
CSR INCLUDING SHIELDING IN THE BEAM DYNAMICS CODE BMAD

David C. Sagan, Georg H. Hoffstaetter, Christopher E. Mayes, Udom Sae-Ueng
Cornell University, Ithaca, New York 14853

Abstract

Short bunches radiate coherently at wavelengths that are
longer than their bunch length. This radiation can catch up
with the bunch in bends and the electromagnetic fields can
become large enough to significantly damage longitudinal
and transverse bunch properties. This is relevant for many
accelerators that rely on bunch compression. It is also im-
portant for Energy Recovery Linacs, where spent beams are
decelerated by a large factor increasing the relative energy
spread and hence increasing the impact of wake fields.

In this paper we show how the beam dynamics code
Bmad computes the effect of CSR and how the shielding ef-
fect of vacuum chambers is included by the method of im-
age charges. We compare the results to established codes:
to elegant for cases without shielding and to a numerical
solution of simplified Maxwell’s equations, as well as to
analytical CSR-wake formulas. Good agreement is gener-
ally found.

INTRODUCTION

The Coherent Synchrotron Radiation (CSR) wake-fields
calculation that was introdued by Saldin et al.[3] has been
generalized by Sagan[1] to include arbitrary lattice config-
urations of bends and drifts. As discussed in this paper,
this formalizm has been implemented in the particle track-
ing code Bmad[4, 2], and compared with two of the codes
described in [5], as well as with analytic formulas.

CSR KICK

The electric field E felt by a particle due to a source
particle is given exactly by the Liénard-Wiechert formulas.
If both particles travel on the same trajectory with velocity
βc, then this electric field depends only upon the positions
z and z′ of the affected and source particles along the path.

The rate of energy change along the path of the affected
particle is dE/ds = en·E ≡ K, where n is the unit tangent
vector. Unfortunately, this expression has a singularity as
path length separation distance ζ = z − z′ goes to zero. To
alleviate this problem, we use the regularization procedure
of [3] to split E into a space charge (SC) part and a CSR
part, as in

ESC ≡ e

4πε0

n

γ2 ζ2
, ECSR ≡ E − ESC , (1)

so that

K ≡ KCSR + KSC = en · ECSR + en · ESC . (2)

For charges distributed smoothly over a line with density
λ(z), the CSR kick is therefore

K tot
CSR =

∫

∞

−∞

dz′ λ(z′)KCSR(z, z′). (3)

Within a bend of radius R, KCSR is highly peaked in am-
plitude near ζ = 0, especially for simulations at ultra–
relativistic energies. One way of resolving this peak is to
integrate by parts, giving

K tot
CSR =

∫

∞

−∞

dz′
dλ(z′)

dz′
ICSR(z, z′) , (4)

ICSR(z, z′) = −
∫ z′

−∞

dz′′ KCSR(z, z′′). (5)

In an accelerator, the particle trajectories are typically
straight lines and arcs of circles, as in drifts and bends, and
source and kicked particles are not necessarily in the same
element. Assuming small angles and relativistic velocities,
KCSR has been worked out for such a geometry in [2], yield-
ing

KCSR(z, z′) = 4 rcmc2 γ4 τ2

{

(τ2 − α2) (α − τ κ)

R (τ2 + α2)
3

+
τ2 − α2 + 2 τ α κ

(τ2 + α2)
3

}

− rcmc2

γ2 ζ2
.(6)

Here α, τ , κ and ζ are second order polynomials in angles
and 1/γ. Equation (6) can be integrated to yield

ICSR(z, z′) = −rcmc2

(

2 γ (τ + α κ)

τ2 + α2
− 1

γ2 ζ

)

. (7)

This is the main result of [2], and is the basis for CSR cal-
culations in Bmad.

CSR IN BMAD

The above algorithm for simulating CSR has been im-
plemented as part of the Bmad [4] subroutine library for



relativistic charged-particle simulations. Bmad simulates a
beam as a set of particles. The beam is tracked through a
lattice element by dividing the element into a number of
slices. Tracking through a slice involves first propagating
the particles independently from each other and then ap-
plying the CSR kicks. To calculate the energy kick, the
beam is divided longitudinally into Nb bins. For comput-
ing the charge in each bin, each beam particle is considered
to have a triangular charge distribution, and the overlap of
the triangular charge distribution with a bin determines that
particle’s contribution to the total charge in that bin. In-
creasing the particle width smooths the distribution at the
cost of resolution.

The charge density λi at the center of the ith bin is taken
to be λi = ρi/∆zb where ρi is the total charge within the
bin and ∆zb is the bin width. The charge density is as-
sumed to vary linearly in between the bin centers. The CSR
energy kick for a particle at the center of the jth bin after
traveling a distance dsslice according to Eq. (4) is then

dEj = dsslice

Nb
∑

i=1

(λi − λi−1)
ICSR,j−i + ICSR,j−i+1

2
, (8)

where ICSRj
≡ ICSR(ζ = j ∆zb).

CHAMBER WALLS

The simulation incorporates the shielding of the top and
bottom chamber walls by using image currents. Here, be-
cause the image current is well separated from the actual
beam, there are no singularities to deal with, KSC does not
have to be subtracted, and a straight forward integration is
done using Eq. (3),

dEj (image) = 2 ∗ dsslice (9)

×
Ni
∑

k=1

(−1)k
Nb
∑

i=1

qi ∗ K(z = (j − i)∆zb, y = k h) ,

where qi = λi ∆zb is the charge in a bin, h is the chamber
height, and k indexes the image currents at vertical dis-
placement y = ±k h. The number of image layers Ni

needs to be chosen large enough so that the neglected image
currents do not have a significant effect on the simulation
results. Because the relevant angles are not small, the im-
age charge kick K must be calculated without the small an-
gle approximation, as in Eq. (6). The full Liénard-Wiechert
fields are therefore used, where the retarded positions are
found numerically.

COMPARISON BETWEEN BMAD, THE
AGOH AND YOKOYA CODE, AND

ELEGANT

In order to validate our method, we compare simu-
lations from Bmad with a code developed by Agoh and
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Figure 1: The steady state (R = 10m, σz = 0.3mm) for
varying chamber heights h. The A&Y code (dots), Bmad
(circles), and the analytic shielded CSR-wake (lines) agree
well, and elegant agrees with the data at large chamber
heights.

Yokoya (A&Y), which calculates CSR wake fields by di-
rectly integrating Maxwell’s equations on a mesh repre-
senting a rectangular beam chamber [6]. Comparisons are
also made with the particle tracking code elegant [7],
as well as with analytic expressions for the CSR-wake
given in [3], [8], and [10]. Electric fields are normalized
by E0 = 2Nrcmc2/(

√
2π(3R2σ4

z)1/3), where σz is the
bunch length for a Gaussian distribution.

Figure 1 shows the steady-state CSR kick in a bend as a
function of z for various values of the chamber height. The
parameters used are the same as in Fig. 1 of [6]. Excel-
lent agreement is seen between Bmad, the analytic shielded
CSR-wake, and the A&Y code. For the largest chamber
size all codes agree with elegant.

The principal detrimental effects of the CSR-wake in an
accelerator are energy loss and increase in energy spread
of a bunch. The transverse bunch distribution can also be
damaged and is mostly influenced by increases of the en-
ergy spread which, through dispersive orbits, couples to
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Figure 2: Average and RMS longitudinal electric fields in
the Cornell ERL’s CE magnet for various chamber widths
using the A&Y code, compared to Bmad, which has infinite
chamber width. Here R = 87.9m, σz = 0.3m, and the
magnet length is 6.6m.
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Figure 3: Exit wake-field as a function of the length d from the end of the magnet for free space (left) and with shielding
(right). Bmad (dots) shows excellent agreement with the analytic formula (top lines) in the free space case, and with
numerical integration over image bunches in the shielded case (bottom lines). Here R = 10m, σz = 0.3mm.
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Figure 4: Average energy losses versus shielding height for
various energies. Bmad (dots) agrees well with numerical
integration of the shielded power spectrum of [9] down to
2mm. Analytic steady state losses are indicated as horizon-
tal lines. Here R = 10m, σz = 0.3mm.

transverse motion. Figure 2 shows the average and RMS
electric field across the bunch distribution as a function of
distance into the magnet. One sees that, in this shielded
case, the chamber width w in the A&Y code begins to
change the wake field when it is comparable or less than
4cm, the height of the chamber. It shows that ignoring the
chamber width, as in Bmad, is a reasonable approximation
when the chamber is wider than the height.

The method in this paper can correctly account for the
CSR-wake in a drift section following a magnet. Using the
same parameters as in Fig. 1, Fig. 3 shows this wake as a
function of the distance d from the end of the magnet in free
space and with shielding. The free space case, for which
an analytic formula exists [10], shows excellent agreement
between Bmad and analytic formulas. The shielded case
shows good agreement with numerical integration over im-
age bunches.

Our final test of Bmad compares the total coherent en-
ergy lost for various particle energies and chamber heights
to the integration of the shielded power spectrum given in
[9]. Figure 4 shows excellent agreement for energies down

to 5MeV and chamber heights down to 2mm. At smaller
heights, the number of image layers used (Ni = 64) is in-
sufficient to correctly model the CSR-wake.
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