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Here we will derive the general theory of the beam-breakup instability in recirculating linear
accelerators, in which the bunches do not have to be at the same rf phase during each recirculation turn.
This is important for the description of energy recovery linacs where bunches are recirculated at a
decelerating phase of the rf wave and for other recirculator arrangements where different rf phases are
of an advantage. Furthermore it can be used for the analysis of phase errors of recirculated bunches. It is
shown how the threshold current for a given linac can be computed and a remarkable agreement with
tracking data is demonstrated. The general formulas are then analyzed for several analytically solvable
cases, which show (a) why different higher order modes (HOMs) in one cavity do not couple so that the
most dangerous modes can be considered individually; (b) how different HOM frequencies have to be
in order to consider them separately; (c) that no optics can cause the HOMs of two cavities to cancel;
(d) how an optics can avoid the addition of the instabilities of two cavities; and (e) how a HOM in a
multiple-turn recirculator interferes with itself. Furthermore, a simple method to compute the orbit
deviations produced by cavity misalignments has also been introduced. It is shown that the beam-
breakup instability always occurs before the orbit excursion becomes very large.
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One important limitation to the current that can be
accelerated in such an ERL is given by the beam-breakup

already been presented in [15]. Occasionally, additional
factors are found when this equation is stated [16–18]. We
I. INTRODUCTION

Synchrotron light sources based on energy recovery
linacs (ERLs) show promise to deliver x-ray beams with
both brilliance and x-ray pulse duration far superior to
the values that can be achieved with storage ring tech-
nology. This is due to the fact that the emittances in an
ERL are largely determined by a laser-driven source,
technology which has been improving steadily over the
years, and will undoubtedly improve further. To generate
high brilliance high flux x rays it is necessary to accel-
erate beams to the energies (several GeV) and with the
currents (several 100 mA) that are typical in these storage
rings. This would require that the linac delivers a power of
order 1GW to the beam.Without somehow recovering this
energy after the beam has been used, such a device would
be practically unfeasible. Energy recovery [1] can be
achieved by decelerating high energy electrons to gener-
ate cavity fields which in turn accelerate new electrons to
high energy. With this, large beam powers that are not
accessible in a conventional linac can be produced.

Several laboratories have proposed high power ERLs
for different purposes. Designs for light production with
different parameter sets and various applications are
being worked on by Cornell University [2,3], BNL [4],
Daresbury [5], TJNAF [6], JAERI [7], the University of
Erlangen [8], Novosibirsk [9], and KEK [10]. TJNAF has
incorporated an ERL in its design of an electron-ion
collider [11] for medium energy physics, while BNL is
working on an ERL-based electron cooler [12] for the
ions in the relativistic ion collider. The work at TJNAF,
JAERI, and Novosibirsk is based on existing ERLs of
relatively small scale.
1098-4402=04=7(5)=054401(13)$22.50 
(BBU) instability. The size and cost of all these new
accelerators certainly requires a very detailed under-
standing of this limitation.

A theory of BBU instability in recirculating linacs,
where the energy is not recovered in the linac but where
energy is added to the beam when it returns after each
recirculation turn, was presented in [13]. Such a linac can
consist of many cavities and several recirculation turns
can be used. This original theory was additionally re-
stricted to scenarios where the bunches of the different
turns are in the linac at about the same accelerating rf
phase, such as in the so-called continuous wave (cw)
operation where every bucket is filled. Tracking simula-
tions [14] compared well with this theory. In the follow-
ing we therefore refer to it as the cw recirculator BBU
theory. It determines above what threshold current Ith the
transverse bunch position x displays undamped oscilla-
tions in the presence of a higher order mode (HOM) with
frequency !�. If there is only one higher order mode
and one recirculation turn with a recirculation time tr
in the linac, the following formula is obtained for
T12 sin!�tr < 0:

Ith � �
2c2

e�RQ��Q�!�

1

T12 sin!�tr
; (1)

where c is the speed of light, T12 is the element of the
transport matrix that relates initial transverse momentum
px before and x after the recirculation loop, e is the
elementary charge, �R=Q��Q� is the impedance (in units
of	) of the higher order mode driving the instability, and
Q� is its quality factor. A corresponding formula had
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give a concise derivation which shows that no such addi-
tional factors are required.

In the past efforts have been made to derive threshold
currents from the analysis of experimental data obtained
at the TJNAF free-electron laser ERL [17,18] using the
cw recirculator BBU theory. The data have not been
interpreted satisfactorily, and at least part of the reason
could be that the underlying theory had not been derived
for the ERL operation. The theory presented in this paper
should therefore be used to extend and improve these
previous analysis results, as it is directly applicable to
the ERL operation.

Here we will derive the general theory of the beam-
breakup instability in recirculating linear accelerators, in
which the bunches do not have to be at the same rf phase
during each recirculation turn, similar to what has first
been presented in [19]. First we treat the simplest case of
one dipole HOM and one recirculation turn. Then we
allow many HOMs and many recirculations, and finally
we analyze several analytically solvable cases.
II. ONE DIPOLE HOM AND ONE
RECIRCULATION

For recirculating linacs, the simplest case of one HOM
and one recirculation loop has long been described [20].
Previous theories which assume that the recirculation
time is an integral number of rf periods should not be
used when investigating ERLs. Next we derive more
general formulas that may be applied for arbitrary recir-
culation times.
A. The dispersion relation

In the simplest model of multipass beam breakup,
bunches are injected into a cavity, which is assumed to
have one dipole HOM (e.g., TM11-like mode), accelerated
in the cavity and then recirculated to pass the cavity a
second time before they are ejected. In the case of a two-
turn recirculating linac, each bunch would be accelerated
on both passes through the linac and ejected to a user area.
The rf phase of the bunch would therefore be approxi-
mately the same on both passes. In an ERL, the rf phase
on the second pass through the cavity is shifted by� with
respect to the first pass so that the energy that the bunch
gains in the first pass is returned to the cavity during the
second pass and the bunch is ejected with reduced energy
into a beam dump.

If a dipole HOM is excited in the cavity, then a bunch
that enters the cavity on axis experiences a transverse
kick and starts to oscillate around the design orbit of the
recirculation loop and returns to the cavity with a trans-
verse offset. This offset leads to a change in the energy of
the HOM. If it increases the HOM energy, transverse
kicks experienced by subsequent bunches will be larger,
which will in turn lead to a further growth of the HOM
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energy once the kicked bunch returns to the linac: an
instability develops.

To describe this effect, we use the ideas and nomencla-
ture from [21]. When a current I�t0� passes the cavity
during its recovery loop at a time t0, the charge I�t0�dt0

with the transverse offset x�t0� excites the dipole HOM,
creating a transverse momentum for particles traveling
through the cavity subsequently at time t,

�px�t� �
e
c
W�t� t0�x�t0�I�t0�dt0; (2)

where the wake function W��� describes the transverse
force at time � after the HOM was excited. The momen-
tum transfer is described by an effective transverse volt-
age of the HOM, V�t� � c

e�px�t�.
Assuming that all bunches are injected on the cavity’s

central axis, they do not excite dipole HOMs on their first
path through the cavity. However, the effective transverse
voltage of the HOM determines what kick �px�t� the
bunch sees and what position it will have when it returns
to the cavity after the recirculation time tr. The transfer
matrix element T12 maps the transverse momentum px�t�
to x�t� tr� � T12px�t�. Inserting this into Eq. (2) leads to
an integral equation for the HOM’s effective voltage,

V�t� �
Z t

�1
W�t� t0�I�t0�T12

e
c
V�t0 � tr�dt0: (3)

To solve this integral equation, one assumes that the
current is a continuous stream of short pulses being
injected at multiples of an interval between bunches tb,
so that the current on the second turn is given by

I�t� � I0tb
X1

m��1

�D�t� tr �mtb�; (4)

�D being the Dirac-delta function. Note that tb is an
integer multiple of the rf circulation time t0 � 2�=!0

for the rf frequency!0. We write the recirculation time in
terms of the time tb between bunches as

tr � �nr � ��tb; (5)

with an integer nr and � 2 	0; 1�. For a recirculating linac
one has

�tb 
 nt0; (6)

and for an ERL one has �tb 
 �n� 1
2�t0 for some integer

n. A ‘‘�’’ sign in Eq. (5) that defines � may seem more
natural but our choice leads to simplified equations.

The HOM voltage at a time t 2 	ntb � tr; ntb � tr �
tb� is given by

V�t� � I0tbT12
e
c

Xn
m��1

W�t� tr �mtb�V�mtb�: (7)

Evaluating this at the time t � ntb � tr when the recircu-
lated bunches pass through the cavity leads to
054401-2



PRST-AB 7 GEORG H. HOFFSTAETTER AND IVAN V. BAZAROV 054401 (2004)
V�ntb � tr� � I0tbT12
e
c

X1
m�0

W�mtb�V�	n�m�tb�: (8)

In the cw recirculator BBU theory this difference equa-
tion was dealt with by assuming that the voltage can be
written as V�t� � V0e

�i!t for t � ntb where a positive
imaginary part of ! indicates instability. Note that this
does not require V�t� to be a harmonic function, but that it
can be a linear combination of harmonic functions with
frequencies !�m�2�=tb� for integers m. This distinc-
tion has not always been made clear and is a potential
source of confusion [18]. One obtains the equation

1

I0
� tbT12

e
c
ei!tr

X1
m�0

W�mtb�ei!mtb : (9)

The smallest value of the current I0 for which there is a
real ! is the threshold current Ith of the instability.

We proceed by writing V�t� in terms of its Laplace
transform, retaining all possible frequencies in HOM
voltage, which automatically enables a proper description
of the arbitrary recirculating configuration:

V�t� �
1

2�

Z 1�ic0

�1�ic0

~VV�!0�e�i!
0td!0: (10)
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Note that this is not the conventional way of writing a
Laplace transform. We have chosen this notation in order
to make it appear more similar to a Fourier transform. It
also makes the subsequent notation more similar to the
cw recirculator BBU theory. The Laplace transform is
used rather than the Fourier transform since we want to
analyze the onset of instability where the frequencies !
become complex. With the following definition:

~VV ��!� �
X1

n��1

~VV
�
!�

2�
tb
n
�
; (11)

we obtain

~VV ��!� � tb
X1

n��1

V�ntb�e
i!ntb : (12)

Since ~VV��!� is periodic with 2�=tb, it has a Fourier
series, and its Fourier coefficients are V�ntb�. This shows
that ~VV��!� does not vanish. We can therefore choose t �
�n� nr�tb in Eq. (7) and sum over n,
~VV ��!� � tb
X1

n��1

V�	n� nr�tb�ei!	n�nr�tb � I0t2bT12
e
c

X1
n��1

X1
m�0

W�	m� ��tb�V�	n�m�tb�ei!	n�nr�tb

� I0tbT12
e
c
ei!nrtb

X1
m�0

W�	m� ��tb�e
i!mtb ~VV��!�: (13)
This finally yields the dispersion relation between I0 and
! which can be used for all �. A corresponding deriva-
tion, which has treated the beam recirculation in a way
that can be applied to ERLs, has been presented in [19].
We believe that this paper should be referenced more
often, whereas the earlier papers with cw recirculator
BBU theory, which was not derived for ERLs, are often
referenced in the context of ERLs, where they are not
strictly applicable.

B. The far-field wake

The sum in the dispersion relation

1

I0
� tbT12

e
c
ei!nrtbw���; (14)
w��� �
X1
n�0

W�	n� ��tb�ei!ntb ; (15)

can be computed when the far-field approximation for the
wake function is used,

W��� �
�
R
Q

�
�

!2
�

2c
e��!�=2Q��� sin!��: (16)

With !�
� � !� � i�!�=2Q�� and !� � !� i�!�=2Q��

the required sum can be evaluated if Im�!� >
��!�=2Q�� and becomes
w��� �
X1
n�0

W�	n� ��tb�e
i!ntb �

�
R
Q

�
�

!2
�

4ic

�
ei!

�
� �tb

1� ei�!
�
��!�tb

�
e�i!

�
� �tb

1� e�i�!
�
��!�tb

�

�

�
R
Q

�
�

!2
�

4c
e�i!�tb

ei!
����1�tb sin�!��tb� � ei�!

�tb sin�!�	�� 1�tb�
cos!�tb � cos!�tb

: (17)

The dispersion relation thus becomes
054401-3
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FIG. 1. (Color) I0�!� in the complex plain for ! 2 	0; �=tb�.
The scale is arbitrary.
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I0 �
2

KT12
e�i!nrtb

e�!�=2Q���tb	cos�!�tb�� cos�!�tb��

e�i!
�tb sin��!�tb�� sin�	�� 1�!�tb�

;

(18)

with K � tb�e=c
2��R=Q���!

2
�=2�. For � � 0 this be-

comes the dispersion relation of the cw recirculator
BBU theory:

I0 �
2

KT12
e�i!tr

cos�!�tb� � cos�!�tb�
sin�!�tb�

: (19)

This describes the case when the recirculated bunches are
in the same buckets as the accelerated bunches. When
the recirculated bunches are just between accelerated
bunches, then � � 1

2 ,

I0 �
1

KT12
e�i!tr

cos�!�tb� � cos�!�tb�
cos�!�tb=2� sin�!�tb=2�

: (20)

For the case that every bucket is filled, this would be
an ERL with tb � t0. The dispersion relation for ERLs
for other � is less simple than Eq. (20) and has �tb �
�n� 1

2�t0 in Eq. (18). This occurs when the decelerating
and accelerating bunches are not perfectly centered be-
tween each other.

C. The threshold current

For a given positive current I0, the values of ! that
satisfy the dispersion relation Eq. (18) will in general be
complex. If they all have negative imaginary parts, the
beam motion is stable. If one of them has a positive
imaginary part it will be unstable.

For small currents the beam motion is stable. When the
current is increased, at some point, one of these ! will
become real. At this point the threshold current is
reached. The threshold current Ith is therefore the smallest
current I0 for which there is a real ! that satisfies the
dispersion relation. To find this current, we note that

I0

�
!�

2�
tb

�
� I0�!�; I0��!
� � I
0�!�: (21)

It is therefore sufficient to investigate ! 2 	0; �=tb�.
Figure 1 shows I0�!� in the complex plain for ! 2

	0; �=tb�. The intersection with the real axis that has the
smallest positive value yields the threshold current.

III. APPROXIMATE THRESHOLD CURRENT

It can often be justified to linearize in � � �!�=2Q��tb,
�� 1, which describes a situation when HOM decay is
negligible on the time scale of the bunch spacing tb. This
applies to linacs when nearly every rf bucket is filled. The
smallest jI0j in Eq. (18) is obtained when cos!tb is close
to cos!�tb, which occurs whenever ! is close to !�;n� �
�!� � n�2�=tb� for any integer n. Because of Eq. (21),
all these frequencies lead to the same threshold current.
We therefore additionally linearize in �! � !�!�;n� ,
054401-4
assuming �!tb � 1. This leads to

I0 � �
2

KT12
e�i!nrtbei!�;0��tb��!tb � i��: (22)

Within the linearization, the phase factors could be com-
bined to ei!tr . This is not done in order to retain the
symmetries of Eq. (21) for !! !� 2�=tb and for !!
�!
, i.e., �!! ��!
 and !�;n� ! !�;�n�.

Because of these symmetries, the real current close to
!�;n� is the same for each of these frequencies. Without
loss of generality we therefore use !�;n� � !� and no
longer require the symmetries:

I0 � �
2

KT12
e�i!tr��!tb � i��: (23)

Since I0 must be real, �!tb sin!tr � � cos!tr leading to
the following two equivalent equations:

I0 � �
�
K

2

T12 sin!tr
; (24)

I0 � �sgn�sin!tr�
2

KT12

����������������������������
�2 � ��!tb�2

q
: (25)

For this formula to describe the threshold current, it is
required that I0 > 0 and therefore T12 sin!tr < 0.

Figure 2 shows �!tb and � cot!tr versus !tb 2 	0; ��
for tr � 6:88tb. The dotted line and the curve have to
meet at a region where T12 sin!tt < 0, which is indicated
by a dark blue curve.

When nr�� 1, i.e., HOM decay is negligible on the
time scale of the recirculation time, then ! 
 !� in the
054401-4
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FIG. 3. (Color) Threshold current obtained by tracking (red
dots) and approximate analytical solution (top panel) and by
a numerical solution (bottom panel) of the dispersion rela-
tion Eq. (18). Parameters: nr � � 2 	6:135; 7:234�, �R=Q�� �
100	, Q� � 104, T12 � �10�6 eV=c, and !�tb � 9:67.

3 3.05 3.1 3.15 3.2 3.25

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

  tb

ε cot  tr

3 3.05 3.1 3.15 3.2 3.25

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

 tb
2 π

 

ω ε cot  trω

ω∆
 tbω∆

ω tb
2 πω

FIG. 2. (Color) �!tb (blue dots) and � cot!tr (blue and green curves). The curve is dark blue in the region where T12 sin!tr < 0 and
light green otherwise. The ! of the instability is given by the intersection of the dotted line with a dark blue solid curve for which
�! is smallest. Left panel: A case of T12 sin!�tr < 0. Right panel: A case of T12 sin!�tr > 0.

PRST-AB 7 GEORG H. HOFFSTAETTER AND IVAN V. BAZAROV 054401 (2004)
region where T12 sin!�tr < 0 and one obtains

I0 � �
�
K

2

T12 sin!�tr
; (26)

which is the traditional and commonly used approxima-
tion in Eq. (1) which had been derived for � � 0.

In the region with T12 sin!�tr > 0 one obtains !nr 

n�, which can be used in Eq. (25),

I0 �
2

KjT12j

�����������������������������������������������
�2 �

1

n2r
mod�!�tr; ��

2

s
: (27)

For nr�� 1, i.e., when HOM damping is substantial
on the recirculation time scale, one again uses Eq. (25)
with !tr 
 �2n� 1

2��, where the � or � sign is deter-
mined by the sign of T12 sin!�tr,

I0 �
2

KjT12j

�������������������������������������������������������������
�2 �

1

n2r
mod�!�tr �

�
2
; 2��2

s
: (28)

Note that in this case the threshold current weakly de-
pends on tr and can be estimated simply by I0 �
2�=KjT12j.

One can perform these approximations more accu-
rately, for example, by approximating cot!tr by a line
or second order curve. However, in regions where nr� is
not much larger or much smaller than 1, simple formulas
cannot be found.

Figure 3 (top panel) shows the threshold current ob-
tained with the approximate analytic solution compared
with the threshold current that is found by tracking par-
ticles for the simple case of one cavity with one HOM and
one recirculation loop.

Figure 3 (bottom panel) compares the same tracking
results with a numerical solution of the dispersion rela-
tion Eq. (18). The data agree remarkably well with the
054401-5 054401-5
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approximate formula in the region where�! is small, i.e.,
where I0 is relatively small. In the region where the
threshold current is relatively large, the agreement with
the approximate expression is not satisfactory, however.

To find the threshold current with Eq. (18), the smallest
positive real value of I0 for ! 2 	0; �=tb� was found by
linearly interpolating 100 points in the region! 2 	!� �
�1=nr���=tb�; !� � �1=nr���=tb��.

Instability growth rate

We denote the threshold current by ÎI0 and the real
frequency !̂! 2 	0; �=tb� satisfies Eq. (18) for this current.
When the current I0 is slightly larger than ÎI0, there is one
frequency !�I0� that satisfies Eq. (18) and is close to !̂!. It
has a positive imaginary part. All other frequencies ! at
which Eq. (18) holds and for which therefore ~VV��!�
might not vanish have an imaginary part that is not
positive. In Eq. (10) there are therefore exponentially
growing terms. For currents that are only slightly larger
than the threshold current, the complex frequency !�I0�
can be expanded with respect to �I � I0 � ÎI0,

e�i!t � e�i	!̂!�Ref�d!=dI0��Ig�teImf�d!=dI0��Igt: (29)

The rise time per current of the instability is thus given by
� � Imfd!=dI0gjÎI0 . The dispersion relation Eq. (18)
leads to a long formula. However, using the simplified
Eq. (22) leads to

� � Im



1

dI0=d!

��������ÎI0
�
1

ÎI0
Im


�
�inrtb �

tb
�!̂!�!��tb � i�

�
�1
�

�
1

ÎI0tb

4�� �ÎI0KT12�2nr
4� 8nr�� �ÎI0KT12nr�

2
: (30)

Provided parameters are not in the region where the
curves diverge in Fig. 3 (top panel), i.e., sin!�tr is not
close to zero, the following approximate formulas hold for
the growth rate: For nr�� 1 one obtains � � �1=ÎI0tb��,
and for nr�� 1 one obtains � � �1=ÎI0tb��1=nr�.

IV. MULTIPLE DIPOLE HOMS AND MULTIPLE
RECIRCULATIONS

Recirculating linacs with many cavities and several
recirculation loops have been considered early on
[13,21]. Here we use the same nomenclature as much as
possible. The N higher order modes, which can be asso-
ciated with different cavities, are numbered by an index i.
The Np passes through the linac are numbered by an
index I. The horizontal position and momentum that the
beam has at time t in the HOM i during turn I is denoted
~zzIi �t� � 	xIi �t�; p

I
i �t��. The transport matrix that transports

the phase space vector ~zzJj at HOM j during turn J to ~zzIi is
denoted TIJij , and the time it takes to transport a particle
054401-6
from the beginning of the first turn to HOM i during turn
I is denoted tIi . The beam is propagated from after HOM
i� 1 to after HOM i by

~zz Ii �t� � TIIii�1 � ~zz
I
i�1�t� 	tIi � tIi�1�� �

 
0

e
c Vi�t�

!
: (31)

This equation can be iterated to obtain the phase space
coordinates as a function of the HOM strength that cre-
ates the orbit oscillations. With the matrix element TIJij �
�TIJij �12 one obtains

xIi �t� �
XI�1
J�1

XN
j�1

TIJij
e
c
Vj�t� 	tIi � tJj ��

�
Xi�1
j�1

TIIij
e
c
Vj�t� 	tIi � tIj��: (32)

The strength Vi�t� of the HOM i is created by all
particles that have traveled through that HOM via the
integral

Vi�t� �
Z t

�1

XNp
I�1

Wi�t� t0�IIi �t
0�xIi �t

0�dt0; (33)

where IIi �t� is the current at time t that the fraction of
the beam has which passes the HOM i on turn I.
Combining this with Eq. (32) leads to the following
integral-difference equation:

Vi�t� �
Z t

�1

XNp
I�1

Wi�t� t0�IIi �t
0�
e
c

�
XI
J�1

XNIJ�i�1�
j�1

TIJij Vj�t
0 � 	tIi � tJj ��dt

0; (34)

NIJ�i� 1� �



N; if I � J;
i� 1; if I � J:

(35)

Now the approximation of short bunches is used. The
current is given at time t by pulses that are equally spaced
with the distance tb,

IIi �t� �
X1

m��1

I0tb��t� tIi �mtb�: (36)

This reduces the integral to a sum,

Vi�t� �
e
c
I0tb

Xn�t;tIi �
m��1

XNp
I�1

Wi�t� tIi �mtb�
XI
J�1

XNIJ�i�1�
j�1

� TIJij Vj�mtb � tJj �; (37)

where n�t; tIi � � maxm�t � mtb � tIi �. Computing

VLi �
X1

n��1

Vi�ntb � tLi �e
i!ntb (38)

leads to
054401-6
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VLi �
e
c
I0tb

X1
n��1

X1
m�m


XNp
I�1

Wi�mtb � tLi � tIi �
XI
J�1

XNIJ�i�1�
j�1

TIJij Vj�	n�m�tb � tJj �e
i!ntb : (39)

The second summation starts at m
 � n� n�ntb � tLi ; t
I
i � which can be simplified by writing tIi � �nIi � �Ii �tb,

m
 � n� n�	n� nLi � nIi �tb; 	�
L
i � �Ii �tb� � �max

m
�	nLi � nIi �tb � 	m� �Li � �Ii �tb� � nIi � nLi � &i�I; L�; (40)

where &i�I; L� � 1 if �Li > �Ii and 0 otherwise. Shifting the summation index m now leads to

VLi �
e
c
I0tb

X1
n��1

X1
m�0

XNp
I�1

Wi�	m� &i�I; L� � �Ii � �Li �tb�
XI
J�1

XNIJ�i�1�
j�1

TIJij Vj�	n�m� nIi � nLi � &i�I; L��tb � tJj �e
i!ntb ;

(41)
and with �i�I; L� � &i�I; L� � �Ii � �Li , which is between 0 and 1, shifting the index n finally leads to the relation

VLi �
e
c
I0tb

X1
m�0

XNp
I�1

Wi�	m� �i�I; L��tb�
XI
J�1

XNIJ�i�1�
j�1

TIJij e
i!	m�nIi�n

L
i �&i�I;L��tbVJj : (42)
The following sum is equivalent to that in Eq. (17):

wi��� �
X1
m�0

Wi�	m� ��tb�ei!mtb : (43)

Equation (42) reduces to

1

I0
VLi �

e
c
tb
XNp
I�1

wi��i�I;L��e
i!	tIi�t

L
i ��i�I;L�tb�

XI
J�1

XNIJ�i�1�
j�1

TIJij V
J
j :

(44)

If a vector ~VV is introduced that has the coefficients VIi ,
this equation can be written in matrix form,

1

I0
~VV � W�!�U ~VV; (45)

where the matrix M � W�!�U is determined by Eq. (44).
When all electrons are considered to have the speed of
light, tIi � tLi does not depend on the HOM number i and
we therefore drop this index and obtain the following
matrix coefficients:

MLJ
ij �

e
c
tb

XNp
I�J�$j;i

wi���I; L��ei!Top	�t
I�tL�=tb�tbTIJij ;

$j;i �



1; if j � i;
0; otherwise;

(46)

where Top�x� is the smallest integer that is equal to or
larger than x. With Kronecker �̂�ik this determines the
matrices W and U to be

WLI
ik �

e
c
tbwi���I; L��ei!Top	�t

I�tL�=tb�tb�ik; (47)

UIJkj � TIJkj$I;J�$j;k
: (48)

For each frequency !, I�10 is an eigenvalue of M�!�.
Since the eigenvalues are in general complex, but I0 has to
054401-7
be real, the threshold current is determined by the largest
real eigenvalue of M�!�. The matrix has the properties

M
�
!�

2�
tb

�
� M�!�; M��!
� � M
�!�; (49)

and it is therefore again sufficient to investigate ! 2
	0; �=tb� to find the threshold current.

Note that V
Np
N never appears on the right-hand side of

Eq. (42) so that the dimension of M can be reduced by 1 to
N � Np � 1. Furthermore the dimension can be reduced
when two fractional parts �Ii and �Jj are equal since then
VIi and VJj are identical. Note also that for N � 1 and
Np � 2, Eq. (42) reduces to the dispersion relation for one
HOM in Eq. (18).

Instability growth rate

The growth rate of the instability is again computed by
first obtaining the threshold current ÎI0 and the real fre-
quency !̂! for which ÎI�10 is an eigenvalue of M�!̂!�. If this
is the kth eigenvalue �k�!� of the matrix M�!�, then the
growth rate of the instability is given by

� � �ÎI�20 Im


�
d�k
d!

�
�1
��������I0�ÎI0 : (50)

V. MULTIPLE HOMS IN ONE CAVITY

The presented theory for multiple HOMs and multiple
recirculation turns can in general only be evaluated with
computers. However, for some simple situation an ana-
lytical understanding is possible.

One such case is an accelerator with one recirculation
loop and one cavity in which many HOMs can be excited.
The (1,2) matrix elements that refer to transport between
HOMs for the same pass are zero, TJJij � 0. All matrix
elements that describe the recirculation loop are identical,
054401-7
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FIG. 4. (Color) Black curve: the threshold current ln�Ith	A�� for
one HOM at !1=2� � 2 GHz as a function of a second HOM
with frequency !2. Green curve: threshold current when only
the second HOM is present. Red lines: frequencies for which
cos!2tb 
 cos!1tb where the threshold current is not simply
the minimum of the threshold currents produced by the indi-
vidual HOMs.
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TIJij � T12 if I � J. The matrix elements in Eq. (46) are
then given by

ML2
ij � 0;

ML1
ij �

e
c
tbwi���2; L��e

i!Topf	�t2�tL�=tb�tbgT12:
(51)

Equation (45) becomes with � � ��2; 1�,

1

I0
V1i �

e
c
tb
X
j

wi���ei!nrtbT12V1j : (52)

A summation over the index i shows that
P
jV

1
j can only

be nonzero when
1

I0
� tbT12

e
c
ei!nrtb

X
i

wi���: (53)

Comparing this with Eq. (14) shows that one has to
replace onlyw��� of the single HOM by

P
iwi��� to arrive

at the threshold formula for the multi-HOM case. To find
the smallest real I0 that Eq. (53) can produce for real !,P
iwi��� has to be maximized. The sum is especially large

when the denominator of one of the terms is very small,
i.e., when cos!tb 
 cos!�tb.

When the HOM frequencies modulo 2�=tb are suffi-
ciently different for the different HOMs, the maximal
absolute value of

P
iwi��� will be close to the largest

absolute value that any of the wi��� could have individu-
ally. This is due to the fact that all the wj��� for j � i are
relatively small for frequencies ! for which the denomi-
nator of wi��� is small.

For HOM frequencies that are sufficiently different in
the above sense, the threshold current for several HOMs
therefore does not differ significantly from the threshold
current of the worst individual HOM.

Figure 4 shows how the threshold current changes
when the frequency of one HOM is fixed at a small
threshold current with j sin!1trj � 1 and a second
HOM frequency is varied. Superimposed is Ith if only
the second HOM is present. It is apparent that the HOM
that would produce the larger threshold current if it were
solely present influences only the threshold current of
the pair when the frequencies �!1 mod 2�=tb and
�!2 mod 2�=tb are closer together than about �!� �
�=tb � !�=2Q�.

One can draw the conclusion that in the case of many
HOMs they do not interact destructively when the fre-
quencies �!�mod 2�=tb are not very close together.
Tracking simulations also demonstrate this effect.

One strategy to increase the BBU threshold current is
the introduction of HOM frequency spreads between cav-
ities. As an example, Fig. 5 shows the threshold current
found by tracking as a function of uniform frequency
spread of 20 HOMs in a single cavity. For all three curves
�R=Q��Q� is the same. It is seen that for lower Q�, the
curve begins to saturate for larger frequency spread than
for the high Q� case. It is also seen that the threshold for
frequency spread !�=2Q� is similar in all three cases.
054401-8
Both observations are consistent with the above assertion
that HOMs do not interfere when they are farther apart
than !�=2Q�. The fact that oscillations in Fig. 5 are
smaller for low Q� is consistent with the conclusion that
a broader HOM resonance peak should lead to more over-
laps and as a result to less pronounced differences in the
threshold for different HOM frequencies.

VI. ONE DIPOLE HOM IN TWO CAVITIES

In order to see how two dipole HOMs interact, we will
now analyze a set of two HOMs with one recirculation
loop, i.e., Np � 2. We abbreviate � � ��2; 1� and �r �
ei!nrtb . The dispersion relation is then given by

1

I0

0
@V11V12
V21

1
A� e

c
tbN

0
@V11V12
V21

1
A; (54)

where the matrix N is given by0
@ w1����rT2111 w1����rT2112 0
w2�0�T1121 � w2����rT2121 w2����rT2122 w2����rT2221

w1�0�T
21
11 w1�0�T

21
12 0

1
A:

(55)

The third row is similar to the first row and eliminating it
by similarity transformations leads to the 2� 2 matrix�
w1����r 0

0 w2����r

��
T2111 T2112

w2�0�
w2����r

T1121�T
21
21�

w1�0�
w1����r

T2221 T
21
22

�
:

(56)

Even though !1��� appears in the denominator, the
formula for the eigenvalues of this matrix does not
054401-8
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FIG. 5. (Color) The threshold current Ith as a function of uniform equidistant frequency spread for 20 HOMs in a single cavity.
Abscissa displays frequency difference between the two HOMs adjacent in frequency. Parameters: ,!!�=2� � 2 GHz, �R=Q��Q� �
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contain such a denominator. Therefore the largest real
eigenvalue will again occur at a frequency ! for which
one of the HOM frequencies satisfies cos�!tb� 

cos�!�tb�. The term wi��� and wi�0� of the other HOM
can then again be neglected, so that for sufficiently differ-
ent HOM frequencies mod 2�=tb the threshold current is
again approximately determined by the HOM which
would have the smallest Ith if there were no other
HOMs present.

We therefore now assume that the two HOMs are equal,
w1 � w2. Now one can perform an approximation analo-
gous to Eq. (23) leading to

N ��
K

2
ei!tr

1

�!tb� i�

�
T2111 T2112

T2121�e
�i!tr�T1121�T

22
21 � T

21
22

�
:

(57)

It is interesting to analyze whether the effect of the two
HOMs can cancel. A cancellation could occur most natu-
rally when the linac and the recovery loop are mirror
symmetric. A mirror symmetry of the linac means that
the beta functions of the first pass, going from low to high
energy, are the mirror image of those of the second pass,
going from high to low energy. An example of such an
optics is shown in Fig. 6.

Since the (1,2) element of the transport matrix between
a region with momentum p0 and a region with momen-
tum p can be written with Twiss parameters as
054401-9
T12 �

����������
**0
pp0

s
sin�+; (58)

this symmetry leads to T2221 � T1121 . An additional mirror
symmetry of the return arc leads to T2122 � T2111 . The ei-
genvalues of the matrix in Eq. (57) then become

1

I0
� �

K

2
ei!tr

1

�!tb � i�
	T2111

�
����������������������������������������������
T2112 �T

21
21 � 2e�i!trT1121�

q
�:

(59)

Since there are two solutions to the quadratic eigenvalue
equation, to every eigenvalue that is smaller than 1=Ith of
a single cavity, there exists in general the one that is
larger. Therefore two cavities do not compensate their
instabilities, but it is possible to decouple the cavities to
the extent that the combined threshold current is just as
large as that for a single cavity. For this, one has to choose
T2112 � 0, i.e., the phase advance of the return arc has to be
a multiple of �.

Since the kick of a HOM disturbs the beam most at low
energy, the first and the last cavity of an ERL are the
strongest contributors to BBU. It seems therefore advis-
able to adjust the phase advance of the arc to a multiple of
� also when the linac has more than two cavities.
054401-9
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FIG. 6. (Color) Example of a mirror-symmetric linac optics. Red curve (green curve) is the horizontal (vertical) beta function in
the linac for the accelerating beam. Dashed lines show the lattice function for the decelerating beam.
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Multiple recirculation turns

One could envision a multiturn recirculating linac as
ERL. The beam would pass the same linac Nr times to
reach its top energy, and subsequently it would be decel-
erated in just as many turns through the linac. The current
in the cavities would be 2Nr times higher than the current
that is available at high energy. One could therefore con-
jecture that the BBU threshold current isNr times smaller
than for a one-turn ERL. Here we will show that the
threshold current can be significantly smaller than that
conjecture and in general can be expected to decrease
quadratically with Nr.

Each bunch passes the linac Np � 2Nr times and the
matrix in Eq. (46) becomes
054401-10
MLJ �
e
c
tb

XNp
I�J�1

w���I; L��ei!Top	�t
I�tL�=tb�tbTIJ; (60)

where the lower indexes have been suppressed since only
one HOM is considered. The eigenvalue equation thus
becomes

1

I0
VL �

e
c
tb
XNp
J�1

XNp
I�J�1

w���I; L��ei!Top	�t
I�tL�=tb�tbTIJVJ:

(61)

An approximation equivalent to that leading to
Eqs. (23) and (57) results in
1

I0
VL � �

K

2

1

�!tb � i�

XNp
J�1

XNp
I�J�1

ei!fTop	�t
I�tL�=tb����I;L�gtbTIJVJ: (62)

Comparing the exponent on the right-hand side to those in Eqs. (44) and (46) shows that this can be written as

1

I0
VLei!t

L
� �

K

2

1

�!tb � i�

XNp
J�1

XNp
I�J�1

ei!�t
I�tJ�TIJVJei!t

J
: (63)
Since the right-hand side does not depend on L, all the
terms VJei!t

J
are equivalent and the condition that they

do not vanish is

1

I0
� �

K

2

1

�!tb � i�

XNp
J�1

XNp
I�J�1

ei!�t
I�tJ�TIJ; (64)

where the double sum goes over all pairs of I and J for
which I > J. Similar to the condition obtained from
Eq. (23) which is analyzed with Fig. 2, the fact that I0
has to be real entails the conditionPNp

J�1

PNp
I�J�1 cos�!	t

I � tJ��TIJPNp
J�1

PNp
I�J�1 sin�!	t

I � tJ��TIJ
�
�!
�
: (65)

In regions where
PNp
J�1

PNp
I�J�1 sin�!	t

I � tJ��TIJ > 0, we
again obtain the approximation that ! 
 !�. The equa-
tion for the threshold current of an Nr times recirculating
ERL INrth corresponds therefore to that of the case without
recirculation in Eq. (1),

INrth � �
2c2

e�RQ��Q�!�

1PNp
J�1

PNp
I�J�1 sin�!	t

I � tJ��TIJ
:

(66)

A comparison with Eq. (1) shows that this current is
smaller than the one-turn ERL by a factor of up toPP

I>J jT
IJj=jT12j. This is in agreement with an earlier

result presented in [15]. Assuming that all matrix ele-
ments are of about equal magnitude, the threshold current
in an Nr times recirculating ERL is therefore in general
smaller by about a factor of Nr�2Nr � 1�. This conclusion
054401-10
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is consistent with tracking results for microtrons [22] and
for two-turn ERL [23]. The scaling in a particular case,
however, can be quite different depending on details of
the lattice design, e.g., approximate scaling with Nr was
reported in [24].

VII. CAVITY MISALIGNMENTS

In the derivation above, it was assumed that the
bunches travel along the cavities’ symmetry axes when
the current is below the threshold for BBU instability.
When the cavities are misaligned, the beam will excite
dipole higher order modes even below the threshold and
the trajectory will be disturbed by these modes.
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Let us assume that the ith cavity is misaligned with
respect to the path adjustment of the Ith turn by xI0i,
leading to the misalignment vector ~xx0. The dipole
HOMs that are excited by the beam are now not only
due to the beam position fluctuation that is produced by
the HOMs themselves, but additionally due to the cavity
misalignments. The HOM voltages in Eq. (33) are there-
fore given by

Vi�t� �
Z t

�1

XNp
I�1

Wi�t� t0�IIi �t
0�	xIi �t

0� � xI0i�dt
0: (67)

With the manipulations that led to Eq. (37) this leads to
Vi�t� � I0tb
Xn�t;tIi �

m��1

XNp
I�1

Wi�t� tIi �mtb�
�XI
J�1

XNIJ�i�1�
j�1

TIJij
e
c
Vj�mtb � tJj � � xI0i

�
: (68)

Following the derivation to Eq. (44) leads to

VLi � I0tb
XNp
I�1

wi��i�I; L��ei!	t
I
i�t

L
i ��i�I;L�tb�

�XI
J�1

XNIJ�i�1�
j�1

TIJij
e
c
VJj � xI0i

X1
n��1

ei!ntb
�
: (69)

For all oscillation frequencies that are not multiples of the bunch repetition frequency, ! � 2�l=tb, l is an integer, the
term xI0i

P
1
n��1 e

i!ntb vanishes so that the condition for VLi �!� to be nonzero is the same as for the BBU instability
without misalignments xI0i. Below threshold, the HOM voltage therefore has the following form:

Vi�t� �
X1
l��1

Vlei�2�=tb�lt: (70)

The voltage seen by bunch i on turn L is therefore given by ,VVLi �
P

1
l��1 Vle

i�2�=tb�ltLi so that for the time tLi , Eq. (68) can
be written as

,VV L
i � I0tb

Xn�tLi ;tIi �
m��1

XNp
I�1

Wi�t
L
i � tIi �mtb�

�XI
J�1

XNIJ�i�1�
j�1

TIJij
e
c
,VVJj � xI0i

�
: (71)

After performing the summation over m one obtains

,VV L
i � I0tb

XNp
I�1

w!�0i 	��I; L��
�XI
J�1

XNIJ�i�1�
j�1

TIJij
e
c
,VVJj � xI0i

�
; (72)
where the superscript! � 0 means thatw��� is computed
with Eq. (17) for ! � 0.

Comparing with Eqs. (44) and (45) shows that this can
be written as

~,VV,VV � I0W�0�U ~,VV,VV � I0W�0� ~xx0; (73)

with W � W�0� and U from Eqs. (47) and (48). The
vector of voltages is therefore given by ~,VV,VV � 	I0WU�
I��1I0W ~xx0. Equation (32) can now be used to compute
the beams distance from the cavity center at each turn and
each cavity. One obtains

xIi �t
I
i � � xI0i �

XI
J�1

XNIJ�i�1�
j�1

TIJij
e
c
,VVJj � xI0i; (74)
~xx� ~xx0 � U	I0WU� I��1I0W ~xx0 � ~xx0
� 	I0UW � I��1 ~xx0: (75)

Evaluating this for a single cavity with a single HOM
leads to

x� x0 �
x0

e
c I0tbT12w

!�0��� � 1
: (76)

For � � 1
2 and with � � �!�=2Q��tb one obtains

x� x0 � x0

�
I0KT12

cosh�2 sin
!�tb
2

cosh�� cos!�tb
� 1

�
�1
: (77)

There is a current I0 at which the denominator becomes
0 and the orbit deviation would become very large. The
question arises whether this current is larger than the
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BBU threshold Ith or smaller, so that large orbit excur-
sions would present a new kind of instability.

This problem not only arises for the single HOM case
of Eq. (75) but also for the general case of Eq. (77). Very
large orbit excursions x occur for currents for which the
matrix inverse does not exist.

The inverse matrix to be inverted is �I0WU� 1��1 �
I0ADiag	��i � 1=I0�

�1�A�1, where A is the matrix that
diagonalizes W�0�U. We therefore see that 1=I0 for which
the orbit gets very large is given by the eigenvalues of
W�0�U. These values are naturally smaller than 1=Ith,
which is the largest eigenvalue of W�!�U that is produced
for any frequency !.

This proves that the BBU instability always occurs
before the orbit excursion becomes very large.
VIII. TRACKING RESULTS

The tracking code BI (stands for beam instability) was
developed to perform studies of beam breakup in recir-
culating linacs [25]. The algorithm models point charge
bunch interactions with HOMs in linacs, taking into
account proper time delays between the cavities, transfer
maps, etc., allowing BBU simulations due to longitudinal,
transverse, and other higher order modes in a general
linac configuration.

The basic algorithm can be summarized as follows:
The string of HOMs that a bunch sees in its lifetime
between injection and ejection points is represented by a
list of pointers to the actual cavities. The proper time
delays between cavities are also stored for each pointer.
For example, for N HOMs and Np passes, the list of
pointers would be NNp long pointing to N HOMs. This
approach allows one to represent any recirculation con-
figuration without limitations. As the train of bunches is
injected into the structure, the next instance when any
bunch sees any pointer is determined, and the HOM
voltage in the corresponding cavity is updated. Then,
this bunch is pushed to the next pointer where its coor-
dinates are stored, waiting for its turn in time to be the
next bunch going through a pointer. This way no bunches
end up ahead of time precluding a situation when a bunch
sees a cavity with incorrectly updated HOM fields, i.e.,
causality is properly realized. Furthermore, the algo-
rithm is general enough to allow modeling of the longi-
tudinal instability where timing between different
bunches is no longer kept fixed. The practical realization
of this algorithm is relatively fast, allowing the tracking
of a complete 5 GeV ERL with 300 HOMs for 0.1 ms in
less than a minute on an average personal computer. This
duration is sufficient to determine the onset of transverse
BBU instability in most practical cases.

The output of the code contains amplitudes of HOM
voltages as a function of time, which is used to determine
the growth rate of the instability by fitting an exponential.
Several successive calls are made to the tracking unit to
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determine the threshold. The length of the tracking time
is estimated from Eq. (30) based on the desired accuracy
in threshold determination.

IX. CONCLUSION

For dipole HOMs we have derived the BBU theory for
arbitrary recirculation times, so that the theory can be
applied to ERLs. The resulting equations have been used
to find analytical results for (i) multiple HOMs in one
cavity, (ii) two equal HOMs for a one-turn ERL, and (iii)
one HOM for a multiple times recirculating ERL. For (i)
the numerical observation that it often suffices to include
only the strongest of several different HOMs was ex-
plained and the distance in frequency was derived for
which one can consider two HOMs as different. For (ii) it
was shown that two cavities do not cancel each others
instability but that they can be arranged so that they do
not add dangerously, and for (iii) it was shown that the
BBU threshold current for an Nr times recirculating ERL
is roughly up to Nr�2Nr � 1� times smaller than that in a
corresponding one-turn ERL.

Furthermore, a simple method to compute the orbit
deviations produced by cavity misalignments has also
been introduced. And it is shown that the BBU instability
always occurs before the orbit excursion becomes very
large.

Several comparisons with tracking data verify the ap-
plicability of the theory and of the tracking program. The
conclusions should be useful in determining and optimiz-
ing the maximum current for the many ERLs that are
currently in design and preproposal stages worldwide.
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