U—E-Q)

1 2

< AT 4.31
= N+1§|1 eﬂw(um)“"o( ) (4.31)

If the components of 77y in the coordinate system [i, 13, 77| have an analytic extension
in ®, then the sum over k is finite due to the assumed strong non—spin—orbit—
resonance as has been explained after equation (2.96). Therefore $x converges to 0
linearly with 1/N. Similarly one obtains the third component of Sy as

1 1 — e—i(N+1)27rl€~C§

SN3 = n0,3(0) + N1 g) 1 — e_iQWE.Q

Hoa(k)er® (4.32)

were the sum over k is finite due to the assumed strong non—orbit-resonance. There-
fore sy 3 converges to n93(0) linearly with 1/N. Here this equation has been re
derived for clarity, although it can be obtained directly by setting f( 7) = fip in
equation (2.97). Since 1Sn| > cos(§) and & < /2, it is guaranteed that Sy does not
converge to 0 and therefore 1 3 does not vanish. Together with the convergence of

Sy the convergence of iy to either 7 or —7 follows from

2
Mln(|ﬁ]\7iﬁ|2) = MIH( S_: fL’ ):(1_ |SiV73|)2_|_( i ) |SN| |SN,3|
N S| SN Sl
|5N| |sn 3] snl g 5n|
PR BN — o |14+ (2802 — 1) < 2(50)2 L (4.33)
|SN3| |5N3| |3N,3|

There is a number N* such that the absolute value of the N dependent part of sy 3
in equation (4.32) is smaller than n3(0)/2. Taking this number of turns N to be
bigger than N*, one finds

]
10,3(0)]
which, together with equation (4.31) finally establishes that 7y converges to 7 lin-
early with 1/N.

N — 71 < 22 (4.34)
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4.2.2 An Algorithm with Faster Convergence

In the previous section, an algorithm was introduced which converged linearly with
the inverse square root of the number T' of turns tracked. However, it is possible to
obtain convergence linear with 1/7', when one takes advantage of the orthogonality
of the spin transport matrix. To illustrate this, again an algorithm is established.

1. Compute C' = {&; = (M~") Z|j € {0,..., N}} as before.
2. Define three orthogonal spins {¢), &2), ¢®}.

3. Obtain the sets S; of the three vectors S_Y‘](l), S_Y’](Q), and gj(g) by tracking the et*)
for N — j turns
S = R(G4)... R(en)E™ . (4.35)

4. From the set of vectors S; and the set Sp, one can obtain the spin transport
matrix from the phase space point ¢; to Zy denoted by R(¢;). This becomes

clear when one realizes that g(()k) = E(E’j)gj(-k) for all k. Obtaining these N + 1
transport matrices requires the propagation of 3 spins around the circular
accelerator for N turns.

5. Now theset B = {R(&;)fio|j € {0,..., N}} can be computed, which is identical
to the set denoted by B in the previous section.

6. The normalized average of B, denoted by 7y, can now again be computed.

In this approach one only has to track three initial spin directions over N turns,
leading to 7' = 3N. The error is therefore bounded by 6sec(¢/2) tan(¢)/T. This im-
plies convergence linear with one over the number 7" of turns tracked. The following
example illustrates the speed of this method: when the angle £ happens to be 45°,
and an accuracy at the 1072 level is required, this linear convergence approach only
requires 6500 tracking turns; when the angle £ is small, fewer iterations are needed.

Backward Tracking

In the two algorithms mentioned above, one needs to find the set C' of N 41
backwards tracked phase space points, and then launch spins at these points and
track forward so as to compute the set B. In the case of linear motion, it is trivial
to obtain these backward tracked phase space points. One simply transforms Zp into
the action—angle variables of the linear motion and determines the phase advance
per turn of the linear motion. Counting back these phase advances and transforming
the action—angle variables back into phase space leads to the points ¢;. In the case
of nonlinear motion, one would actually in addition have to to track for N turns
backwards around the ring.

In the case of the linearly convergent method, this extra effort becomes unnec-
essary. One can start with the phase space point Zp and launch three particles with
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spins along €1, &) and €®). Tracking backward in azimuth defines the N + 1 sets
P; of the spins [3§1), }3?2), and p_g-g) with
i = RT(&)...RT(&)e® | (4.36)

where advantage is taken of the fact that transposition leads to the inverse of the
orthogonal matrices. From the sets P; and {&(V), &?) &3} one can again compute
the spin transport matrix R(c;) and with these matrices one obtains the set B with

the elements [;J- = R(&;)1o, which again leads to 71y by averaging.

Forward Tracking

There is an even more fundamental problem in the case of nonlinear motion than
the computation time. When the lattice or the effect of separate nonlinear elements
are computed by nonlinear transport maps, the inverses of these maps might not
be known. In this case the required phase space points ¢; cannot be computed at
all. Nevertheless the vector iy can be obtained as follows. The arguments of the
section on backward tracking can simply be repeated for tracking forward. One
establishes the phase space points ¢; = M(E}_l) with & = Zp for 7 € {1,..., N} and

simultaneously the sets S; by tracking the three unit vectors S](-]i)l for one turn with

gék) = ™). As in the fourth step of the previous algorithm, one can then obtain
the spin transport matrix R(¢;) from the phase space point Z, to ¢;. The inverse
of this transport matrix is simply obtained by transposition leading to the vectors
gj = E(E})Tﬁo. The normalized average of the vectors gj is then the stroboscopic
average 7i;,, v of the inverse motion. For this average the error of the periodicity
condition for the inverse motion converges linearly to zero. Fortunately, an 7i—axis
of the inverse motion 7i;,,(Z) is also an n—axis of the forward motion, since the

periodicity condition of the inverse motion is
R (M7 (2))ti0(2) = it (M7TY(2)) (4.37)

That this leads to the periodicity condition (4.19) of the forward motion for 7y,

can be shown by inserting M(E) for 2 and subsequent multiplication with R(Z2)

4.2.3 Stoboscopic Average of Linearized Spin—Orbit Motion

In this section, linearized spin-orbit motion is considered as a way to illustrate
and to confirm the chief features of stoboscopic averaging. As in equation 3.1, the
complex coordinate « is used to describe a spin’s components perpendicular to the
rotation axis g for the closed orbit,

§ = Re{alm(0) + Im{a}(0) + /1 — |a|27e(6) . (4.38)

The coordinate «a is propagated from 6, once around the ring by the complex vector
G which was introduced in equation (3.3),

—

Q41 = G . 5]' + eiQWUOOzj . (439)
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The complex coordinate of 7ig is @ = 0, so that propagating this initial spin at a
phase space point zy for j times around the ring leads to the final complex spin
component

J

aj =y ET2moG (MR ) | (4.40)

k=1
With the column matrix A™" of the eigenvectors of the 6 x 6 dimensional one turn
matrix M, this reduces to

ei(k—l)ZWuoé . [A—ldiag(eq:ik%r@l)égo]

M-

a]‘:

o~
Il

1

e—i?wuoé . [A—ldiag(eik%r(uo:{:@l))AZ—'O]

I
me

ES
Il
—

eiQW(Vo:FQl) _ ei(j+1)27r(V0:FQl)

— i (A diag( JAZ) . (4.41)

1 — ei27r(l’0:FQl)

The N—turn stroboscopic average of a for linearized spin—orbit motion is given by

{atn() = %Z% (4.42)

eiQW(UOZFQl)

—i27mvg -1 73: vy 1 al (7 (v
= PG (A7 diag DAZI(1 - 1 Y SUHIeTa)

1 — ei2m(voFQi 5
J=1

For large N — oo, the fluctuating term averages to small values. With equation
(3.15) this leads to limy o {a}n(2) = B (AZy) which agrees with the n—axis o, in
equation (3.11). For large N, the error |[{a}n — ay,| converges to zero linearly with
1/N if there are no spin—orbit resonances with vy = +Q,; . Equation (4.42) shows

that the convergence becomes very slow close to first—order spin—orbit resonances.

4.2.4 Stroboscopic Averaging for the SRM

In order to illustrate which quantities can be computed and how effective stro-
boscopic averaging can be in numerical computations, it is applied to the single
resonance model, where the ri—axis has been derived in equation (2.118) to be

1 €, cos ®
n(®) = sig(é)X exsin® | | A=4/2+€, d=v9— kK. (4.43)
1)

If A is not an integer, some tedious manipulations lead to [100]

AN (®,]) — 7 (®,J)| = V2T — 7v , (4.44)
€x o1l —cos(N27A), /5
N5) 1 — cos(2mA) ] - (4.45)

TN-1 = [1—|-(
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One sees that [iy — 77| is an oscillating function of the resonance strength ¢, and
therefore of the orbital amplitude J. The local maxima of |y — 7i| increase with .J,
reflecting the fact that large orbital amplitudes reduce the convergence speed. This
behavior is plotted in figure 4.11 (top). For all graphs in figure 4.11, the parameters
vo = 0.3, k = 0.23, and ® = 0.32 were used. For large N, equations (4.44) and
(4.45) predict that the convergence is indeed linear with 1/N, as illustrated by the
slope of —1 in figure 4.11 (middle). Also one sees that |riy — 7i| vanishes for integer
values of NA if A is not also an integer. For integer values of A, one has
€r A

== (4.46)

Therefore in this case 11y does not converge to ri. This is no surprise since an integer
A amounts to the resonance condition V(j) + jo = 0 which leads to a non—uniqueness
of the ri—axis.

Figure 4.11 (bottom) shows Py, = §/1/62 4+ €2 as a function of the resonance
strength (blue curve). Even for N as small as 20, stroboscopic averaging is quite

accurate (red points).

4.2.5 Stroboscopic Averaging for HERA—p

In a realistic accelerator, the existence of the ri—axis cannot be guaranteed, but
an approximately invariant spin field can be found, if the series riy converges. To
indicate the convergence of this series, iy — 7iz0000| is plotted for the phase space
point with y; = 0.4mm and y! = 0 in the East interaction region for the current
HERA-p lattice. This corresponds to a vertical amplitude of 697mm mrad and is
therefore a particle at approximately 40 of the beam distribution. The slope of —1
in the double logarithmic scale of figure 4.12 illustrates clearly that the convergence
is linear with 1/N .

For particles which oscillate only in the kth degree of freedom in phase space,
one can easily check that the stroboscopic average iy is a good approximation to an
invariant spin field. The phase space points Z; in the Poincaré section at 6, obtained
by tracking a particle with initial phase space coordinates zy for many turns are all
on the curve with constant .J., which is referred to as invariant ellipse. Here this
curve is parameterized as Z(¢) with ¢ € [0,27). The vectors 7i(Z}) are also all on a
closed curve which is given by 7(z(g)). Such closed curves on the unit sphere are
invariant curves of spin—orbit motion since these curves are mapped on themselves
under the one turn spin—orbit transport.

In order for 7y to approximate an n-axis, the tracked spins S_"j for Sy = iin(Zo)
also have to lie approximately on a closed curve on the unit sphere. If the spin
of a particle initially has an angle ¥ > 0 with respect to the invariant spin field,
the tracked spins would not all be located on a one—parametric closed curve but
would wobble around this curve since the angle between the spin and the n-axis is
a constant of motion.

The pictures in figure 4.13 show invariant curves 7(Z(¢)) on the unit sphere for
the East interaction point of the current HERA-p lattice at 820GeV/c. The left
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Figure 4.11: All three graphs refer to the SRM with £ = 0.29, vy = 0.36. The deviation
of the stroboscopic average fixy from the analytically calculated 7 is shown as a function
of ¢, for N = 300 (top) and as a function of N for ¢, = 0.2 (middle). Bottom: Py,
computed by stroboscopic averaging with N = 20 (green points) and the analytically
calculated Py, (blue curve).

curve was obtained before, and the right curve after, the introduction of 4 Siberian
Snakes [21] into the accelerator. Here the standard scheme (0700)/fs6 was used. It
can clearly be seen that stroboscopic averaging yielded the ri-axis accurately and
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Figure 4.12: The accuracy |y — fiz0000/, Where the fi—axis was computed at the the
East interaction point of the current HERA—p lattice. The slope of —1 in the double
logarithmic scale illustrates that the convergence of |7iy — 72| is linear with 1/N .

that the variation of the ri—axis over the invariant torus is strongly reduced when
Siberian Snakes are used, leading to a Py, =< 7 > which is close to 1.

Distorted Invariants of Spin Motion

For the single resonance model, the 7i-axis is given by equation (2.118) as

1 €, cos ®
() = sig(5)X €xsin® | | A =4/02+ €. (4.47)
)

The invariant curves 77(®) are therefore circles on the unit sphere. For linearized
spin—orbit motion in the kth degree of freedom, the n-axis is given by equation

(3.27) as
an = \JJe( B ¥ + Brem %) . (4.48)

The real and imaginary part of «,, is therefore a linear combination of trigonometric
functions. This can be described by some 2 x 2 dimensional matrix B,

( ﬁ%ﬁ ) - B( :;1; %,i ) ) (4.49)
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S, 1

0.5

Figure 4.13: Variation of 7(Z(¢)) for the 20 vertical phase space ellipse of 16mmm mrad
in the current HERA-p lattice at 820GeV with 6 flattening snakes. Left: without Siberian
Snakes. Right: for the (0500)fs6 snake scheme.

which leads to the matrix equation of an ellipse,

(Re{an},lm{an})§T§< Eizi ) — 1. (4.50)

The invariant curves for linearized spin—orbit motion are therefore ellipses around
Tl -

When the invariant spin field is computed non—perturbatively, the invariant
curves 7(Z(p)) are no longer ellipses and their deviation from an elliptical form
shows how inaccurate the approximation of linearized spin—orbit motion is. In fig-
ure 4.14, such closed curves on the unit sphere are shown for different amplitudes
of vertical motion. The initial spin direction 7(Z;) has been obtained by strobo-
scopic averaging, and subsequent multi—turn spin tracking has lead to the displayed
curves. Even for the very complex invariant curves at high amplitudes, stroboscopic
averaging leads to accurate results.

The irregularity of the invariant curves of spin—orbit motion at high energy il-
lustrate effects which go beyond first—order resonances [123].

Coupling of the Degrees of Freedom

So far only vertical motion has been considered and for moderate phase space am-
plitudes the approximation of linearized spin—orbit motion works very well for one
degree of freedom even at the very high energies. Figure 4.15 was computed for
the current HERA—p lattice after the installation of 6 flattening snakes. It shows
that for purely vertical motion phase space amplitude of 4mmm mrad the maximum
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Figure 4.14: The invariant curves 7(Z(¢)) on the unit sphere for various phase space
amplitudes in the vertical degree of freedom: Left: 4, middle: 9, and right: 8 lmmm mrad
at the East interaction point of the current HERA—p lattice at 804GeV/c and with the
(0500)6 fs snake scheme.

time average polarization P, between 818 and 820GeV /c follows very closely the
correct curve computed by stroboscopic averaging using the program SPRINT. The
linear approximation fails for 16, 36, and 647mm mrad of vertical amplitude. The
location of the resonant reductions of P, shift with increasing vertical amplitude.
This is due to the amplitude dependence of the spin tune I/(j) .

Purely horizontal and purely longitudinal motion in a flat ring always leads
to an invariant spin field which is parallel to the vertical riy since the particles
travel only through vertical magnetic fields. When no vertical motion is excited,
this result is recovered by linearized spin—orbit motion. But in addition this linear
theory does not include any spin coupling between two different degrees of freedom.
When a particle in a flat ring has amplitudes in all three degrees of freedom, the
Py of linearized spin-orbit motion only depends on the vertical amplitude and
does not change with the horizontal or longitudinal amplitude at all. This is not
so when the invariant spin field is computed by stroboscopic averaging of element
by element tracking data. When a vertical amplitude is excited, the fields through
which a particle propagates vary with the horizontal and longitudinal amplitude, and
therefore Py, changes. Thus one observes crosstalk between all degrees of freedom
and the spin motion, even when the orbital motion is completely decoupled (linearly
as well as nonlinearly) [123]. A decrease of Py;,,, =< 7@ > with the horizontal and the
longitudinal amplitudes can be seen in figures 4.16 and 4.17, which were computed
for the flat model of HERA—p where the vertical bends are ignored. Therefore, in
the general case it is unfortunately not sufficient to use the linear approximation.

In HERA—p with 6 flattening snakes the situation is quite similar. In this case
particles which have no vertical but a horizontal or longitudinal phase space ampli-
tude do travel through horizontal magnetic fields in the vertical bends. Therefore
purely horizontal and vertical motion do have a noticeable depolarizing effect even
in the linear approximation, as can be seen in the figures 4.18 and 4.19.
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Figure 4.15: Py, for HERA—p with 6 flattening snakes computed with linearized spin—
orbit motion (red) and with stroboscopic averaging (blue) for normalized vertical ampli-
tudes of top-left: 4, top-right: 16, bottom—left: 36, and bottom-right: 647mm mrad.
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Figure 4.16: Py, =< 7 > for the flat model of HERA—p computed with linearized spin—
orbit motion (red) and with stroboscopic averaging (blue) for particles with a normalized
vertical amplitude of 47mm mrad and a normalized horizontal amplitude of top-left: 0,
top—right: 4, bottom—left: 16, and bottom—-right: 367mm mrad.



4.2. OBTAINING N(Z) BY STROBOSCOPIC AVERAGING 141

p (GeV/c) p (GeV/c)

0 L L L 0 L L
818 818.5 819 819.5 820 818 818.5 819 819.5 820

p (GeV/c) p (GeV/c)

Figure 4.17: Py, =< 71 > for the flat model of HERA—p computed with the linearized
spin—orbit motion and with stroboscopic averaging (blue) for particles with a normalized
vertical amplitude of 4mrmm mrad and a normalized longitudinal amplitude of top—left: 0,
top—right: 17.5, bottom—left: 70.1, and bottom-right: 157.87mm rad. These correspond
to the one, two, and 40 emittances for a synchrotron frequency of 30Hz with a 1o energy
spread of 1.1-107%.
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Figure 4.18: Py, for HERA—p with 6 flattening snakes computed with the linearized
spin—orbit motion for particles with a normalized vertical amplitude of 47mm mrad and a
normalized horizontal amplitude of 0 (left) and 367mm mrad (right). Note the resonance
at 819.9GeV /c which is excited by horizontal motion.
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Figure 4.19: Pj;,,, =< # > for HERA—p with flattening snakes computed with linearized
spin—orbit motion for particles with a normalized vertical amplitude of 4rmm mrad and
a normalized longitudinal amplitude of 0 (left) and 157.87mm rad (right). The crosstalk
from longitudinal motion to spin motion excites several resonances for this 1o longitudinal
amplitude.

Nevertheless, the small linear coupling between degrees of freedom is completely
dominated by the nonlinear coupling which has just been shown for the flat model
of HERA—p. This can be seen by comparing P, for linearized spin motion in
HERA-p with flattening snakes in figures figure 4.18 and figure 4.19 with Fy;, from
the non—perturbative calculation of stroboscopic averaging in figures 4.20 and 4.21.
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Figure 4.20: Py, =< # > for HERA—p with 6 flattening snakes computed with lin-
earized spin—orbit motion (red) and with stroboscopic averaging (blue) for particles with
a normalized vertical amplitude of 47mm mrad and a normalized horizontal amplitude of
top—left: 0, top-right: 4, bottom-left: 16, and bottom-right: 36mmm mrad.

The underlying assumption of linearized spin—orbit motion is that < (77, rig) > is
small so that in addition to the orbit motion the spin motion can also be linearized.
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Figure 4.21: Py, =< @ > for HERA—p with 6 flattening snakes computed with lin-
earized spin—orbit motion (red) and with stroboscopic averaging (blue) for particles with
a normalized vertical amplitude of 4rmm mrad and a normalized longitudinal amplitude
of top-left: 0, top-right: 17.5, bottom—left: 70.1, and bottom-right: 157.87mm rad.

However, the linearization does not conserve the length of spin and neglects the
non—commutation of spin rotations around different axes. In parameter domains for
which this underlying assumption is valid, as for example in the case of low energy
electron rings, these weaknesses are not a serious limitation except very close to
spin—orbit resonances. However, in the proton ring of HERA—p with a Gy of about
1756 this approximation can invalidate the calculations. Nevertheless to get a quick
estimate on the usefulness of a lattice for polarized proton storage, the linearized
spin—orbit motion has turned out to be very helpful in section 3.1.

Figure 4.22 shows an invariant spin curve 7(Z(¢)) on the unit sphere for a rel-
atively large vertical emittance (left). The average polarization is already strongly
reduced. When the particle also has a horizontal phase space amplitude then the
invariant curves on the unit sphere get washed out and the average polarization is
reduced to zero (right). Since the first—order theories neglect any influence of the
horizontal motion on the invariant closed curves, figure 4.22 is far out of the range
of validity of these theories.

Computing the Derbenev—-Kondratenko ri—axis from straight forward spin phase
space tracking data by stroboscopic averaging has the following features:

e It has been implemented in the code SPRINT but it can be implemented in
any existing spin tracking program.

e For an accuracy on the 1072 level typically less than 3000 turns have to be
tracked.

e Since the method is non—perturbative, no resonance denominators appear in
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Figure 4.22: Left: An Invariant curve #(Z(®,)) of spin-orbit motion on the unit sphere
for particles in HERA-p with a normalized vertical amplitude of 647mm mrad and no
horizontal amplitude. Right: With an additional normalized horizontal amplitude of
47mm mrad, the phase space points depend two angle variables and spins 7(Z(®,, ®,))
are no longer on a one—parametric curve, which illustrates a crosstalk from horizontal
motion to spin motion.

the algorithm and it is applicable even close to spin—orbit resonances.

e Since the different degrees of freedom have a coupled influence on the invariant
spin field, it is important that stroboscopic averaging can be used for phase
space points in all three degrees of freedom.

Since the introduction of stroboscopic averaging in [100] spin tracking in storage
rings can now always be initialized with spins parallel to the invariant spin field and
much clearer analysis becomes possible.

4.3 Obtaining 7(2) by Anti-damping
The fi—axis can also be calculated using the adiabatic invariance of Jg = S - i(2),
which has been proven in section 2.2.9. There are three possible procedures:

a) One could start a tracking computation with a spin aligned parallel to 7 at a
low energy far away from any resonance where the invariant spin field 7(2) is
essentially parallel to 7ig over all of the relevant phase space. Then one would
accelerate the particles slowly up to the energy under investigation. As long
as Jg remains nearly invariant the spin would end up parallel to 7i(Z) . The
disadvantage of this approach is that at HERA—p one would essentially have
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to ramp the particle all the way from 40 to 920GeV/c without violating the
adiabatic invariance of Jg . This would not only take a lot of computation
time but several 100 resonances would have to be crossed, which might lead
to a change in Jg . Therefore a slow acceleration is not a suitable method
of computing the invariant spin field. Nevertheless this method demonstrates
well what actually happens to the polarized beam when it is slowly accelerated

in HERA—p.

b) One could start a tracking computation with a particle on the closed orbit
polarized parallel to 7ig = 7(0). When the phase space amplitude is increased
slowly the spin will stay parallel to 7(Z) during the complete tracking run until
the phase space amplitude of interest is reached. The energy is not changed
during this process. This method has been tested and can be performed with
practical speed [150]. It has the advantage over the other methods presented
so far that one obtains the field 7(Z) at many phase space amplitudes. One can
therefore easily compute the dependence of Py, on J. When the amplitude
dependent spin tune comes in resonance with the orbital tunes for some inter-
mediate particle amplitude, Js can change and the ri—axis will be determined
inaccurately.

¢) A third method which has also been tested with success starts a tracking
run with a particle at the phase space point Z_xy and a spin parallel to .
In order to make 7y parallel to the invariant spin field 7(2), the spin-orbit
coupling is switched off, i.e. particles all over phase space have the same spin
motion as a particle on the closed orbit. Finally the spin—orbit coupling is
switched on slowly while tracking the particle for N turns until it arrives at the
phase space point 2. This procedure is especially helpful when analyzing the
influence of resonance strength on the maximum polarization since one obtains
Py, for a variation of resonance strength from 0 to a final value, allowing one
to compute the maximally allowed resonance strength for a required average
polarization. In fact this technique of anti-damping the spin-orbit coupling
is already contained in the SMILE formalism [87]. There it was not exploited
numerically but used for deriving a formalism which leads to the required
periodicity in azimuth. Also in this algorithm the accuracy can suffer when
spin—orbit resonances occur during the calculation.

In the single resonance approximation of spin motion, the maximum time average

polarization is given by equation (2.124) as Py, = |\/5—| where Kk = 1y — §
5242

is the frequency of the resonance. The resonance strength ¢, of equation (2.71)
is the Fourier coefficient of a linear function of phase space variables &(2,[) and
k = jo £ Qr . Therefore €, increases with the square root of the action variable
Jy of the kth degree of freedom, ¢, o< \/J,. When more than only the first-order
effects are taken into account, the polarization depends on the orbital amplitudes
in a more complex fashion.

In some cases, as for example in figure 4.23 (left), Py, increases with the phase
space amplitude after it has decreased at smaller amplitudes [151]. This is an indica-
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Figure 4.23: P, (blue) and the magnified spin tune v* = 1 + 10(v — 1) (green) as
functions of the ratio .J/.J,., between the intermediate vertical action .J and the final
action J,,4;. The final vertical amplitude was 8 1lrmm mrad which corresponds to 4.50
of the current proton beam in HERA—p. When the spin tune comes close to one of the
resonance lines (red), Py, is reduced. Left: for @, = 0.2725 . Right: for @, = 0.2825 in
the current HERA-p lattice and the (0500)6fs snake scheme.

tion for amplitude dependent tunes V(j) and Q(j) . While the amplitude changes,
the tunes can come close to a resonance condition which causes Py, to drop at
some intermediate phase space amplitude. In figure 4.23 (left), it is not the ver-
tical orbit tune which changed, since linear orbit motion is simulated so that Cj
does not depend on the phase space amplitude. The green curves in figure 4.23
show v* = % + 10(v — %), the magnified distance of the spin tune from vy = % .
When this tune comes close to the resonance v = 2@Q),, then 7i(Z) varies strongly
over phase space and Py, becomes small. At intermediate amplitudes where v has
moved away from this resonance condition, P, is larger. Figure 4.23 (right) shows
the amplitude dependence of the spin tune v and Py, after the vertical tune has
been changed from ), = 0.2725 to (), = 0.2825 . Therefore also the resonant spin
tune values v = 2Q),, and v = 9Q), — 2 (red lines) change, which in turn changes the
amplitudes where Py, is reduced. Now the spin tune comes close to the 9th order
resonance and narrow dips of Fj;,, can be observed at the corresponding amplitudes.

To study such amplitude dependent depolarizing effects, it is advantageous to
have a method which quickly leads to 77(2) at various amplitudes. The anti-damping
method 2 described above has this feature and was implemented into SPRINT for
that purpose. However, it is often not as accurate as stroboscopic averaging, since
resonances might be crossed during the slow change of the amplitude, and the adia-
batic invariance of Jg = S - i(Z) can be violated. Therefore figure 4.24, where reso-
nances are crossed, has not been computed by anti—-damping but by the SODOM-2
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Figure 4.24: Invariant curves 7(Z9)) on the unit sphere computed by anti-damping (red)
and by stroboscopic averaging (green) for a vertical amplitude of 167mm mrad (left) and
of 647mm mrad in the current HERA-p lattice and the (0500)6fs snake scheme.

method.

Invariant curves on the unit sphere for such a case are shown in figure 4.24.
They were computed with the (0700)6 fs scheme for the current HERA—p lattice at
805GeV/c [150]. While anti-damping (red curves) and stroboscopic averaging (green
curves) both allow an accurate computation of the invariant spin field for particles
with 16mmm mrad in figure 4.24 (left), the accuracy of anti-damping is strongly
reduced at 647mm mrad in figure 4.24 (right), since a resonance condition had to
be crossed during the anti—-damping procedure. The accuracy can be increased by
reducing the speed with which the phase space amplitude is increased.

4.4 Conclusion

By introducing the invariant spin field 7(2) and the amplitude dependent spin tune
V(j) and by proving the adiabatic invariance of the spin action Jg = g-ﬁ, theoretical
concepts have been provided with which it is possible to describe many features of
the acceleration of polarized proton beams. Of particular importance among these
is the loss of polarization when .Jg does not remain invariant.

With the three non—perturbative algorithms for determining (%) and V(j) which
have been introduced: SODOM-2, stroboscopic averaging, and anti—-damping, these
theoretical concepts can also be numerically evaluated. These three algorithms have
become the basis for an analysis of higher—order effects of spin motion in HERA—p

and have also been adopted for the analysis of some aspects of polarized proton

motion in RHIC.
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With these advanced computational techniques it has become possible to de-
termine the strengths of higher—order resonances, and it has been shown that they
allow the use of the Froissart—Stora formula to predict the loss of polarization due
to higher—order resonances.

In HERA-p, the maximum average polarization is very small at critical energies
where the spin perturbations of all FODO cells accumulate. This effect was analyzed
in detail with linearized spin orbit motion and the role of the non—flat regions of
HERA-p was stressed. This analysis showed that it is helpful to symmetrize the
spin perturbations in HERA—p by the use of 8 flattening snakes.

It has been found that different snake schemes have very different abilities to
preserve the polarization during the acceleration process in HERA—p and therefore
schemes with optimized snake angles had to be found. For this purpose, a filtering
algorithm was devised which tests a huge number of potential snake schemes and
selects the scheme with the maximum average P, and the minimum spread of the
spin tune over the phase space amplitudes in a polarized proton beam.

In addition, methods have been found to match the snake angles to a suitably
modified vertical betatron phase advance in HERA—p so that Py, for linearized
spin—orbit motion does not drop strongly at the critical energies where the spin
perturbations in all FODO cells accumulate. When higher—order effects were in-
cluded, these snake—matched lattices with 4 and 8 snakes were shown to reduce the
spin tune spread and to allow the acceleration of polarized beams with significantly
larger emittances.

However, with the optimal scheme of 4 Siberian Snakes only particles with a
vertical phase space amplitude below 117mm mrad in the luminosity upgrade lattice
of HERA—p can be accelerated without a reduction of polarization. And even in
snake matched schemes with 8 Siberian Snakes particles with a vertical phase space
amplitude above 16mmm mrad will lead to a reduction of polarization.

It would be therefore very advisable to use electron cooling in PETRA so as to
reduce the emittance in HERA—p and to allow for an acceleration without loss of
polarization for most particles in the beam.
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