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Coherent synchrotron radiation has been studied effectively using a one-dimensional model for the

charge distribution in the realm of small angle approximations and high energies. Here we use Jefimenko’s

form of Maxwell’s equations, without such approximations, to calculate the exact wakefields due to this

effect in multiple bends and drifts. It has been shown before that the influence of a drift can propagate well

into a subsequent bend. We show, for reasonable parameters, that the influence of a previous bend can also

propagate well into a subsequent bend, and that this is especially important at the beginning of a bend.

Shielding by conducting parallel plates is simulated using the image charge method. We extend the

formalism to situations with compressing and decompressing distributions, and conclude that simpler

approximations to bunch compression usually overestimate the effect. Additionally, an exact formula for

the coherent power radiated by a Gaussian bunch is derived by considering the coherent synchrotron

radiation spectrum, and is used to check the accuracy of wakefield calculations.

DOI: 10.1103/PhysRevSTAB.12.024401 PACS numbers: 41.60.Ap, 41.75.�i, 41.85.Ew

I. INTRODUCTION

Coherent synchrotron radiation (CSR) is an important
detrimental effect in modern particle accelerators with high
bunch charges and short bunch lengths. It is a collective
phenomenon where the energy radiated at wavelengths on
the order of the bunch length is enhanced by the number of
charges in the bunch. This CSR field can subsequently
affect particle motion. A comprehensive collection of pa-
pers and references regarding this subject is found in
Ref. [1].

CSR is difficult to model using discrete particles exactly
because the problem scales with the number of particles N
as N2. To simplify this, the one-dimensional model
projects the transverse particle density onto the longitudi-
nal dimension. Formulas for the CSR field from this line
charge are then used to calculate forces on each particle
and then propagate the full bunch distribution. While this
makes the calculation tractable, the electromagnetic fields
on the world sheet of this charged line are singular.
Pioneering efforts described in Refs. [2,3] circumvent
this problem by examining the nonsingular terms only. In
more detail, Ref. [4] regularizes the longitudinal force
between two charges traveling on the arc of a circle by
subtracting off the Coulomb force, calculated as if the
charges traveled on a straight line, from the force calcu-
lated using Liénard-Wiechert fields. The result is an always
finite CSR force.

This paper uses the less widely known Jefimenko forms
of Maxwell’s equations [5], which allow one to calculate
electromagnetic fields by directly using the evolving
charge and current densities, and which internally incor-
porate all retardation effects. These equations are related to
forms used in Refs. [2,6]. This is in contrast to the usual
Liénard-Wiechert approach, which gives fields due to

charges at their retarded times t0 and positions xðt0Þ, and
one must invert equations of the form t� t0 ¼
jxðt0Þ � xoj=c for the retarded time t0, where xo is an
observation point at a later time t and c is the speed of
light. While this latter method has proven useful in deriv-
ing equations for (incoherent) synchrotron radiation of
single particles, the former is found to be useful for the
coherent fields of particle distributions.

II. EXACT 1D APPROACHES TO STEADY-STATE
CSR

In general, for given charge and current densities �ðx; tÞ
and Jðx; tÞ at position x and time t, the electric fieldEðx; tÞ
can be calculated using Jefimenko’s form of Maxwell’s
equations [5],

E ðx; tÞ ¼ 1

4��0

Z
d3x0

�
r

r3
�ðx0; t0Þ þ r

cr2
@t0�ðx0; t0Þ

� 1

c2r
@t0Jðx0; t0Þ

�
t0¼t�r=c

; (1)

in which r � x� x0, r � krk, �0 is the vacuum permittiv-
ity and t0 is the retarded time. In this formulation, the
retarded points x0 and times t0 are independent variables,
so there are no functions that need to be inverted.
Therefore, if one knows �, _�, and _J at all points in space
x0 and times t0 � t, with a dot denoting the time derivative,
then this formula gives the electric field by direct
integration.
Now consider a line charge distribution, which follows a

path XðsÞ parametrized by distance s, has a unit tangent
uðsÞ ¼ dXðsÞ=ds, and moves with constant speed �c
along this path. A bunch with total charge Q and normal-
ized line density � therefore has one-dimensional charge
density and current
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�ðs; tÞ ¼ Q�ðs� sb � �ctÞ;
Jðs; tÞ ¼ Q�cuðsÞ�ðs� sb � �ctÞ;

(2)

where sb is the location of the bunch center at time t ¼ 0.
The rate of energy change per unit length of an elemen-

tary charge q at position s is dE=ds ¼ quðsÞ �Eðs; tÞ.
Functions of this type are called wakefields. Using
Eq. (1) with the one-dimensional bunch in Eq. (2) gives

dE
ds

ðs; tÞ ¼ Nrcmc2
Z 1

�1
ds0

�
uðsÞ � rðs; s0Þ

rðs; s0Þ3 �ðsrÞ

� �
uðsÞ � rðs; s0Þ

rðs; s0Þ2 �0ðsrÞ

þ �2 uðsÞ � uðs0Þ
rðs; s0Þ �0ðsrÞ

�
; (3)

with the definitions

sr � s0 � s0 þ �rðs; s0Þ; (4)

s0 � sb þ �ct; (5)

r ðs; s0Þ � XðsÞ �Xðs0Þ; (6)

rðs; s0Þ � krðs; s0Þk; (7)

whereN ¼ Q=q is the number of elementary particles with
mass m and classical radius rc ¼ q2=ð4��0mc2Þ, and the
prime on � indicates a derivative of this function with
respect to its argument, i.e. �0ðxÞ ¼ d�=dx. Additionally,
s0 is the center of the bunch at time t, and this is the only
place where the time dependence appears. The integrand is
thus the contribution to the wakefield due to particles
between the retarded positions s0 and s0 þ ds0, with
N�ðsrÞ being the charge density at retarded position s0
and retarded time t0.

Unfortunately the integral in Eq. (3) diverges as s�
s0 ! 0, which is a consequence of the one-dimensional
line charge model. This problem can be alleviated by using
the regularization procedure originating in Saldin et al. [4],
where the electric field E is split into two parts:

E ¼ ECSR þESC: (8)

The space charge (SC) part is the electric field of a line
charge moving on a straight path,

ESCðs; tÞ ¼ Q

4��0
uðsÞ

Z 1

�1
d~s

�
s� ~s

js� ~sj3 �ðslÞ

� �
s� ~s

js� ~sj2 �
0ðslÞ þ �2 1

js� ~sj�
0ðslÞ

�
; (9)

with sl � ~s� s0 þ �js� ~sj, which can be integrated by
parts, simplifying to

E SCðs; tÞ ¼ � QuðsÞ
4��0�

2

Z 1

�1
d~s

�0ð~s� s0 þ �js� ~sjÞ
js� ~sj :

(10)

It will turn out to be useful to change variables in this
expression, so that when combined with Eq. (3) the func-
tion �0 can be factored. This can be done by setting ~s�
s0 þ �js� ~sj ¼ s0 � s0 þ �rðs; s0Þ, with the convention
that sgnðs� ~sÞ ¼ sgnðs� s0Þ. Noting that @rðs; s0Þ=@s0 ¼
�rðs; s0Þ � uðs0Þ=rðs; s0Þ, this leads to

�1

js� ~sj ¼ sgnðs0 � sÞ 1þ �sgnðs0 � sÞ
s� s0 � �rðs; s0Þ ; (11)

d~s ¼ 1� �rðs; s0Þ � uðs0Þ=rðs; s0Þ
1þ �sgnðs0 � sÞ ds0; (12)

so that

ESCðs; tÞ ¼ Q

4��0

uðsÞ
�2

Z 1

�1
ds0sgnðs0 � sÞ�0ðsrÞ

� 1� �rðs; s0Þ � uðs0Þ=rðs; s0Þ
s� s0 � �rðs; s0Þ : (13)

The resulting wakefield due to ECSR, called the CSR wake,
is �

dECSR

ds

�
¼ quðsÞ � ½Eðs; tÞ �ESCðs; tÞ�: (14)

This expression is finite, and shown in Ref. [4] to correctly
account for the coherent energy loss due to synchrotron
radiation.
The approach here is to be contrasted with the conven-

tional one taken in the literature using Liénard-Wiechert
formulas. In terms of the quantities above, the electric field
at position s due to a charge q at retarded time t0 ¼ t�
rðs; s0Þ=c and retarded position s0 is

ELWðs; s0Þ ¼ q

4��0

�
r� �ruðs0Þ

�2½r� �r � uðs0Þ�3

þ r� f½r� �ruðs0Þ� � �2u0ðs0Þg
½r� �r � uðs0Þ�3

�
; (15)

with r as in Eq. (3) suppressing the arguments. Therefore,
the electric field at s due to a charge �ðst; tÞdst between st
and st þ dst, as in Eq. (2), is found by inverting st ¼ s0 þ
�rðs; s0Þ for s0 and using Eq. (15). This is often impossible
to do analytically, but fortunately for a distribution of
charges the inversion can be circumvented by changing
variables. Because @rðs; s0Þ=@s0 ¼ �r � uðs0Þ=r from be-
fore, the charge is

�ðst; tÞdst ¼Q�ðs0 � sb��ctþ�rÞ
�
1��

r �uðs0Þ
r

�
ds0;

(16)

and the total electric field is
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Eðs; tÞ ¼
Z 1

�1
dstELW½s; s0ðstÞ��ðst; tÞ (17)

¼ Q
Z 1

�1
ds0

�
1� �

r � uðs0Þ
r

�
ELWðs; s0Þ�ðsrÞ:

(18)

We can use this to verify that ESC computed this way
agrees with the result using the Jefimenko approach. For
the SC field one has rðsÞ ¼ ðs� s0ÞuðsÞ, uðs0Þ ¼ uðsÞ, and
u0ðsÞ ¼ 0, giving

ESCðs; tÞ ¼ QuðsÞ
4��0

Z 1

�1
ds0

�þ sgnðs� s0Þ
ðs� s0Þ2

� �ðs0 � s0 þ �js� s0jÞ: (19)

Equation (19) agrees with Eq. (10) when integrated
by parts because, for s0 ¼ 0,

R½� þ sgnðs � s0Þ� �
ðs � s0Þ�2ds0 ¼ ½� þ sgnðs � s0Þ�ðs � s0Þ�1, and
� @

@s0�½s0 þ�ðs� s0Þsgnðs� s0Þ� ¼�½1��sgnðs� s0Þ� �
�0ðs0 þ�js� s0jÞ, and similarly for all s0.

III. SINGLE BENDING MAGNET

Now we apply Eq. (3) to the geometry of an arc of a
circle of curvature � and length B, shown in Fig. 1. Set
s ¼ 0 at the entrance of the bend so that � ¼ �s is the
angle into the bend. In terms of fixed Cartesian unit vectors
êa and êb, the path coordinates and tangent vector are

X ðsÞ ¼ ��1 sinð�sÞêa � ��1½1� cosð�sÞ�êb; (20)

u ðsÞ ¼ cosð�sÞêa � sinð�sÞêb: (21)

Consider a bunch with its center at angle �0 ¼ �s0, and
a test particle at angle �. The contribution to Eq. (3) of this
finite arc is

dE
ds

ðsÞ
��������B

¼ Nrcmc2
Z �B

0
d�0

�
sin	

ð�r	Þ3
��ðs	Þ

� �
sin	

ð�r	Þ2
�0ðs	Þ þ �2 cos	

�r	
�0ðs	Þ

�
; (22)

with s ¼ ��1� and the following definitions:

	 � �� �0; (23)

s	 � 1

�
ð�� �0 � 	Þ þ �r	; (24)

r	 � 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos	

p
: (25)

Thus 	 is the angle between the test particle and the
retarded source particle, and is positive when the former
is ahead of the latter. The first term of Eq. (22) can be

integrated by parts because @ð2� 2 cos	Þ�1=2=@�0 ¼
sinð	Þð2� 2 cos	Þ�3=2, and the wake greatly simplifies to

dE
ds

ðsÞ
��������B

¼ Nrcmc2
� ���ðs	Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� 2 cos	
p

��������	¼�

	¼�ð�B��Þ

þ
Z �

�ð�B��Þ
d	

�2 cosð	Þ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos	

p �0ðs	Þ
�
: (26)

In terms of the variable	, the space charge term in Eq. (13)
can be split as

dESC

ds
ðsÞ ¼ �Nrcmc2

�Z �ð�B��Þ

�1
d	ISCð	Þ

þ
Z �

�ð�B��Þ
d	ISCð	Þ þ

Z 1

�
d	ISCð	Þ

�
;

(27)

with the integrand

ISCð	Þ � � sgn	

�2

1� � sinð	Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2 cos	

p

	� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos	

p �0ðs	Þ; (28)

so that the contribution of the bend to the CSR wake is

dECSR

ds
ðsÞ

��������B
¼ Nrcmc2

� ���ðs	Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos	

p
��������	¼�

	¼�ð�B��Þ

þ
Z �

�ð�B��Þ
d	�0ðs	Þ

�
�2 cosð	Þ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos	

p

þ sgnð	Þ
�2

1� � sinð	Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2 cos	

p

	� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos	

p
�

�
Z �ð�B��Þ

�1
d	ISCð	Þ �

Z 1

�
d	ISCð	Þ

�
:

(29)
FIG. 1. Geometry for a single bend. The variable s parame-
trizes the curve with radius 1=�. The coordinates are XðsÞ, and
the unit tangent vector is uðsÞ.
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A. Steady state

In the practical environment of a particle accelerator
with a bunched beam, one is typically only concerned
with electric fields around the bunch center. Because of
the rotational symmetry, there will be an angle into a
bending magnet beyond which the CSR wake, relative to
the bunch center, does not change. Note that in Eq. (24) the
quantity z ¼ ��1ð�� �0Þ is the distance along the path
ahead of the bunch center, and define the extent of the
bunch lb � zþ � z�, where zþ is the head particle coor-
dinate, and z� is the tail particle coordinate. Henceforth the
symbol z will refer to the longitudinal coordinate relative
to the bunch center: z ¼ s� s0. The particle at zþ is
affected by a particle at z� at retarded angle 	max found
by inverting

�lb ¼ 	max � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos	max

p
: (30)

Similarly, a particle at z� is affected by a particle at zþ at
retarded angle 	min found by inverting

� �lb ¼ 	min � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos	min

p
: (31)

When the bunch center is at an angle �0 >	max � �zþ,
only particles within the bend affect the wakefield. The
‘‘steady state’’ (s.s.) CSR wake is then

WCSR
s:s:
ðzÞ ¼ Nrcmc2

Z 	max

	min

d	

�
�2 cosð	Þ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos	

p

þ sgnð	Þ
�2

1� � sinð	Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2 cos	

p

	� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos	

p
�
�0½z� �ð	Þ�;

(32)

where

�ð	Þ ¼ ��1ð	� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos	

p Þ (33)

is the distance behind the test particle at z. The notation

WCSRðzÞ � dECSR

ds
ðs0 þ zÞ (34)

is used to refer to the CSR wake immediately surrounding
the bunch center at s0.

In the ultrarelativistic approximation (� ! 1) with a
small normalized bunch length �lb � 1, and thus 	 �
1, the steady-state formula in Eq. (32) greatly simplifies.
The 1=�2 term in Eq. (28) puts ISC ! 0, and the term in the
integrand ½�2 cosð	Þ � 1�=½2j sinð	=2Þj� � �j	j=2. The
function �ð	Þ for � ! 1 is approximately

�ð	Þ �
�
	3=ð24�Þ for 	> 0
2	=� for 	< 0:

(35)

Figure 2 plots the inverse of Eq. (33) for positive 	
and various energies. One sees that the approximation in
Eq. (35) is increasingly good for higher energies, but
greatly overestimates 	 at the smallest distances.
Changing variables using Eq. (35), the ultrarelativistic

steady-state CSR wake is

W CSR
�!1

ðzÞ ¼ �Nrcmc2�
Z lb

0
d�

�
�
2�0ðz� �Þ
ð3��Þ1=3 þ ��

8
�0ðzþ �Þ

�
: (36)

The first term in this integral is derived by an alternate
method in Ref. [4]. The scaling here is apparent by writing
the distribution in the normalized form

�ðz��Þ � 1



~�

�
z��




�
; (37)

�0ðz� �Þ � 1


2
~�0
�
z��




�
; (38)

where 
2 is the variance of �, so that ~� has unit variance.

Also using normalized ~z � z=
 and ~� � �=
 gives

W CSR
�!1

ð~z
Þ ¼�Nrcmc2
ð�
Þ2=3

2

Z lb=


0
d~�

�
�
2~�0ð~z� ~�Þ
ð3~�Þ1=3 þð�
Þ4=3

~�

8
~�0ð~zþ ~�Þ

�
: (39)

Now one can see that the particles in front of the test
particle, represented in the last term in the integrand,

influence the wake by roughly a factor of ð�
Þ4=3 less
than particles behind, and that the primary contribution
to the CSR wake scales with the factor in front of the
integral in Eq. (39). However, it is interesting to note that
even as � ! 1, where a charge radiates infinitely more
power in the forward direction than the backward direc-
tion, there is still a finite CSR force from particles ahead of
the test particle. In light of the primary scaling, we define a
characteristic CSR energy change per unit length as

W0 � Nrcmc2
ð�
Þ2=3

2

: (40)
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γ

FIG. 2. (Color) The inverse of Eq. (33) for positive 	 at various
energies. The dashed green curve (� ! 1) is 	 ¼ ð24��Þ1=3,
the inverse of Eq. (35).
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The ultrarelativistic approximation in Eq. (36) is com-
pared to the exact formula Eq. (32) in Fig. 3 for various
energies and a particular value of �
. One sees that
Eq. (36) represents the largest possible effect. The CSR
wake due only to particles in front of the test particle is
shown in Fig. 4, emphasizing again that these forward
particles contribute only a small amount to the total CSR
wake.

Neglecting the contribution due to forward particles, the
ultrarelativistic stead-state CSR wake in Eq. (39) scales

withW0 and depends only on the shape of ~�. Factoring out
W0 from the exact steady-state CSR wake in Eq. (32), the
exact result additionally depends on � and �
. Therefore,
to quantify the appropriateness of the ultrarelativistic ap-

proximation, the ratio of the average energy lost (per unit
length) of a Gaussian bunch using the exact Eq. (32) to that
using approximate Eq. (36) is shown in Fig. 5 for a prac-
tical range of these parameters. At a given energy, one sees
that Eq. (36) is a good approximation for the relatively long
bunches. This can be understood from Fig. 2, because the
approximation in Eq. (35) has a relative error for a finite
energy that diverges for small 	.
A systematic method for calculating the CSR wake

using Liénard-Wiechert formulas in the small angle, rela-
tivistic approximations has been developed in Ref. [7] for
arbitrary combinations of drifts and bends. Using the cor-
responding equation in Ref. [7] for the geometry of a bend,
and the appropriate Jacobian factor, the steady-state CSR
wake to second order in 	 and 1=� is

W CSR
SHMS;s:s:

ðzÞ ¼ �Nrcmc2
Z 	max

0
d	

��
1

2�2
þ 	2

8

�

�
�

2þ �2	2

	þ �2	3=4
� 1

	=2þ �2	3=24

�

� �0
�
z� ��1

�
	

2�2
þ 	3

24

���
: (41)

Compared to Eq. (36), this expression is a significantly
better approximation of Eq. (32) for low � and a practical
range of �
, shown in Fig. 6.

B. Shielding by parallel plates

The presence of a conducting beam chamber can
strongly change CSR wakefields. If particle trajectories
are planar within a chamber of finite height and infinite

4 2 0 2 4
0.6

0.4
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0.0

0.2

z σ

W
C

SR
z

W
0

256
128
64
32
16
8
γ

FIG. 3. (Color) The steady-state CSR wake for various relativ-
istic � using Eq. (32), compared to Eq. (36) plotted as green.
Here �
 ¼ 3� 10�5 for a Gaussian bunch, represented in light
blue.
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σ
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SR
z

W
0

8
4
2
γ

FIG. 4. (Color) The steady-state CSR wake for various relativ-
istic � due only to particles ahead of the test particle, i.e.
negative 	 in Eq. (32), and the second term in the integrand of
Eq. (36). A Gaussian bunch is used, with �
 ¼ 3� 10�5, and
the wake has been scaled by ð�
Þ�4=3. Compared with Fig. 3 this
demonstrates that the contribution to the CSR wake of particles
ahead of the test particle is insignificant compared to those
behind.

0.99

0.9

0.7

0.5

0.3

0.1

10 7 10 6 10 5 10 4 10 3

101
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FIG. 5. The ratio of the average energy of a Gaussian bunch
using the exact Eq. (32) to that using approximate Eq. (36) in a
practical range of the parameters � and �
.
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width, then the CSR wakefields can be calculated by using
the image charge method for infinite parallel plates. Here
we will formulate an exact solution to the 1D CSR problem
for such chamber walls.

For more realistic chamber geometries, CSR fields can
change in more complex ways, and it is therefore important
to know when the CSR forces deviate significantly from
those of the parallel plate case. Effects that can change the
wakefield include reflections of CSR waves on these walls
and shadowing effects from bends in the chamber wall. For
a rectangular cross section, it has been observed that
reflected waves are only important when the sidewalls
are closer together than the height of the chamber (see,
for example, Ref. [7]). By shadowing, we mean that some
retarded positions have a straight line connection to the
observation point that interferes with the vacuum chamber,
e.g. in a bend.

The kick due to a single image bunch at height h is easily
adapted from Eq. (3) as

dE
ds

ðs; t; hÞ ¼ Nrcmc2
Z 1

�1
ds0

�
uðsÞ � r

ðr2 þ h2Þ3=2 �ðshÞ

þ
�
�2 uðsÞ � uðs0Þ

ðr2 þ h2Þ1=2 � �
uðsÞ � r
r2 þ h2

�
�0ðshÞ

�
;

(42)

with the argument

sh � s0 � sb � �ctþ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ h2

p
; (43)

and with r and u retaining their meaning from Eq. (3).
Parallel plates require an image bunch for each plate, and

an image bunch for each of those, ad infinitum. For the real
bunch with orbit midway between plates separated by a
distance H, symmetry gives the total image kick

dEimages

ds
ðs; tÞ ¼ X1

n¼�1
n�0

ð�1Þn dE
ds

ðs; t; nHÞ (44)

¼ 2
X1
n¼1

ð�1Þn dE
ds

ðs; t; nHÞ: (45)

If the real bunch has a vertical offset V, the total image kick
is modified to

dEimages

ds
ðs; tÞ ¼ X1

n¼�1;n�0
even

dE
ds

ðs; t; nHÞ

� X1
n¼�1
odd

dE
ds

ðs; t; nH� 2VÞ: (46)

In a bend, the contribution of the image bunches to the CSR
wake within the bend, following Eq. (26), is

dEimages

ds
ðsÞ

��������B
¼ Nrcmc2

X1
n¼1

2ð�1Þn

�
����ðs	;nÞ

r	;n

��������	¼�

	¼�ð�Lm��Þ

þ
Z �

�ð�Lm��Þ
d	

�2 cosð	Þ � 1

r	;n
�0ðs	;nÞ

�
;

(47)

with the definitions

r	;n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos	þ ðn�HÞ2

q
; (48)

s	;n � ��1ð�� �0 � 	þ �r	;nÞ: (49)

Notice that the integrands do not need to be regularized by
the SC term, because they are always finite due to the
always positive factor ðn�HÞ2.
Because of the infinite number of image layers needed, a

finite bend can never be exactly in the steady state.
However, due to their increased distances and angles, the
relevant contribution image number n will be negligible
beyond some maximum image number. This point is illus-
trated in Fig. 7, where the contributions to the CSR wake of
five individual images are shown along with their sum with
the free space wake, to give the total shielded wake.

C. Retarded bunch visualization

For a given particle at time t within the bunch, it is
evident that the retarded bunch density can be very dis-
torted relative to the actual bunch density. From Eq. (16),
the retarded bunch density at position s0 as seen by a
particle at position s is

0.99

0.95

0.9

10 7 10 6 10 5 10 4 10 3 10 2

5

10

15

20

κ σ

γ

FIG. 6. Similar to Fig. 5, but with the ratio of the average
energy of Eq. (32) to Eq. (41), showing that the latter is an
excellent approximation at relatively low energies.

MAYES AND HOFFSTAETTER Phys. Rev. ST Accel. Beams 12, 024401 (2009)

024401-6



�retðs0; sÞ ¼ �ðs0 � sb � �ctþ �rÞ
�
1� �

r � uðs0Þ
r

�
:

(50)

In the steady state, the geometry of a bend can be used in
Eq. (50). Moving to coordinates relative to the bunch
center, the steady-state density seen by a test particle at
zt within the bunch as a function of z0 is

�ret
s:s:
ðz0; ztÞ ¼

�
1� �

sin½�ðzt � z0Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos½�ðzt � z0Þ�p �

� �fz0 þ ���1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos½�ðzt � z0Þ�

q
g: (51)

This retarded density is illustrated in Fig. 8 for a Gaussian
bunch distribution for various test particles. There one sees
that the density in front of the test particle is compressed to
roughly 
=ð1þ �Þ � 
=2, concentrated in an apparent

spike at the right of the plot. The density behind the test
particle occupies the majority of the plot. While it may
seem that the curves shown are Gaussian in form, this is
only true for the left sides of the curves; the right sides have
been extended and diluted due to the Jacobian factor in
Eq. (50). Similarly, the retarded density of an image bunch
at height h is

�retðs0; h; sÞ ¼
�
1� �

r � uðs0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ h2

p
�

� �ðs0 � sb � �ctþ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ h2

p
Þ: (52)

Figure 9 shows the retarded densities for a Gaussian
bunch and several image bunches within a bend. In this
example, the first and second image bunches as seen by
particles in the rear of the bunch are actually closer than the
real retarded bunch.

IV. MULTIPLE BENDS AND DRIFTS

A. CSR in multiple bends

In this section the general formula Eq. (3), regularized
by Eq. (10), is applied to the geometry of multiply con-
nected bends and drifts. Shielding by conducting parallel
plates is added as in Eq. (45). It has been seen in Eq. (39)
that the primary contribution to the CSR wake in a bend is
due to particles behind the test particle, so for brevity the
path is given behind the test particle only.
Let the bunch center be at length s0 inside bend 1 of

length B1 and positive curvature �1, preceded by drift 1 of
length D1, preceded by bend 2 of length B2 and curvature
�2 � 0, as shown in Fig. 10. A drift follows bend 1,
referred to as D0. A negative curvature �2 signifies a
bend in the opposite direction of bend 1. With s ¼ 0
located at the beginning of bend 1, the path coordinates are

X ðsÞ ¼

8>>><
>>>:
XD0

ðsÞ for s > B1

XB1
ðsÞ for 0< s � B1

sêa for �D1 < s � 0
XB2

ðsÞ for s � �D1;

(53)

where the paths in the individual elements are

XD0
ðsÞ �

�
sinð�1B1Þ

�1

þðs�B1Þcosð�1B1Þ
�
êa

þ
�
1

�1

½cosð�1B1Þ� 1�� ðs�B1Þ sinð�1B1Þ
�
êb;

(54)

XB1
ðsÞ � sinð�1sÞ

�1

êa � ½1� cosð�1sÞ�
�1

êb; (55)

zt 3σ

2σ

1σ

0

1σ

6000 5000 4000 3000 2000 1000 0
z' σ

FIG. 8. (Color) The steady-state retarded distribution
�ret;s:s:ðz0; ztÞ for various test particles zt in Eq. (51) using a

Gaussian bunch with standard deviation 
 ¼ 0:3 mm and en-
ergy 1 GeV, in a magnet of bending radius ��1 ¼ 10:0 m.

5 4 3 2 1 0 1 2 3 4 5
0.6
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0.2

0.0
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Parallel Plates
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FIG. 7. (Color) The free space and shielded CSR wakes in a
bend. The contributions to the shielded wake of individual image
bunches are shown in red and blue. A 1 GeV Gaussian bunch
with 
 ¼ 0:3 mm is used in a bend of radius ��1 ¼ 10:0 m. The
shielding height H ¼ 2 cm.
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XB2
ðsÞ �

�
sinð�2D1 þ �2sÞ

�2

�D1

�
êa � 1� cosð�2D1 þ �2sÞ

�2

êb: (56)

The tangent vector is then

u ðsÞ ¼

8>>><
>>>:
cosð�1B1Þêa � sinð�1B1Þêb for s > B1

cosð�1sÞêa � sinð�1sÞêb for 0< s � B1

1êa for �D1 < s � 0
cosð�2D1 þ �2sÞêa � sinð�2D1 þ �2sÞêb for s � �D1:

(57)

Straightforward calculation gives the total CSR wake at
position s in the bend (0< s < B1) due to these different
sections of the path

dECSR

ds

��������tot
ð0< s < B1Þ ¼ dECSR

ds

��������B1

þdECSR

ds

��������D1

þ dECSR

ds

��������B2

þ� � � (58)

with B1,D1, and B2 signifying the contributions from bend
1, drift 1, and bend 2, respectively. Because of their length,
these terms are written out in the Appendix.

A visualization of the retarded bunch and images of this
geometry, similar to Fig. 9, is shown in Fig. 11. Even
though the bunch has progressed 50 cm into bend 1, it
sees much of the retarded bunch inside bend 2, especially
for test particles zt in the front of the bunch.

Two principal effects of CSR on the bunch distribution
are a loss of energy and an increase in energy spread. These
are calculated using the CSR wake WCSRðzÞ and the bunch
distribution �ðzÞ, where the average energy change per unit
length hWCSRi and the standard deviation 
WðWCSRÞ over
the distribution are

hWCSRi �
Z zþ

z�
WCSRðzÞ�ðzÞdz; (59)


W �
�Z zþ

z�
W2

CSRðzÞ�ðzÞdz� hWCSRi2
�
1=2

: (60)

FIG. 10. Geometry for bends and drifts. The variable s pa-
rametrizes the path XðsÞ, with s ¼ 0 at the beginning of element
B1. The names B1, D1, etc. also serve to indicate the element
length. The dashed line is for a prior bend with negative
curvature.

zt 3σ , 2σ , 1σ , 0, 1σ , 2σ , 3σ

7000 6000 5000 4000 3000 2000 1000 0
z σ

FIG. 9. (Color) The same as Fig. 8, along with image charges at heights nH ¼ n� 2 cm (not to scale), which are approximately at
heights n� 67
, and calculated using Eq. (52).
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The term 
W is important because it contributes to the
correlated energy spread in a bunch.

To show how these quantities change as a bunch pro-
gresses through a bend, Fig. 12 plots hWCSRi and 
W ,
normalized by W0, versus different bunch center coordi-
nates s0 in bend 1 using Eq. (58) with D1 ¼ 1 m and �1 ¼
�2 ¼ 1=10 m. In the literature, the wake near the begin-
ning of bend 1 is often calculated as if the prior drift length
D1 ! 1 [4,8], so such calculations are plotted in dotted
lines for comparison. From the difference between the two
approaches, one sees the effect of bend 2, where the CSR
wake at s0 ¼ 0 is nonzero. In this example, they coincide

after about 1.4 and 1.8 m for the free space and shielded
cases, respectively.
It has been mentioned at the start of Sec. III B that

sidewalls can change the CSR field. The shadowing effect
can be especially relevant in the case of two bends that are
separated by a drift. In this example, the vector from a
source particle at z ¼ �8000
 to the center of the bunch
(z ¼ 0) correspondingly requires that the vacuum chamber
half-width must be greater than approximately 3 cm.

B. CSR in a drift between bends

The nonzero CSR wake at the beginning of bend 1 in
Fig. 12 is evidence that the wake in a drift region after a
bend also needs to be considered. This exit wake in the
regionD0 following bend 1 is calculated using Eq. (3) with
Eqs. (53) and (57) around the center of a bunch at s0 >B1.
Because the bunch is moving in a straight line, the regu-
larization procedure simply removes the need to integrate
any s0 > B1 for the real bunch. Therefore we can use
Eq. (3) for bend 1, drift 1, and earlier elements, and
subtract the space charge terms for s0 < B1. Image charges,
however, still require terms for s0 >B1. The total exit wake
is then

dECSR

ds

��������tot
ðs > B1Þ ¼

dEimages

ds

��������D0

þdECSR

ds

��������B1

þ dECSR

ds

��������D1

þ� � � ; (61)

where the individual terms due to element elementsD0,B1,
D1 are written out in the Appendix. For a magnet of length
B1 ¼ 3 m, the exit wakes in the following drift D0 are
shown in Fig. 13 for bunch centers in the following three
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0.2

0.0

0.2

0.4

s0 m

W
cs

r
W

0
W

W
0

Parallel Plates
Free Space

FIG. 12. (Color) The average energy loss and energy spread
induced, per unit length, of the CSR wake for a Gaussian bunch
through the length of a bend in free space as well as between
parallel plates withH ¼ 2 cm. Solid lines haveD1 ¼ 1 m, while
dashed lines have D1 ! 1. Parameters used are ��1

1 ¼ ��1
2 ¼

10 m, 
z ¼ 0:3 mm, with an energy of 1 GeV.

9000 8000 7000 6000 5000 4000 3000 2000 1000 0
z σ

FIG. 11. (Color) Similar to Fig. 9, but with a 1 m drift (shaded in gray) between two magnets of curvature �1 ¼ �2 ¼ 1=10 m. The
center of the bunch is 50 cm into the bend. A Gaussian bunch distribution is used with 
z ¼ 0:3 mm, an energy of 1 GeV, and a
shielding height H ¼ 2 cm.
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meters between parallel plates and in free space. The
average and standard deviation of the wakes through this
region are shown in Fig. 14. In the shielded situation, one
sees that the bunch actually gains some energy in a short
length following the bend, and that the total energy loss
between parallel plates is negligible compared to the free
space losses. Energy spread, however, is qualitatively the
same in both cases.

V. BUNCH COMPRESSION

Bunch compression or decompression can be achieved
in a bending magnet if there is a correlation between
energy and longitudinal position of particles in the bunch.
To exactly calculate CSR for this, however, requires at least
a two-dimensional model, because particles of different
energies travel on different orbits. In the framework of the
one-dimensional model described by Eq. (3), this effect
can be approximately modeled by allowing the bunch
length to be time dependent, and neglecting variations in

the velocity �c. The density and current are then

�ðs; tÞ ¼ Q
1


ðtÞ
~�

�
s� sb � �ct


ðtÞ
�
;

Jðs; tÞ ¼ Q�c
1


ðtÞ
~�

�
s� sb � �ct


ðtÞ
�
;

(62)

where ~� has unit norm and variance with respect to s, as in
Eq. (37). The time derivative of �ðs; tÞ is

@

@t
�ðs; tÞ ¼ ��c

Q~�0ðst
Þ

2

� _


�
Q~�ðst
Þ

2

þ st



Q~�0ðst
Þ

2

�
:

(63)

with st � s� sb � �ct. Note that _
=ð�cÞ is on the order
of 
=B in a magnet of length B, and (s� sb � �ct) is on
the order of 
 for all relevant ðs; tÞ, and therefore the term
in brackets is on the order of 
=B � 1 relative to the first
term, and will be neglected. With such an approximation,
the CSR wake in a bunch compression system can be
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FIG. 14. (Color) The average energy loss and energy spread per unit length of the exit wakes in Fig. 13. In this example, shielding by
parallel plates drastically reduces the energy loss, but only marginally reduces the energy spread, when compared to free space
calculations.
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FIG. 13. (Color) CSR wakes for various bunch centers s0 >B1 calculated using Eq. (61). The left graph uses parallel plates separated
by a distance H ¼ 2 cm, while the right graph is for free space [n ¼ 0 terms only in Eqs. (A6) and (A7), and without Eq. (A5)]. The
bending radius ��1

1 ¼ 10 m, and the bunch has a Gaussian profile with 
 ¼ 0:3 mm and an energy of 1 GeV.
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modeled by simply making the substitutions

�ðsrÞ ! 1


ðtretÞ
~�

�
sr


ðtretÞ
�

(64)

�0ðsrÞ ! 1

½
ðtretÞ�2
~�0
�

sr

ðtretÞ

�
(65)

tret ¼ t�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðnHÞ2

q
=c (66)

in all of the previous formulas, with r ¼ kXðsÞ �Xðs0Þk,
as in Eq. (3). This accounts for the real charges (n ¼ 0) and
image charges (n � 0) at the appropriate retarded times.

Calculations for the average and standard deviation of
the CSR wake with a linearly compressing bunch through
the length of bend 1 in free space are shown in Fig. 15(a).
The above approximation is referred to as method 1.
Method 2 calculates the instantaneous CSR wake of a
compressing bunch at each point in the bend as if it always
had its instantaneous length. Such a scheme is essentially
what particle tracking codes (e.g. elegant [9], Bmad
[10]) use for CSR simulation. For reference, method 3

calculates the CSR wake for a noncompressing bunch
that maintains the same length as the final compressed
length in methods 1 and 2. In this example, method 2
overestimates the CSR effect compared to the more real-
istic method 1, and both exhibit a much smaller effect than
method 3. At the end of the magnet (s0 ¼ 3 m), the CSR
wake, according to method 1, has yet to reach its corre-
sponding steady-state strength.
Figure 15(b) shows these same calculations but between

parallel plates with H ¼ 2 cm. One sees that the energy
loss in method 2 is similar to that in method 1, but
the energy spread induced is overestimated. Free space
and shielded calculations are repeated with D1 ! 1
in Figs. 15(c) and 15(d), which when compared with
Figs. 15(a) and 15(b) one can see the effect of the previous
bend B2.

VI. COHERENT POWER SPECTRUM

Some of the first CSR calculations are found in an
originally unpublished report by Schwinger [11]. Here
we use one of his methods to derive an exact expression
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FIG. 15. (Color) The average and standard deviation of the CSR wake in free space (a) and between parallel plates with H ¼ 2 cm (b)
over a Gaussian bunch, compressing from 
 ¼ 0:9 mm to 
 ¼ 0:6 mm linearly through bend 2, and from 
 ¼ 0:6 mm to 
 ¼
0:3 mm linearly through bend 1, using methods described in the text. Parts (a) and (b) have D1 ¼ 1 m, while parts (c) and (d) have
D1 ! 1. The lengths B1 ¼ B2 ¼ 3 m, the bending radii are ��1

1 ¼ ��1
2 ¼ 10 m, and the energy is 1 GeV.
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for the coherent energy loss by a Gaussian beam, which is
then used to verify our earlier calculations. Consider the
power spectrum due to a single particle moving on a circle
with velocity �c, which is proportional to the absolute

square of the Fourier transform electric field Eð1Þð�; tÞ,
integrated over solid angle �, as in

dPð1Þ

d!
/
Z

d�

��������
Z 1

�1
dtei!tEð1Þð�; tÞ

��������2

: (67)

For N particles moving on this circle with positions s ¼
sn þ �ct, the total electric field can be written in terms of
the single particle’s electric field (sn ¼ 0), as in

E ðNÞð�; tÞ ¼ XN
n¼1

Eð1Þð�; t� tnÞ; (68)

where the time deviations tn ¼ sn=ð�cÞ. By changing
variables, this means that the N particle power spectrum
is simply

dPðNÞ

d!
¼

��������XN
n¼1

ei!tn

��������2dPð1Þ

d!
: (69)

These phase factors can be separated into terms with m ¼
n and m � n,

dPðNÞ

d!
¼

�XN
m¼1

ei!tm
XN
n¼1

e�i!tn

�
dPð1Þ

d!

¼ N
dPð1Þ

d!
þ dPð1Þ

d!

XN
m¼1

exp

�
i!

sm
�c

�

� XN
n¼1
n�m

exp

�
�i!

sn
�c

�
; (70)

so that the second term can be written as a correlation
between different particlesX
m�n

exp

�
i!

sm � sn
�c

�
’ NðN � 1Þ

Z
ds�ðsÞ exp

�
i!

s

�c

�

�
Z

ds0�ðs0Þ exp
�
�i!

s0

�c

�
(71)

using the normalized particle distribution �ðsÞ along the
circle. The N particle power spectrum is then

dPðNÞ

d!
ð!Þ ’ N

dPð1Þ

d!|fflfflffl{zfflfflffl}
incoherent

þ NðN � 1Þ
��������
Z

ds�ðsÞ exp
�
i
!s

�c

���������2dPð1Þ

d!|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
coherent

:

(72)

The first term in Eq. (72) is the incoherent power spectrum,

while the second is the coherent power spectrum. The
squared integral is called the form factor.
In free space, the well-known single particle power

spectrum is

dPð1Þ

d!
ð!Þ ¼ Pð1Þ

!c

S

�
!

!c

�
; (73)

where !c � 3
2�

3c� is the critical frequency [5,12]. The

function S is defined as

Sð�Þ � 9
ffiffiffi
3

p
8�

�
Z 1

�
dxK5=3ðxÞ; (74)

in which K is a modified Bessel function. The integralR1
0 SðxÞdx ¼ 1, and the total power lost by a single particle

is

Pð1Þ � 2
3rcmc3�4�4�2: (75)

For a Gaussian distribution with variance 
2 and �
 � 1,
the form factor is, extending the integration limits to
infinity,

��������
Z 1

�1
ds

expði !s
�c � s2

2
2Þffiffiffiffiffiffiffi
2�

p



��������2¼ exp

�
�
2!2

�2c2

�

¼ exp

�
�
�
ac

!

!c

�
2
�
; (76)

defining the coherence factor

ac � 3

2�
�3�
 ¼ 


�c
!c: (77)

The total power spectrum per particle for an N-particle
Gaussian distribution with various values of ac is shown in
Fig. 16. One sees from the exponential that the lower
frequencies, up to a cutoff frequency around ! ¼ �c=
,
are enhanced by a factor of N by the coherent part of

p
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FIG. 16. The power spectrum in Eq. (72), per particle, using a
Gaussian form factor with various values of the coherence
parameter ac ¼ 2p, defined in Eq. (77). The lower frequencies
are enhanced by a factor of N, and in this example N ¼ 109.
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Eq. (72). The spectrum at higher frequencies agrees with
the familiar single particle spectrum in Eq. (73).

It turns out that Eq. (72) can be integrated exactly for a
Gaussian distribution. Explicitly, the total power radiated
by N particles is

PðNÞ ¼ NPð1Þ Z 1

0
SðxÞdxþ NðN � 1ÞPð1Þ 9

ffiffiffi
3

p
8�

�
Z 1

0
xe�a2cx

2

�Z 1

x
K5=3ðyÞdy

�
dx

¼ NPð1Þ þ NðN � 1ÞPð1Þ 9
ffiffiffi
3

p
8�

Z 1

0
K5=3ðyÞ

�
�Z y

0
xe�a2cx

2
dx

�
dy

¼ NPð1Þ þ NðN � 1ÞPð1ÞTc

�
3

2�
�3�


�
; (78)

in which the final integral yields the coherence function
defined as

TcðacÞ � 9

32
ffiffiffiffi
�

p
a3c

exp

�
1

8a2c

�
K5=6

�
1

8a2c

�
� 9

16a2c
: (79)

The limit lima!0þTcðaÞ ¼ 1, which is to say that an
infinitely narrow bunch radiates as one charge. In practical
situations ac 	 1, so an asymptotic expansion of Tc gives
the useful approximation

TcðacÞ 

9�ð56Þ

162=3
ffiffiffiffi
�

p
�
1

ac

�
4=3 � 9

16

�
1

ac

�
2

þ 9�ð56Þ
32 � 22=3 ffiffiffiffi

�
p

�
1

ac

�
10=3 þ � � � : (80)

The first term in Eq. (80) is given in Ref. [13]. Figure 17
compares this first term to the exact expression in Eq. (79)
and to all three terms in Eq. (80). One sees an excellent

approximation for ac * 50 using the first term and for
ac * 1 using all three terms in Eq. (80). Also, the average
coherent energy lost per particle per unit length is


PðNÞ

N�c

�
coh

¼ � 2

3
ðN � 1Þrcmc2�4�3�2Tc

�
2

3
�3�


�
(81)


� �ð56Þ
61=3

ffiffiffiffi
�

p W0 þ � � � ; (82)

using W0 defined in Eq. (40). The numerical coefficient

�ð5=6Þ6�1=3��1=2 ’ 0:350. The same procedure in
Eqs. (78) and (80) can be carried out for a uniform distri-
bution of length �L with the same variance 
2, implying

that �L ¼ 2
ffiffiffi
3

p

. The result yields the same form as

Eq. (82), except with the numerical coefficient 2�4=3 ’
0:397. This term was originally derived in Ref. [11].
To verify that the CSR wake does indeed represent the

coherent energy lost, the relative difference of the average
energy loss using the steady-state wake of a Gaussian
bunch in Eq. (32) to the result in Eq. (81) is plotted in
Fig. 18. One sees that the relative difference is at most 1%
in this practical parameter range, and that occurs with
relatively long bunches. We speculate that this error is
caused by the regularization procedure that subtracts the
space charge term from the longitudinal electric field.
The relevance of the coherence function depends on

the number of particles N � 1 ’ N. The coherent power
radiated equals the incoherent power radiated when
N � TcðacÞ ¼ 1, illustrated in Fig. 19. Using Eq. (80), the

FIG. 18. (Color) The relative difference jðb� aÞj=b for a the
average energy lost using Eq. (32), and b being the result in
Eq. (81).
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0.001
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100

Tc ac

FIG. 17. (Color) The coherence function TcðacÞ of Eq. (79) is
plotted in red. The green curve is the first term in the asymptotic
expansion in Eq. (80) [13], and the blue curve uses all three
terms in Eq. (80).
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coherent power dominates the total power when

�
 &
N3=4

�3
: (83)

VII. CONCLUSION

The wakefield due to CSR of a one-dimensional bunch
traveling on a curve without small angle or high energy
approximations has been derived using Jefimenko’s forms
of Maxwell’s equations. This exact solution allowed us to
quantify the accuracy of the approximations of the steady-
state CSR wake in a bend given in Refs. [4,7] showing that
the former is inaccurate at low energies and long bunch
lengths, and that the latter is much more accurate down to
low energies. All approximations tend to overestimate the
CSR wake. For planar orbits the equations are extended to

include shielding by perfectly conducting parallel plates
using the image charge method.
The formulas have been applied to the geometry of a

bend preceded by a drift, preceded by another bend, and
show that the CSR wake well inside the downstream bend
is influenced by the upstream bend for the parameters used.
In fact, a bunch near the entrance of a bend is influenced by
the CSR wake due to the previous bend much more than by
that due to the previous drift. Shielding by parallel plates
reduces the energy loss rate significantly, but the effect on
reducing energy spread increase is far less dramatic, in
both the drift and bend regions.
Bunch compression has been added to this model by

allowing the bunch length to be time dependent, so that the
retarded charge density seen by a test particle is appropri-
ately taken into account. This method has been compared
to simple methods used by particle simulation codes Bmad
and elegant, and it is shown that these tend to over-
estimate the effect [9,10].
Additionally, an exact expression for the coherent power

lost by a one-dimensional Gaussian bunch moving in a
circle has been derived by integrating the power spectrum,
following the method of Schwinger [11]. When compared
to the energy loss rate by the CSR wake, the two show
slight deviations. This could be due to the regularization
procedure for the one-dimensional CSR wake that sub-
tracts off the space charge term.

APPENDIX A: FORMULAS FOR MULTIPLE
BENDS AND DRIFTS

For ease of reading, the individual terms in Eqs. (58) and
(61) have been deferred to here. They are calculated by
applying Eq. (3), regularized by Eq. (10), including image
charges as in Eq. (45), to the geometry in Eq. (53).
In Eq. (58), the first term dEcsr=dsjB1

is the sum of

Eqs. (29) and (47) with � ! �1 and � ! �1s, explicitly:

dECSR

ds
ðsÞ

��������B1

¼ Nrcmc2
�Z 	b

	a

d	

�
�2 cosð	Þ � 1

2j sinð	=2Þj þ 1

�2

sgnð	Þ � � cosð	=2Þ
	� 2�j sinð	=2Þj

�
�0ðs	Þ � �1�ðs	Þ

2j sinð	=2Þj
��������	b

	a

þ
Z 1

�a

d�
1

�2

�0ðz��Þ
�

þ
Z 1

�b

d�
1

�2

�0ðzþ�Þ
�

þ X1
n¼1

2ð�1Þn
���1�ðs	;nÞ

r	;n

��������	b

	a

þ
Z 	b

	a

d	
�2 cosð	Þ � 1

r	;n
�0ðs	;nÞ

��
(A1)

with the definitions

	a � �1ðs� B1Þ; 	b � �1s; �a � s� 2�
1

�1

sin

�
�1s

2

�
; �b � B1 � sþ 2�

1

�1

sin

�
�1ðB1 � sÞ

2

�
;

r	;n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos	þ ðn�1HÞ2

q
; s	 � s� s0 � 1

�1

ð	� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos	

p Þ; s	;n � s� s0 � 1

�1

ð	� �r	;nÞ:
(A2)

Some trigonometric functions have been simplified, and the space charge integrals have changed variables to
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Coherent

105 106 107 108 109 1010
N100

104

106

108
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FIG. 19. (Color) The dividing line where the coherent power
equals the incoherent power, i.e. the total power is twice the
incoherent power. Below this line, the coherent power dominates
the total power.
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� ¼ ð	� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos	

p Þ=�1. These terms account for the regularized CSR wake and image charges in bend 1. The next
terms are

dECSR

ds

��������D1

¼ Nrcmc2
Z D1

0
dL

X1
n¼0

ð2� �n;0Þð�1Þn
�
TL

R3
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�ðsL;nÞ þ
�
�2 cosð�1sÞ
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� �
TL

R2
L;n

�
�0ðsL;nÞ

�

RL;n � 1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cosð�1sÞ þ 2�1L sinð�1sÞ þ ð�1LÞ2 þ ð�1nHÞ2

q

TL � L cosð�1sÞ þ 1

�1

sinð�1sÞ
sL;n � �L� s0 þ �RL;n

(A3)
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¼ Nrcmc2
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(A4)

Note that the lower limit of the sums has been set to n ¼ 0 to account for the real charges as well as image charges,
necessitating the use of Kronecker’s delta. Alternatively, if only free space terms are desired, the above formulas can be
used with the n ¼ 0 term only. The dummy variable s0 has been rescaled to Lwhich integrates backwards over the length of
the appropriate element. The terms RL;n, TL, and sL;n are redefined after each equation in order to keep the naming sane.

Similarly, the wake at s > B1 after bend, as in Eq. (61), contains the terms
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