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Abstract

TESLA-2000-40 (2000)

We discuss different bunch compression systems for the TESLA collider.
The best alternative is a wiggler type compressor, where we list the important
parameters. Systems which allow a manipulation of higher order effects have
been analyzed in detail and their limitations are derived.

1 Introduction

In linear colliders, the beams have to be reduced in emittance in damping rings. The
lower limit on DR bunch length because of wake-field induced instabilities or power
considerations for the RF system is a few millimeters, too long for optimal operation
of the collider. A bunch compression system has to shorten the bunch before injection
into the main linac.

Bunch compression for relativistic particles can only be achieved by inducing a
correlation between longitudinal position and energy offset with an RF system and
making use of the path length differences in a following dispersive beam line section
(e.g., a magnet chicane) to bring head and tail of the bunch closer together. To
overcome the initial energy spread σδi, the RF induced energy correlation must increase
the energy spread after compression to:

σδf = σδi ·
σzi
σzf

(1)

with σzi the bunch length out of the damping ring and σzf the final bunch length.
From the induced energy spread then follows the necessary ’longitudinal dispersion’
R56 = ∆z/δ:

R56 needed =

√

σ2
zi − σ2

zf

σδf
. (2)

The basic parameters for the TESLA bunch compressor are given in table 1.
The required big compression ratio (σzi/σzf ≈ 18) and the non-negligible incoming

uncorrelated momentum spread necessitate a large momentum spread of nearly 3%
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Table 1: Target parameters for the TESLA bunch compressor

horizontal input emittance εx 8× 10−6 m
vertical input emittance εy 0.02× 10−6 m
input bunch length σzi 6× 10−3 m

DR ejection momentum spreadσδi 0.13%
DR ejection energy E0 5GeV
final bunch length σzf 0.3× 10−3 m

final momentum spread σδf 2.7× 10−2 m
R56 of compressor chicane 0.23m

Total RF voltage @ zero crossing needed 725MV

RMS in the dispersive section. Higher order terms like the second order momentum
compaction have to be taken into account. Chapter 2 describes a possible cancelation
of higher order momentum compaction and nonlinearities in the RF wave form.

The beam line section supplying the necessary R56 must not increase transverse
beam emittance due to incoherent or coherent synchrotron radiation. Both set con-
straints on the usable strength of bending magnets. So even if the compression is done
in one stage, the total length of the compressor is of the order of a hundred meters.

A simple solution is a wiggler chicane as presented in chapter 3. Its main disad-
vantage is that its second order longitudinal dispersion R566 curves the longitudinal
phase space so much that the required bunch length cannot be achieved if not com-
pensated for by the upstream RF system. This necessary compensation scheme causes
a deceleration of about 0.4 GeV.

In chapter 4 we present efforts to avoid this deceleration by using a compressor type
where the R566 can be adjusted. In the so-called FODO type compressor, the dispersion
is shaped with quadrupole magnets and the R566 can be adjusted by sextupole magnets.
Up to now we could not find a sextupole scheme with a tolerable transverse emittance
growth. Attachment 1 gives basic ideas and concepts to find optical schemes where the
R566 is zero and the optics distortion by the necessary sextupole magnets do cancel
and why it is hard to find them.

Since the preservation of emittance is such a central question for the TESLA collider
the solution of choice at this moment is the simple wiggler chicane.

2 A Second Order Compensation Scheme

In the case of non-zero second order longitudinal dispersion R566 the resulting longi-
tudinal phase space distortion can be canceled by proper choice of the R56 and the
accelerating voltage phase and amplitude. Consider a particle passing through an RF-
system with phase φ and accelerating voltage V . The final relative energy deviation is
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in 2nd order:
δf = Aδi + Bzi + Cz2

i

= Ei

Ef
δi −2πV sinφ

λEf
zi −2π2V cosφ

λ2Ef
z2
i

(3)

with Ei the initial energy,Ef the final energy, δi the initial relative energy deviation,
and zi the initial longitudinal particle position. The final longitudinal coordinate zf of
the particle after passage through a downstream dispersive beam line section is in 2nd
order:

zf = zi +R56δf +R566δ
2
f . (4)

Combining these two equations yields:

zf = AR56δi + (1 +BR56)zi + (R56C +R566B
2)z2

i

+ A2R566δ
2
i + 2ABR566δizi

+ 2BCR566z
3
i + 2ACR566δiz

2
i + C2R566z

4
i (5)

Figure 1 shows the necessary accelerating phase, gradient, and R56 to cancel the
terms in z to 2nd order for various ratios r = R566/R56.

The necessary accelerating voltage is smallest for r = 0. For positive r the RF-
phase has to be tuned to accelerate the bunch, while for negative ratios r the bunch is
decelerated.

For large second order dispersions other higher order terms cannot be neglected. For
ratios r below or above ±1.5 the second order effects will distort the final longitudinal
phase space and lead to a larger final bunch length.

3 Wiggler compressor

The wiggler compressor consists of bending magnet chicanes (wiggler) embedded in
a FODO structure. No additional optical elements are included between the bending
magnets of each wiggler section. In this case the dispersion is zero up to any order at
the end of each wiggler section. The drawback is that the ratio r cannot be influenced.
For any wiggler or chicane based bunch compressor r is ≈ −1.5. The second order
effects of this non-zero R566 can be compensated with the bunch compressor RF tuned
to a decelerating phase as described above. The required accelerating voltage before
the wiggler is 890MV at a phase φ = 113 deg. The final energy is 4.6GeV. The total
length of the bunch compressor (including some matching and 4 accelerating modules
with an average gradient of 25MV/m) amounts then to ≈ 165m.

The optics of the wiggler compressor and the geometrical layout is shown in figure
2. The maximum deviation from the middle axis is 0.3m, which should fit easily in
the main linac tunnel. Tracking of particles which are randomly distributed in the six-
dimensional phase space with a maximum amplitude of 3σ using the code MAD[5]shows
no significant emittance growth. Figure 3 shows the longitudinal phase space, while
figures 4 and 5 show the horizontal respectively vertical phase space before and after
the bunch compressor.
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Figure 1: Accelerating phase, R56, final energy spread, and effective accelerating voltage
(in descending order) for a bunch length of 300µm and various ratios r.
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Table 2: Parameters of the Wiggler Bunch Compressor
R56 0.215m
σδf 2.8%
VRF 890V
φRF 113 deg
total length 86.4m
∆εx;sync.rad. 2.2× 10−8 m
bend angle 3.23 deg, 6.46 deg
bend field 0.44T
number of bends 12, 6
quadrupole length 0.2m
quadrupole gradient 6.5T/m
number of quadrupoles 7

The final check for the wiggler performance is a calculation of emittance growth due
to Coherent Synchrotron Radiation effects. The code TraFiC4 models the incoming
bunch as a line of Gaussian 3-d sub-bunches which are tracked through the dispersive
beam line section, generating the electro magnetic fields. The action of the field on the
generating sub-bunches leads to correlated offsets of their centers. In addition, an en-
semble of a few hundred test particles which are longitudinally positioned close to the
bunch-center are tracked through the fields to probe for uncorrelated transverse emit-
tance growth. From both ensembles, the projected emittance is calculated (see figure
6). The correlated emittance oscillates because linear dispersive offsets are subtracted
but not quadratic ones. At the compressor exit, the correlated emittance (normal-
ized) is about 2.5 · 10−7m, the uncorrelated emittance is preserved and the projected
emittance grows by less than 5%. The parameters for the wiggler type compressor are
presented in the table 2.

4 FODO compressor

Most efficient use of the RF system requires a compressor with a positive r. As an
example serves a so called FODO compressor. It consists of a FODO channel with
bending magnets forming a chicane. The optics and the layout for this design is shown
in figure 7. Note that that the compact design (40 m length) requires a transverse
deviation of about 2.5 m at the midpoint; more reasonable values of less than a meter
would result in overall length comparable to the wiggler chicane.

The FODO compressor has a positive ratio r ≈ 10. This allows in principle to
operate the bunch compressor RF with an accelerating phase. Unfortunately, accord-
ing to chapter 2 higher order terms distort the 2nd order compensation if r assumes
values above 3/2. However, sextupoles can be employed to tune r. At a value of 3/2,
compression could be done with an accelerating voltage of 900MV and an energy gain
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Figure 2: Optical functions of the wiggler bunch compressor.
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Figure 3: Longitudinal phase space before (circles) and after (crosses) the bunch com-
pressor.
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pressor.
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Figure 5: Vertical phase space before (circles) and after (crosses) the bunch compressor.
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Figure 6: TraFiC4-calculation of emittance growth due to Coherent Synchrotron Ra-
diation effects. Drawn line: slice emittance; dotted line: projected emittance.The
bending magnets are indicated by the ’x’ dots.
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Figure 7: Layout of the FODO bunch compressor.

of 400MeV, which corresponds to two RF modules.
In this case the nonlinear terms which are introduced by the sextupoles distort the

trajectories of off-energy particles and cause emittance growth. To avoid this problem
an achromat in very high order for ∆p/p0 = ±10% is needed.

5 Correction of R566

In case of the described wiggler compressor, R566/R56 ≈ −1.5 is negative and therefore
the beam would have to be decelerate by about 400 MeV in the compressor. In the
FODO compressor this ratio is positive but very large and therefore nonlinear particle
motion leads to a blowup of the longitudinal emittance. We therefore tried to minimize
R566 for the required |R56| ≈ 0.24. For this optimization some basic formulae for will
be derived.

The reference particle travels on the design curve and has the coordinates (x, y) = 0.
In order to find R56 and R566, one needs to know the trajectory (x(δ), y(δ)) of a particle
that starts on the design curve with a relative momentum deviation δ from the design
momentum p0. Since the path length of a trajectory ~r(l) is given by

|d~r| =
√

(1 + x/ρ0)2 + x′2 + y′2dl , (6)

the difference in traveled path with respect to the reference particle at position L along
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Figure 8: TraFiC4-calculation of emittance growth due to Coherent Synchrotron Ra-
diation effects. Drawn: slice emittance; dotted line: projected emittance. The bending
magnets are indicated by the ’x’ dots.

the accelerator is

τ =
∫ L

0
{1−

√

[1 + κ0x(δ)]2 + x′(δ)2 + y′(δ)2}dl , (7)

where κ0 = 1/ρ0 is the curvature of the design curve and the prime denotes d/dl. For
a power expansion x(δ) = δxδ(l)+ δ2xδδ(l)+ . . ., and assuming a flat beam line so that
y(δ) = 0, the components R56 and R566 of a bunch compressor are given by

τ = δR56 + δ2R566 + . . . = −δ
∫ L

0
κ0xδdl − δ2

∫ L

0
[κ0xδδ +

1

2
x′δ

2
+

1

2
(κ0xδ)

2]dl . (8)

It is therefore important to consider what gives rise to the term xδδ.
To express the Lorentz force equation in terms of derivatives with respect to the

design path length l rather than t (indicated by a dot), one uses a coordinate system

which is co–moving with the reference curve ~R(l) and contains the tangential vector
~t = ∂l ~R. Here a flat reference curve is assumed with a curvature κ0 which is piece wise
0 or constant. This leads to the representation of a particle’s coordinates as

~r = x~ex + y~ey + ~R , ~r ′ = x′~ex + y′~ey + (1 + κ0x)~t , (9)

~r ′′ = [x′′ − (1 + κ0x)κ0]~ex + y′′~ey + 2κ0x
′~t , (10)

where ∂l~t = −κ0~ex and ∂l~ex = κ0
~t is used. From mγ~̈r = q~̇r × ~B one obtains the

equation of motion by using v = |~̇r| and
d

dl
=
|~r ′|
v

d

dt
, ~r ′ =

|~r ′|
v
~̇r , (11)
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~r ′′ = (
d

dl
|~r ′|) ~̇r

v
+ (
|~r ′|
v

)2~̈r = (
d

dl
|~r ′|) ~r

′

|~r ′| + (
|~r ′|
v

)2
q

mγ
~̇r × ~B (12)

= (
~r ′′ · ~r ′

|~r ′| )
~r ′

|~r ′| + |~r
′|q
p
~r ′ × ~B (13)

(14)

With h = 1 + κ0x and |~r ′|2 = h2 + x′2 + y′2, this leads to the equation

1

|~r ′|2







h2 + y′2 −x′y′ −x′h
−x′y′ h2 + x′2 −y′h
−x′h −y′h x′2 + y′2





~r ′′ = |~r ′|q
p







y′Bl − hBy

hBx − x′Bl

x′By − y′Bx





 (15)

The equation of the third row is obsolete, since it can be produced from the first two
rows. Taking only the first two rows and assuming the longitudinal field Bl to vanish,
leads to
(

x′′ − κ0h
y′′

)

=
1

h2

(

h2 + x′2 x′y′

x′y′ h2 + y′2

)

{|~r ′|hq
p

(

−By

Bx

)

+
h2κ0x

′

|~r ′|2
(

x′

y′

)

} (16)

In order to have the design curve as a reference curve, (x, x′) = 0 and (y, y′) = 0 must
lead to x′′ = 0. This leads to the relation κ0 = q

p
B0, where B0 is the vertical field on

the reference curve. This finally leads to the two dimensional equation of motion

(

x′′

y′′

)

=
|~r ′|
h

q

p

(

h2 + x′2 x′y′

x′y′ h2 + y′2

)(

−By

Bx

)

+
2κ0x

′

h

(

x′

y′

)

+ h

(

κ0

0

)

. (17)

In the complex notation w = x + iy and B = Bx + iBy this leads to the simplified
equation

w′′ =

√
w′w̄′ + h2

h

q

p
[ih2B + w′=(w′B̄)] +

2κ0<(w′)

h
w′ + κ0h . (18)

The magnetic field of non-skew dipoles, quadrupoles, and sextupoles is given by

(

Bx

By

)

=
p0

q
[κ0

(

0
1

)

+ kq

(

y
x

)

+ ks

(

xy
1
2
(x2 − y2)

)

] , Bl = 0 . (19)

For the computation of the second order dispersion xδδ the y coordinate is set to 0 and
one obtains

x′′ = −
√
h2 + x′2

3

h

p0

p
(κ0 + kqx+ ks

1

2
x2) +

2κ0x
′2

h
+ hκ0 . (20)

To find the equations of linear motion, one linearizes with respect to x and x′ and
obtains

x(1)′′ + (kq + κ2
0)x

(1) = 0 , (21)
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with two independent solutions. In order to easily specify a trajectory by its initial
conditions xi = x(0) and x′i = x′(0), one typically uses the so called cos–like ray xc and
the sin–like ray xs with

xc(0) = 1 , x′c(0) = 0 , xs(0) = 0 , x′s(0) = 1 , x(1) = xixc(l) + x′ixs(l) . (22)

The solution of the nonlinear equation of motion can be found by variation of constants.
When the nonlinear equation of motion has the form

x(n)′′ + (kq + κ2
0)x

(n) = f (n) , (23)

with a right hand side which depends on small quantities in order n, then variations
of constants of the expression x(n) = A(l)xc +B(l)xs leads to

(

xc xs
x′c x′s

)(

A′

B′

)

=

(

0
f (n)

)

. (24)

The matrix has a constant determinant since d/dl(xcx
′
s− xsx′c) = xcx

′′
s − xsx′′c = 0 and

it is given by xcx
′
s − xsx

′
c = 1. Therefore the inverse of the above matrix is simply

obtained by reordering the matrix elements and one obtains

(

A′

B′

)

= f (n)

(

−xs
xc

)

, x(n) = xs

∫ l

0
f (n)xcdl − xc

∫ l

0
f (n)xsdl . (25)

To find the dispersion xδ by inserting x = δxδ + . . ., one uses p = p0(1 + δ) and
linearizes in x and δ,

xδ
′′ + (kq + κ2

0)xδ = κ0 . (26)

Therefore the dispersion xδ is given by the well known formula

xδ = xs

∫ l

0
κ0xcdl − xc

∫ l

0
κ0xsdl . (27)

Inserting x = δxδ + δ2xδδ + . . . and taking into account all second orders in δ, one
obtains

xδδ
′′ + (kq + κ2

0)xδδ = f (2) , (28)

f (2) = −κ0[1−
1

2
x′δ

2 − κ0xδ(2− κ0xδ)] + kqxδ(1− 2κ0xδ)− ks
1

2
x2
δ . (29)

The second order dispersion is then given by

xδδ = xs

∫

f (2)xcdl − xc

∫

f (2)xsdl . (30)

For separated function magnets, where the design curve has no curvature in quadrupoles,
the term kqκ0 vanishes. For the bunch compressors which are considered here, the
dipole length are around ld = 1 m and their bending angle is between 1◦ and 5◦,
therefore κ0 ∈ [0.017, 0.087] 1

m
. The slope of xδ after the first dipole is x′δ ≈ ldκ0 and

12



the optic will not allow this slope to become much larger, so that 1
2
x′δ

2 ¿ 1 can be
neglected with an error of less than 0.4%. If we consider up to 10 m space between the
dipoles, then xδ will be below 1 m and κ0xδ << 2 can be neglected with an accuracy
of better than 5%. If we also neglect 2κ0xδ, which is an approximation with an error
of less than 20%, one obtains

f (2) = −κ0 + kqxδ − ks
1

2
x2
δ . (31)

In free space and in dipoles, the second order dispersion therefore follows −xδ. In
Quadrupoles, however, xδδ obtains the extra kick kqxδ. When xδδ ≈ −xδ, the second
order dispersion is focused two times stronger than xδ. This change of the focusing
strength for the second order dispersion with respect to xδ made it hard to find a
bunch compressor which has no second order dispersion at a position where also the
first order dispersion vanishes.

Equation (8) can be approximated up to an error of possibly 10% by

R566 = −
∫ L

0
κ0xδδdl . (32)

In the following it will be demonstrated how systems can be constructed for which the
ratio R566/R56 is zero or slightly positive. The latter would be even better, because it
would lead to an acceleration of the beam.

6 FODO Compressor with Matched Dispersion

When a FODO cell has a single pass dispersion ~xδ = (xδ, x
′
δ)
T , the transport matrix

M for horizontal phase space vectors ~x leads to

M~xi + δ~xδ = ~xf . (33)

Since the first order periodic dispersion ~ηδ satisfies M~ηδ + ~xδ = ~ηδ, it can be computed
by

~ηδ = (1−M)−1~xδ . (34)

Once ~ηδ is known, the term kqηδ can be computed, which then in turn leads to the sec-
ond order single pass dispersion ~xδδ and finally to the second order periodic dispersion
~ηδδ.

For simple thin lens FODO cells with focal strength ±k for the two families of
quadrupoles, with bend angles b, and with a length which leads to a phase advance φx
and s = sin(φx

2
), one can compute the first and second order periodic dispersion at the

focusing and the defocusing quadrupole as

~ηmaxδ =

(

b
k
(1
s
+ 1

2
)

0

)

, ~ηminδ =

(

b
k
(1
s
− 1

2
)

0

)

, ~ηmaxδδ = ~ηminδδ =

(

b
k

1
s

0

)

. (35)
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With R56 = − ∫ L0 κ0xδdl and with the approximation R566 = − ∫ L0 κ0ηδδdl this leads to
the time of flight terms

R56 = − b2

4ks
[7 + cos(φx)] , R566 = − b2

4ks
[9− cos(φx)] . (36)

The ratio r = R566/R56 ≈ 1 lead us to try to base a bunch compressor on a FODO
lattice with periodic dispersion. Coming from a linear accelerator into the bunch
compressor FODO cells, the dispersion will not be the periodic dispersion but after the
first FODO cell it will be the single pass dispersion ~x1

δ . After n cells, the dispersion
would be

~xδ = Mn−1~x1
δ +Mn−2~x1

δ + . . .+ ~x1
δ = (1−Mn)(1−M)−1~x1

δ = (1−Mn)~ηδ . (37)

The correctness of the second equivalence is checked by applying (1−M) from the right
hand side. Whenever Mn = −1, which corresponds to a betatron phase advance of
π, ~xδ is 2~ηδ. When rectangular bends are used in a FODO, then the transport matrix
does not depend on the bending angle. The dispersion ~x1

δ in equation (27) is however
linearly related to the bending angle. If therefore n FODO cells are build with half the
bending angles, then ~xδ after these cells will be (1−Mn)(1−M)−1~x1

δ
1
2
and for a phase

advance of π this is equivalent to the periodic dispersion ~ηδ. This constitutes a short
prove of the well known half strength dispersion matching described in [7, 8]. FODO
cells with reversed bend direction have −ηδ as their periodic dispersion. If the FODO
cells and the cells with reduced bending strength should bend in opposite direction,
then the latter would need to have a dispersion of −ηδ. But this can not be achieved
for any number n of cells.

In passing we note that it was also tried to use the missing magnet scheme for
creating the periodic dispersion, but this was less advantageous for the second order
dispersion. For this scheme n FODO cells are followed by m FODO cells without
bending magnets. The total dispersion after this scheme will be

~xδ = Mm(1−Mn)(1−M)−1~x1
δ . (38)

This is the periodic dispersion ~ηδ whenever 1−Mn = M−m. When the transport matrix
is expressed in the normal form space of the FODO, it describes simply a rotation by
the phase advance φx and leads to

(

1− cos(nφx) − sin(nφx)
sin(nφx) 1− cos(nφx)

)

=

(

cos(mφx) − sin(mφx)
sin(mφx) cos(mφx)

)

. (39)

The off diagonal condition implies either mφx = −nφx + π mod 2π, which is incom-
patible with the diagonal equations, or mφx = nφx mod 2π, which together with the
equations on the diagonal leads to mφx = ±π/3 mod 2π.

This scheme could be used to match to the negative dispersion, since (1−Mn) can
be −M−m, which is the case when

(

1− cos(nφx) − sin(nφx)
sin(nφx) 1− cos(nφx)

)

=

(

− cos(mφx) sin(mφx)
− sin(mφx) − cos(mφx)

)

. (40)
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This requires eithermφx = −nφx mod 2π ormφx = nφx+π mod 2π. The first equation
is incompatible with the diagonal equations. The second leads to nφx = ±π/3 mod 2π.
This option however turned out to be not useful, since it requires at least 4 FODO
cells for the dispersion match.

The FODO compressor which performed best uses the half bend matching scheme
of two FODOs with φx = 90◦. The optics is shown in figure 9. The first order dispersion

xc

xs

xδ

xδδ

Figure 9: Top: The cos–like (xc) and the sin–like (xs) ray. Bottom: the first and second
order dispersion in the FODO compressor with matched dispersion.

is periodic in 4 of the 12 FODO cells. At a focusing quadrupole where the second order
dispersion has a maximum, a weak sextupole was inserted to make x′δδ = 0 and a mirror
symmetric system was used to bring the second order dispersion back to zero. In order
to make the total beam direction parallel, the system of 6 FODO cells was repeated in
a mirror symmetric way.

This FODO bunch compressor has a ratio R566/R56 = 2.4 which avoids the longi-
tudinal emittance increase observed with the previously mentioned FODO compressor.
Additionally the beam is accelerated by about 500MeV. The resulting longitudinal
phase space for 12 ellipses around emittances between 0σ and 3σ after the bunch com-
pressor are shown in figure 11. The slight deformation at high amplitudes would be
tolerable.

However, it turns out that, even after ~xδδ is eliminated, the higher order dispersions
lead to a non–negligible increase of the emittance. The higher order dispersions up
to order 15 were computed with COSY INFINITY [9] and are given bellow. It is
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Figure 10: Twelve ellipses around longitudinal emittances of up to 3σ after being
tracked through the FODO bunch compressor with matched dispersion. Here the
7th order dispersion was corrected, but the longitudinal phase space is not influenced
significantly by the higher order dispersion correction.

normalized to a 3σ energy deviation of 10% with δ3σ = δ/0.1,

x(δ)/mm = −19δ3
3σ + 4.2δ4

3σ + 16δ5
3σ − 8.9δ6

3σ − 1.2δ7
3σ

+ 2.7δ8
3σ − 1.1δ9

3σ + 0.1δ10
3σ + 0.09δ11

3σ − 0.06δ12
3σ

+ 0.02δ13
3σ − 0.005δ14

3σ + 0.0004δ15
3σ . (41)

After multipoles are inserted inside the 3rd and 9th quadrupole to correct the dispersion
up to order 7, the first 15 orders of the dispersion are given by

x(δ)/mm = 7.6δ8
3σ + 10δ9

3σ − 3.0δ10
3σ − 5.1δ11

3σ + 0.9δ12
3σ

+ 0.8δ13
3σ − 0.1δ14

3σ − 0.1δ15
3σ . (42)

The remaining horizontal emittance blowup after the correction of the 7th order dis-
persion is shown in figure 11 (left). The ellipse around the 1σ transverse emittance has
been transported through the illustrated FODO bunch compressor for particles with
up to 2σ energy deviation. This figure shows that other nonlinear aberrations are not
critical and that the correction of the 7th order dispersion is sufficient. Correcting only
up to order 6 was however not sufficient. In figure 11 (right) energy deviations of up to
2σ have been assumed for particles on the 1σ ellipse. This shows that the higher order
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Figure 11: Left: The ellipse around the horizontal 1σ emittance for energy deviations
of up to 2σ after being tracked through the FODO compressor after the 7th order
dispersion is corrected. Right: The ellipse around the horizontal 2σ emittance for
energy deviations of up to 1σ after being tracked through this FODO compressor.

dispersion prohibits the use of a FODO bunch compressor for the large energy spread
of up to 10% at 3σ of the energy distribution. For smaller energy spreads, FODO
compressors of this type might be feasible.

7 360◦ Compressor

Every quadrupole at a dispersive section contributes to the higher order dispersion due
to the kick xkq

p0
p

in equation (20). The higher order dispersions might therefore be
reduced by reducing the horizontal phase advance from 3·360◦ in the FODO compressor
to a smaller value. While the ratio between R566 and R56 is small and positive in the
discussed FODO compressor even without the aid of sextupoles, no such solution was
found for a device with significantly smaller phase advance. However, sextupoles can
be used to manipulate the integral R566 ≈ −

∫ L
0 κ0xδδdl. This has to be done while

guaranteeing ~xδδ = 0. In addition, such sextupoles introduce higher order aberrations,
which should be kept small. To meet these requirements, a symmetric arrangement
was sought where xδδ = 0 and x′δδ = 0 are guaranteed by two mirror symmetric sections
in the device. Additionally the geometric aberrations introduced by the sextupoles can
be canceled by a phase advance of 180◦ between sextupoles [10, 11].

As shown in figure 12 the two requirements: (a) of having two symmetry planes
and (b) of having each sextupole compensated by a second equivalent sextupole which
is 180◦ apart in betatron phase, can only be satisfied when the total betatron phase
advance is at least 360◦. A suitable optic without sextupoles is shown in figure 13. At
the first symmetry plane the dispersion is zero, but its slope x′δ is not zero. An anti-
symmetric arrangement of the dipole magnets leads to ~xδ = 0 at the central symmetry
plane. Furthermore xs and xc have symmetry properties with respect to the first and to
the central symmetry plane. The product kqxδ and the curvature κ0 are antisymmetric
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180◦

180◦

A B

Figure 12: The symmetry plan (green central vertical line) requires that every inserted
sextupole (red boxes) has to be accompanied by a second sextupole. The condition of
having sextupols in pairs with a phase of 180◦ in between leads to two more sextupoles.
The requirement of a second symmetry plane (two red vertical lines) leads to A = B
and therefore to a total phase advance of 360◦.

with respect to the first plane, and therefore the second order dispersion

xδδ = xs

∫ L

0
xc(−κ0+kqxδ)dl−xc

∫ L

0
xs(−κ0+kqxδ)dl = xs

∫ L

0
xc(−κ0+kqxδ)dl . (43)

Since xs = 0 in the central plane, also xδδ = 0. The slope x′δδ is not zero, since x
′
s = −1

in the central plane.
An antisymmetric arrangement of the bending angles with respect to the central

plane then eliminates ~xδδ in the final plane. In order not to destroy this property,
sextupoles, if applied, need to have the same symmetry as the dipole fields. The
following list illustrates the symmetry properties:

Symmetry at 1. plane central plane
(a) κ0 - -
(b) kq + +
(c) ks - -
(d) xc - +
(e) xs + -
(f) xδ - -
(g) xδδ none -

This arrangement has a ratio R566/R56 = −2.8 and sextupoles have to be used to bring
the large excursions of xδδ to the other side of the design curve. The sextupole kicks
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xc

xs

xδ

xδδ

Figure 13: Top: The cos–like (xc) and the sin–like (xs) ray. Bottom: the first and
second order dispersion in the 360◦ compressor with matched dispersion.

1
2
ksx

2
δ are effective when the dispersion is large, and therefore the first sextupole was

placed after the third quadrupole. The antisymmetric requirements lead to three more
sextupoles, one with reversed sign before the fifth quadrupole and two more sextupoles,
each shifted by 180◦ with respect to the first two sextupoles. The requirement of
canceling geometric second order aberrations by this 180◦ phase advance is only possible
with either two symmetric or with two antisymmetric planes. With mixed symmetries,
the sextupoles would also be π apart but they would need to have opposite signs which
would not lead to cancelation but to a buildup of aberrations.

For aberrations we use the notation

xf = xixc + x′ixs + δxδ + x2
ixxx + xix

′
ixxx′ + x′i

2
xx′x′ + . . . (44)

x′f = xix
′
c + x′ix

′
s + δx′δ + x2

ix
′
xx + xix

′
ix

′
xx′ + x′i

2
x′x′x′ + . . . (45)

(46)

The following list shows that nearly all second order aberrations due to the sextupoles
are compensated by this setup,
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Aberration Integral form 0 due to symmetry in above table

xxx
1
2

∫ L
0 ksxsx

2
cdl 0 due to (c1), (d1), and (e1)

xxx′
∫ L
0 ksx

2
sxcdl 0 due to (c2), (d2), and (e2)

xx′x′
1
2

∫ L
0 ksx

3
sdl 0 due to (c1) and (e1)

x′xx −1
2

∫ L
0 ksx

3
cdl 0 due to (c2) and (d2)

x′xx′ − ∫ L
0 ksxsx

2
cdl 0 due to (c1), (d1), and (e1)

x′x′x′ −1
2

∫ L
0 ksx

2
sxcdl 0 due to (c2), (d2), and (e2)

xδδ
1
2

∫ L
0 ksxsx

2
δdl 0 due to (c1), (e1), and (f1)

x′δδ −1
2

∫ L
0 ksxcx

2
δdl 0 due to (c2), (d2), and (f2)

xxδ
∫ L
0 ksxsxcxδdl 0 due to (c1/2), (d1/2), (e1/2), and (f1/2)

x′x′δ − ∫ L
0 ksxsxcxδdl 0 due to (c1/2), (d1/2), (e1/2), and (f1/2)

The only second order aberrations which are not canceled are

xx′δ =
∫ L

0
ksx

2
sxδdl , x′xδ = −

∫ L

0
ksx

2
cxδdl . (47)

These aberrations cannot be compensated by an antisymmetry, since x2
s and x2

c are
symmetric with respect to any symmetry plane, and also ksxδ is symmetric. But these
aberrations would be avoided if the sextupoles were chosen in a symmetric rather than
in an antisymmetric way. The following two cases can be distinguished:

(a) ks is chosen symmetric at both symmetry planes. All second order geomet-
ric aberrations would still cancel due to the phase advance of 180◦ between equal
sextupoles. Also the second order dispersion would still vanish at the end since the
integrals in the above table would still cancel due to the antisymmetry properties of xs
and xc. However, while ksxδ is antisymmetric and the integrals in equation (47) both
vanish, the aberrations xx′δ and x′xδ would not cancel.

But the terminal disadvantage of this strategy is the fact that R566 cannot be altered
in this way. In fact, R566 of an arrangement with symmetry plane and ~xδ = 0 at its
end is not influenced by an arrangement of sextupoles for which xδks is antisymmetric
and for which the fundamental rays xs and xc are symmetric or antisymmetric. We
denote the symmetric ray by x+ and the antisymmetric one by x−. The contribution
of the sextupoles to xδδ is then given by

±(x+

∫ l

0
x−ksx

2
δdl − x−

∫ l

0
x+ksx

2
δdl)

= x+S(l) + x−(K + A(l)) or x−S(l) + x+(K + A(l)) , (48)

The first possibility follows for a symmetric arrangements of ks and the second for an
antisymmetric arrangement. Here S(l) is some symmetric and A(l) some antisymmetric
function of l with respect to the symmetry plane; K is a constant. This follows from
the fact that the integral over an antisymmetric function is a symmetric function and
the integral over a symmetric function is a constant plus an antisymmetric function.
The contribution of the sextupoles to R566 is given by

±Rks
566 = −

∫ L

0
(κ0x±S(l) + κ0x∓(K + A(l))dl , (49)
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where the upper sign corresponds to symmetric sexutpole arrangements. Since ~xδ = 0
at the end of the device, the curvature κ0 in the dipoles has the same symmetry as xδ.
Since ksxδ is antisymmetric, κ0x±S(l) is antisymmetric since for the upper sign ks is
symmetric and κ0 antisymmetric and for the lower sign vice versa. Two parts of the
integral therefore have an antisymmetric integrand and vanish, leaving

Rks
566 = −K

∫ L

0
κ0x∓dl . (50)

According to equation (27) is proportional to either xδ or x
′
δ after the bunch compressor,

which are both zero. This proves that in the given 360◦ compressor a symmetric
arrangement of sextupoles, while not crating the aberration xx′δ and x′xδ cannot be
used to influence R566.

(b) When the sextupoles are symmetric with respect to only one of the symmetry
planes, but antisymmetric with respect to the other, then all four chromatic aberrations
xx′δ, x

′
xδ, xxδ, and x′x′δ would not be created by the sextupoles. But some geometric

second order aberrations would be created. However, in the given arrangement this
might not be very significant since all problems are related to the very large energy
spread of the beam. But again R566 could not be manipulated and either xδδ or x′δδ
would become non–zero due to the sextupoles.

The only possibility to adjust R566 is therefore the applied antisymmetric arrange-
ments of sextupoles with respect to both symmetry planes. The critical aberrations
of such a 360◦ compressor are therefore the energy dependent focusing errors and the
higher order dispersions.

The 15th order power expansion of the dispersion relative to an energy spread
δ = 0.1 · δ3σ with a 3σ value of 10%, which corresponds roughly to the desired value of
the bunch compressor, at the end of the system is

x(δ)/mm = −140δ3
3σ + 50δ4

3σ + 46δ5
3σ + 71δ6

3σ + 97δ7
3σ

+ 83δ8
3σ + 15δ9

3σ + 17δ10
3σ − 32δ11

3σ − 0.7δ12
3σ

+ 6.2δ13
3σ − 1.2δ14

3σ + 1.4δ15
3σ . (51)

In this 360◦ bunch compressor even correcting ~xδδ up to order 7 is not sufficient.
The dispersion coefficients up to order 15 are then given by

x(δ)/mm = 5195δ8
3σ + 8010δ9

3σ − 9657δ10
3σ − 1856δ11

3σ

+ 1206δ12
3σ + 8362δ13

3σ − 16401δ14
3σ − 696652δ15

3σ . (52)

Figure 14 (left) shows the horizontal 1σ ellipse for particles with up to 2σ energy
spread after passing the bunch compressor. Obviously the dispersion is still far too
large. Figure 14 (right) shows the horizontal 2σ ellipse for particles with up to 1σ
energy deviation. The dispersion effect has disappeared completely, due too its high
order dependence on δ, but the energy dependent optics becomes dominant.

Figure 15 shows the longitudinal phase space of up to 3σ after having been tracked
through the 360◦ bunch compressor. Since R566 has been matched to 0, the longitudinal

21



Figure 14: Left: The ellipse around the horizontal 1σ emittance for energy deviations
of up to 2σ after being tracked through the FODO compressor after the 7th order
dispersion is corrected. Right: The ellipse around the horizontal 2σ emittance for
energy deviations of up to 1σ after being tracked through this FODO compressor. The
ellipse corresponds to on energy particles (δ = 0).

Figure 15: Twelve ellipses around longitudinal emittances of up to 3σ after being
tracked through the FODO bunch compressor with matched dispersion.

dynamics is satisfactory. The longitudinal phase space motion is sufficiently linear due
to R566 = 0. But also here higher order effects can be observed.

For the here described application with a 3σ energy spread of 10% this bunch
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compressor is not suitable. For applications with less energy spread it might be feasible
however.

8 Required Accuracy for a Wiggler Compressor

Except for the wiggler compressor described in this paper, all other arrangements
which have been analyzed have large higher order dispersion coefficients. This could
indicate that the symmetric magnetic fields of the wiggler compressor, which leads
to a cancelation of all higher order terms, are very sensitive to misalignments. The
cancelation would be mostly violated if there was an edge focusing at one of the parallel
faced magnets. The power expansion of the dispersion after such a system which has
a pole face angle of 0.5 mrad at the exit of the second magnet is given by

x(δ)/mm = 0.028δ3σ − 0.0087δ2
3σ − 0.0022δ3

3σ + 0.0018δ4
3σ

− 0.00065δ5
3σ + 0.00017δ6

3σ − 0.000037δ7
3σ . (53)

The edges of the parallel faced magnets of the wiggler bunch compressor therefore has
to be parallel up to less than half a m rad. This accuracy of 0.1 mm over a 50 cm
magnet pole face should be achievable.
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