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The orbit-response matrix (ORM) of an accelerator is
obtained by measuring the closed orbit deviation produced
by an individual excitation of each correction coil. In the-
ory, this matrix only depends on the beta functions and be-
tatron phases at the beam position monitors (BPMs) and
at the correction coils. By solving this nonlinear depen-
dence by an iterative method, we have measured the Twiss
functions of the HERA rings. Furthermore one can fit op-
tical errors like quadrupole strength or roll angles to obtain
the field deviations that produce a discrepancy between the
measured and the theoretical ORM. Both methods are use-
ful tools for finding errors of BPMs and of correction coils.
While both methods, especially the second one, have been
used at several circular accelerators, they have been found
to become less useful and less accurate with an increasing
size of the accelerator. Therefore they have never been in-
tensively applied to an accelerator as large as HERA. Here
we will report that the ORM analysis has nevertheless been
found to be very useful for checking HERA’s BPM system,
for finding erroneous correction coils and for finding erro-
neous quadrupole settings.

1 INTRODUCTION

The 6335 m long circular storage ring HERA is the only
high energy lepton-proton collider in the world. After hav-
ing surpassed design luminosity in the year 2000 its two
interaction regions for the particle physics detectors H1
and ZEUS were completely rebuilt between 9/00 and 7/01.
The electron ring and the proton ring both have a new vac-
uum system 60 m to the right and the left of the interac-
tion points. A total of 60 new magnets were installed,
4 of them superconducting, and the detectors both went
through a major reconstruction. Now superconducting fi-
nal focus quadrupoles reach inside the detector for an early
separation of the electron and the proton beams and the de-
tector solenoids no longer have a anti-solenoid, so that a
skew quadrupole correction is required. After these severe
changes during the upgrade, the magnet strength, the BPM
system, and all optical features had to be checked. The
ORM has turned out to be a useful tool for the required
evaluations.

When the closed orbit position at Mx horizontal and My

vertical BPMs is denoted by �x and �y and the Kx horizontal
and Ky vertical corrector kicks are denoted by �θx and �θy ,
then the ORM A relates changes of corrector kicks to the
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changes of the closed orbit which they produce via

(
∆�x
∆�y

)
= A

(
∆�θx

∆�θy

)
. (1)

The matrix Ameas relating corrector settings to BPM read-
ings can easily be obtained by successively changing single
corrector coils and measuring the closed orbit. This mea-
sured matrix will usually not agree with the ORM Amod

of the optical model that is used to describe the accelera-
tor. In turn it will also not correspond completely to the
true ORM A due to errors in the BPM system or in the
corrector coil settings. The difference between the model
and the measured ORM can therefore reveal gauge errors
in the corrector coils and in the BPMs as well as sources of
optical errors.

This matrix consists of (Kx + Ky) · (Mx + My)
data points. For HERA-e (Mx, My, Kx, Ky)
is (287, 287, 281, 277) and for HERA-p it is
(141, 141, 128, 126). The matrices therefore com-
prises 320292 and 71628 individual measurements. Since
the Kx + Ky different closed orbits sample the different
field regions in all magnets quite well, the ORM contains
a wealth of information about the fields in a circular
accelerator.

In the HERA electron ring as well as in the HERA proton
ring orbit-response matrices are being measured regularly
during the ongoing commissioning process.

1.1 Obtaining Twiss Parameters

Since we have not yet analyzed the coupled ORM, we
will refer to the Twiss parameters of one transverse plane
as β and φ, so that the formula can be used for the ver-
tical as well as for the horizontal plane. When the Twiss
parameters and the tune Q = µ/2π of the accelerator were
known at the monitors (index m) and the correctors (index
k), the ORM could be computed as

Amk =
√

βmβk

2 sin(µ/2)
cos(|φm − φk| − µ/2) . (2)

When the monitors have a gauge error of ξm and the cor-
rectors have a gauge error of ξk , then Ameas

mk = ξmξkAmk.
The gauge errors will therefore lead to an error

√
ξm/k in

the beta functions βm/k, but even for very large gauge er-
rors the phase can be determined accurately.

The measured matrix contains M · K data points, while
only Twiss parameters at the monitors and correctors are
unknown. The tune can be measured accurately, one of
the phases can be set to zero, and one of the beta func-
tions can be set to some model value. This leaves us with



2(M + K) − 2 unknowns, 1134 and 536 for the horizon-
tal planes of HERA-e and HERA-p. The problem is very
much over determined so that the free parameters can be
found by minimizing

K∑
k=1

M∑
m=1

(
Amk − Ameas

mk

σm

)2

→ minimum . (3)

In order to give more weight to those monitors which have
a smaller statistical error, we have first determined the stan-
dard deviation σ of 100 successive orbit measurements for
each monitor. While we averaged over 64 single turn or-
bit measurements in HERA-e, the average standard devia-
tion in the horizontal was 40 µm and in the vertical it was
20 µm.

Since Amk is a nonlinear function of the Twiss parame-
ters, we use an iteration procedure. In the nth step we solve
in a least square sense√

βn
m

σm2 sinµ

(
cos(φn

m ± µ/2)
sin(φn

m ± µ/2)

)
·
(

fn+1
k

gn+1
k

)
=

Mmeas
mk

σm
,

(4)
with + for φm < φk and − for φm > φk . This is a very
fast and simple two-dimensional least square problem for
each corrector (k). For the next iteration one has β n+1

k =
(fn+1

k )2 + (gn+1
k )2 and φn+1

k = arctan(fn+1
k /gn+1

k ).
Similarly one obtains the n + 1st iteration of at the mon-
itors (m). After about 50 iterations the fit converges. We
arbitrarily chose the phase of the first monitor to agree to
the phase in the optic model of HERA. One of the beta
functions can be chosen arbitrarily due to the fact that only
products βmβk appear, so that a general scaling of all βm

with r can be compensated by a general scaling of all βk

with 1/r. Since quadrupole errors lead to a harmonic beat-
ing of the beta function

∆β

β
=
∑

i

βi∆kli
2 sin µ

cos(2|φ − φi| − µ) , (5)

this beating approximately averages out over 5 of the 72 ◦

and 2 of the 90◦ FODO cells in HERA-e and HERA-p. We
therefore chose the free scaling factor so that∑

βm =
∑

βmod
m , (6)

where the sum goes over the FODO cells in the 4 HERA
arcs.

Quadrupole errors ∆kli cause the phase to beat accord-
ing to the formula

∆φ =
∑

i

βi∆kli
4 sinµ

{sinµ + sin(2φi − µ) +

sign(φ − φi)[sin µ + sin(2|φ − φi| − µ)]} . (7)

When there is only one error field, the amplitude of the
phase beat is just half as large as the relative amplitude of
the beta beat.
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Figure 1: Beating of βx (top) and φx (middle) for HERA-p
at injection (40 GeV) before and after partial field correc-
tions (bottom)

Figure 1 shows the so determined beta and phase beat in
the HERA-p injection optics. Although gauge errors lead to
errors in the beta functions, the phase measurements alone
have already turned out to be very useful. From figure 1,
for example, two magnets with incorrect remanence fields
have been identified by phase jumps at φmod ≈ 7.7 ·2π rad
and φmod ≈ 23.5 · 2π rad.

This Twiss parameter computation also gives a hint at
gauge errors, ξm,k = βfit

m,k/βmod
m,k is a rough estimate for

gauge errors.

2 BPM RESPONSE MATRIX
EVALUATION

Fitting system parameters like gauge errors and
quadrupole strength, instead of Twiss parameters, to match
the ORM can lead to a more accurate determination of the
gauge errors. We have used the program CALIF [1] to fit
these free parameters in order to minimize equation (3).
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Figure 2: Gauge errors of HERA-e monitors at the begin-
ning of commissioning

CALIF contains also a LOCO-type fit [2, 3]. CALIF ex-
pands the orbit matrix’s dependence on the free parame-
ters in a 1st order Taylor expansion, and then optimizes in
a least square procedure using singular value decomposi-
tion (SVD). Again iteration is needed due to a nonlinear
dependence on the fit parameters. The least square fit in-
volves very large matrices in the case of HERA. We write
all M · K matrix elements into one vector �A, expand the
model ORM as a linear expansion of the fit parameters,

| �Mmod + ∂�fT
�Mmod∆�f − �Mmeas|2 → minimum . (8)

For all gauges and all Nq = 576 quadrupoles, the involved
matrix has M · K · (M + K + Nq) = 92260168 elements
for HERA-e’s horizontal plane. At other accelerators it has
been possible to fit a sufficient number of parameters to
achieve an agreement between the model and the measured
ORM on the level of the monitor precision [2]. HERA is
relatively large and therefore we have never managed to
work with a sufficient number of suitable fit parameters to
bring this minimum below 7 times the monitor precision.

Figure 2 shows the fitted BPM gauge errors of HERA-e
at the beginning of the commissioning. Many of these er-
rors were due to incorrect cables or unusual vacuum cham-
bers which are now being taken into account.

2.1 Obtaining Quadrupole Errors from the
measured betatron phase

While fitting a model to match the ORM has turned out
to be a useful tool for finding monitor errors in HERA, it
is very slow and requires several GBytes of main memory.
Since the described method of obtaining betatron phases
φm/k does not need to fit gauge errors, is extremely fast and
we have extended it to fit quadrupole strength to match the
betatron phases of the model to the measured phases. Such
a phase correction is routinely used at CESR [4], where the
phase is however measured in a more direct fashion from

multi turn data, which are not accessible with the HERA-
e monitor system. For the fit we bring equation (7) in the
form φm/k +

∑
i Bm/k,i∆kli = φmod

m/k and solve it with
SVD in a least square sense.

3 HERA RESULTS

The results obtained with these methods during the on-
going commissioning of HERA were

1. Several incorrectly wired monitors were found.
2. Four correctors and 12 BPMs with incorrect longitu-

dinal positions in the optics database were found.
3. Many monitors with nonstandard vacuum chambers

and therefore incorrect gauge factors were found.
4. Four corrector coils with incorrect gauges due to stray

fields were identified.
5. An extremely large beta beat in HERA-p had been ob-

served [5] at 920 GeV and this error was analyzed and
corrected in the injection and the luminosity optics.

6. An error in the strength of final focus magnet was
found and corrected.

7. Inconsistencies in the settings of the HERA-p tune
correction quads were found.

These tools for analysis of the optics have not only
shown useful in correcting the monitor system and in find-
ing strong optical errors during commissioning of the large
accelerator HERA, they also serve as a routine check for
making sure that no slowly evolving magnet errors disturb
routine operation.

4 CONCLUSION

Measuring an ORM is a relatively fast procedure, the
HERA-e matrix with 320292 entries can be measured in
60 minutes. The analysis obtaining the phases and an es-
timate of the gauge errors only takes a few seconds on a
standard PC. A full analysis of the ORM is however a more
involved job and needs some dedicated work with CALIF.
While both methods were applied to HERA, the fast phase
determination has evolved into a standard tool to quickly
see larger errors in the rings.
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