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Coherent synchrotron radiation can severely limit the performance of accelerators designed for high

brightness and short bunch length. Examples include light sources based on energy recovery LINAC or

free-electron lasers, and bunch compressors for linear colliders. In order to better simulate coherent

synchrotron radiation, a one-dimensional formalism due to Saldin, Schneidmiller, and Yurkov has been

implemented in the general beam dynamics code Bmad. Wide vacuum chambers are simulated by means

of vertical image charges. Results from Bmad are here compared to analytical approximations, to

numerical solutions of the Maxwell equations, and to the simulation code ELEGANT and the code of

Agoh and Yokoya.
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I. INTRODUCTION

It is envisioned that future accelerators will call for
shorter beams of higher intensity. A possible limiting
factor in these efforts is an increase in energy spread and
transverse emittance, as well as a microbunching instabil-
ity, due to coherent synchrotron radiation (CSR).

The first CSR calculations were performed by
Schwinger in 1945. Using a Green’s function method, he
arrives at the power spectrum of a single charge bending in
free space as well as between infinite conducting plates,
and thereby computes the coherent power radiated by a
collection of charges [1]. Warnock extends this work to
include the longitudinal impedance on a bunched beam [2].
Many papers covering the history and importance of CSR
forces can be found in [3].

This paper uses an approach to calculate the CSR wake-
field originating with Saldin, Schneidmiller, and Yurkov
[4] which is a generalization of a prior calculation [5,6].
The calculation starts with the CSR force between two
charges traveling on the same curve, and integrates over
a longitudinal bunch distribution to give a longitudinal
wakefield. Transverse particle coordinates and transverse
force components are neglected. The formalism can be
applied to any arbitrary coplanar lattice configuration of
bends and drifts, including, for example, radiation from
one bend entering another.

Simulating CSR effects is the subject of a number of
codes. The method here is implemented in the particle
tracking code Bmad [7]. Our simulation results are com-
pared with approximate analytic formulas as well as with
two of the codes described by Bassi [8]—the simulation
code ELEGANT and the code of Agoh and Yokoya.

II. TWO PARTICLE INTERACTION

The CSR analysis starts by considering two particles of
charge e following the same trajectory as shown in Fig. 1.

The Liénard-Wiechert formula [9] gives the electric field
EðPÞ at the position of the kicked particle at point P and
time t due to the source particle at point P0 and retarded
time t0:

E ðPÞ ¼ e

4��0

�
1
�2 ðL� L�n0Þ þ 1

c2
L� ½ðL� L�n0Þ � a0�

ðL�L � �n0Þ3 :

(1)

It will be assumed that both particles have the same con-
stant speed � ¼ v=c. The unit velocity vectors for the
source and kicked particles are n0 and n, respectively,
The retarded time t0 is related to t via t� t0 ¼ L=c, where
L ¼ P� P0 is the vector from the source point to the kick
point. At time t, the source particle has a longitudinal
position z0 with respect to the bunch center and the longi-
tudinal position of the kicked particle is z. The distance
� � z� z0 between the particles at constant time can be
computed via the equation

� ¼ Ls � �L; (2)

where Ls is the path length from P0 to P. Generally, the
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FIG. 1. (Color) The radiation from a particle at point P0 kicks a
particle at point P.
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relativistic approximation � ¼ 1 will be made. However,
some terms in 1� � ’ 1=2�2 will need to be retained.

The first term on the right-hand side of Eq. (1) has a 1=�2

singularity at small distances. Following Saldin et al. [6],
this singularity is dealt with by dividing the electric field
into two parts. The space charge component ESC, which
contains the singularity, is the field that would result if the
particles where moving without acceleration along a
straight line. The CSR term, ECSR, is what is left after
subtracting off the space charge term

E SC � e

4��0

signð�Þn
�2�2

; ECSR � E�ESC; (3)

where signð�Þ is 1 for positive and �1 for negative � . The
rate K � dE=ds at which the kicked particle is changing
energy due to the field of the source particle is

K � KCSR þ KSC ¼ en � ECSR þ en � ESC: (4)

Following Saldin et al. [6], the transverse extent of the
beam will be ignored in the calculation of KCSR. However,
the inclusion of the finite beam size will be needed to
remove the singularity in the calculation of KSC as dis-
cussed in Sec. IV.

III. CSR CALCULATION

The source point P0 and the kick point P will, in general,
not be within the same lattice element. Because the trans-
verse extent of the beam is being ignored, all elements will
be considered to be either bends or drifts and it will be
assumed that the geometry is coplanar.

In Fig. 1, R is the bending radius and g ¼ 1=R is the
bending strength of the element that contains the source
point P0. The magnitude of the acceleration is a0 ’ c2=R.
This element ends at pointO. The angle between P0 andO
is �, and d ¼ R� is the path length between P0 and O.

Between point O and the kick point P, di is the path
length within the ith element, i ¼ 1; . . . ; N, where N is the
number of elements in this region. For the last element, dN
is the distance from the start of the element to point P.
For the ith element, �i is the bend angle, Ri is the bend
radius, and gi ¼ 1=Ri is the bend strength. For a drift�i ¼
gi ¼ 0.

In Fig. 1, ðv;wÞ are the coordinates of point P with
respect to point O with the v axis parallel to the orbit’s
longitudinal s axis at point O, and the w axis pointing
upwards towards the inside of the element containing the
point P0.

With this notation, the difference in v and w from the
beginning of an element to the end is

�vi ¼
�
Riðsinð�i þ c iÞ � sinc iÞ for a bend

di cosc i for a drift

�wi ¼
�
Riðcosc i � cosð�i þ c iÞÞ for a bend

di sinc i for a drift;

(5)

where c i is the orientation angle at the entrance end of the
element

c i ¼
Xi�1

k¼1

�k: (6)

The above formulas are able to handle negative bends
(beam rotating clockwise). For a negative bend Ri, gi and
�i are negative while di ¼ Ri�i is always positive.
With the assumption that all bend angles are small, v

and w can be approximated by

v ¼ �1 � �3; and w ¼ !2; (7)

where

�1 ¼
XN
i¼1

di; !2 ¼
XN
i¼1

di

�
c i þ 1

2
gidi

�
;

�3 ¼
XN
i¼1

di

�
1

2
c 2

i þ
1

2
c igidi þ 1

6
g2i d

2
i

�
;

(8)

and the small angles have been retained to second order.
The angle � of the vector n with respect to the v axis is

� ¼ P
N
i¼1 gidi. In the ðv;wÞ coordinate system, the com-

ponents of the vector L are

Lv ¼ vþ R sin� ¼ ½�1 þ d� �
�
�3 þ g2d3

6

�
;

Lw ¼ w� Rð1� cos�Þ ¼ !2 � gd2

2
;

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
v þ L2

w

q
¼ ½�1 þ d� �

�
�3 þ g2d3

6
� 1

8

ð2!2 � gd2Þ2
�1 þ d

�
:

(9)

The path length is simply

Ls ¼ dþXN
i¼1

di ¼ dþ �1: (10)

This, with Eq. (2), gives

� ¼ �1 þ d

2�2
þ

�
�3 þ g2d3

6
� 1

8

ð2!2 � gd2Þ2
�1 þ d

�
; (11)

where terms to second order in combinations of angles
and 1=� are retained. Substituting these expressions into
Eq. (1), and defining

	 ¼ �2ð!2 þ gd�1 þ 1
2gd

2Þ; 
 ¼ �ð�þ gdÞ;
� ¼ �ðdþ �1Þ;

(12)

the individual terms in Eq. (1) read as
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1

ðL�L � �n0Þ3 ¼
8�9�3

ð�2 þ 	2Þ3 ;

n � ðL� L�n0Þ=�2 ¼ �2 � 	2 þ 2�	


2�5�
;

n � ðL� ½ðL� L�n0Þ � a0�Þ=c2 ¼ gð�2 � 	2Þð	� �
Þ
2�5�

:

(13)

Putting these together yields

KCSR ¼ 4rcmc2�4�2
�
gð�2 � 	2Þð	� �
Þ

ð�2 þ 	2Þ3

þ �2 � 	2 þ 2�	


ð�2 þ 	2Þ3
�
� rcmc2

�2�2
: (14)

While we have used SI units, the classical radius rc and the
massm have been used to make the formula independent of
the unit system.

From Eq. (14), K�
CSR, which is KCSR restricted to the

special case where points P and P0 are within the same
bend, reduces to Eq. (32) of Saldin et al. [6],

K�
CSR ¼ 4rcmc2�4

R2

�
�̂2=4� 1

2ð1þ �̂2=4Þ3

þ 1

�̂2

�
1þ 3�̂2=4

ð1þ �̂2=4Þ3 �
1

ð1þ �̂2=12Þ2
��
; (15)

where �̂ � ��, 	 ¼ R�̂2=2, 
 ¼ �̂, and � ¼ R�̂. This

equation is valid for �̂ > 0; for �̂ < 0, KCSR is, to a very
good approximation, zero.

In the limit of small � , K�
CSR has a limiting value of

K�
CSRð�Þ ’

�4rcmc2�4

3R2
for � � R

�3
: (16)

At large values of � , � is cubic in � so that � ’
ð24�=RÞ1=3. With this, Eq. (15) becomes

K�
CSRð�Þ ’

2rcmc2

34=3R2=3�4=3
for � � R

�3
; (17)

which corresponds to Eq. (10) of Saldin et al. [6] [note the
error in the denominator of Saldin et al. Eq. (10)]. Figure 2
shows K�

CSRð�Þ, which changes sign at � 	 1:8R=�3. The

long tail at � > 1:8R=�3 cannot be neglected since the
integral

R1
0 d�KCSRð�Þ is zero. The vanishing of the inte-

gral is a reflection of the fact that a closed loop of charged
particles of uniform density does not radiate.

The fact that KCSR is highly peaked in amplitude near
� ¼ 0 can be problematic for simulations at ultrarelativis-
tic energies because the characteristic longitudinal distance
between particles or mesh points needs to be less than

R=�3. One way of dealing with the peaked nature of
KCSR is to first consider the kick from a line of particles
of density �ðzÞ and then to integrate by parts

�
dE
ds

�
CSR

¼
Z 1

�1
dz0�ðz0ÞKCSRðz� z0Þ (18)

¼
Z 1

�1
dz0

d�ðz0Þ
dz0

ICSRðz� z0Þ; (19)

where

ICSRðz� z0Þ ¼ �
Z z0

�1
dz00KCSRðz� z00Þ: (20)

I�CSR, which is ICSR for P and P0 in the same bend, is

plotted in Fig. 3. The peaked nature of KCSR has been
smoothed over at the cost of having to deal with a deriva-
tive of �. For � � R=�3, the approximation of Eq. (17) can
be used to calculate an explicit ultrarelativistic equation for
I�CSR as in [10],
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FIG. 2. (Color) K�
CSR (left) and � (right) as a function of � for a
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0 2 4 6 8 10
-2.0

-1.5

-1.0

-0.5

0.0

R
2  

I C
S

R
/ e

2
γ4

ICSR

1 / z1 /3 Approximation

γ3 ζ / R

FIG. 3. (Color) I�CSR as a function of � for a bend. The dashed
line is the large � approximation as given in Eq. (21).
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I�CSRð�Þ ¼
�2rcmc2

31=3R2=3

1

�1=3
for � � R

�3
: (21)

Equation (21) is also plotted in Fig. 3.
While, in general, it is helpful to have explicit formulas,

for the purposes of evaluation within a simulation program
this is not needed. The alternative is to use an exact implicit
solution. Because Eqs. (11) and (14) are rational functions,
Eq. (20) can be integrated. The last term that compensates
KSC can be integrated to rcmc2=ð�2�Þ. The other terms can
be written with

@�

@d
¼ �2 þ 	2

2�2�2
(22)

as

KCSR ¼ 2rcmc2�2

�
@�

@d

��1
�
gð�2 � 	2Þð	� �
Þ

ð�2 þ 	2Þ2

þ �2 � 	2 þ 2�	


ð�2 þ 	2Þ2
�
þ @

@�

�
rcmc2

�2�

�
: (23)

With @�=@d ¼ �, @	=@d ¼ �g�, and @
=@d ¼ �g,
one can further simplify to

KCSR ¼ �2rcmc2�

�
@�

@d

��1 @

@d

�
�þ 	


�2 þ 	2

�
þ @

@�

�
rcmc2

�2�

�
:

(24)

This can be integrated over � to yield

ICSRðz; z0Þ ¼ �rcmc2
�
2�ð�þ 	
Þ
�2 þ 	2

� 1

�2�

�
: (25)

It can be shown that, while quantities like d and g are
discontinuous across element boundaries, �, 	, and 
 are
continuous and, hence, ICSR is a continuous function as it
should be.

Equation (25), to second order, is equivalent to Eq. (10)
of Ref. [4]. Using Eq. (25), the integration of Eq. (19) in
a simulation program can be done via interpolation of
Eq. (11). Equation (25) has several advantages over equa-
tions like Eq. (21). It is applicable at lower values of �3� ,
that is, at lower energies and/or smaller length scales.
Additionally, Eq. (25) has no singularity at small � , and
it can be used to handle any combination of elements
between the source and kick points.

IV. SPACE CHARGE CALCULATION

The singularity at small � in the space charge field ESC

in Eq. (3) is removed by considering the finite transverse
beam size. This term is equivalent to the problem of
calculating the field given a static distribution of charges.
It will be assumed that at any longitudinal position the

transverse profile of the beam is Gaussian. Thus, a longi-
tudinal slice of the beam will produce an energy change for
a particle at longitudinal z and transverse offset ðx; yÞ from
the slice center of

dKSCðx; y; z; z0Þ ¼
Z 1

�1

Z 1

�1
dx0dy0ðx0; y0; z0Þdz0

� rcmc2��

½�2�2 þ ðx� x0Þ2 þ ðy� y0Þ2�3=2 ;

(26)

where � � z� z0 and  is the bi-Gaussian distribution

ðx; y; zÞ ¼ ðzÞ
2��x�y

exp

�
� x2

2�2
x

� y2

2�2
y

�
: (27)

In the limit � ! 
0, dKSC can be obtained from Gauss’s
law

dKSCð� ! 
0Þ ¼ rcmc2signð�Þðz0Þdz0
�x�y exp½ x2

2�2
x
þ y2

2�2
y
�
: (28)

For x ¼ y ¼ 0 and small � the space charge kick to first
order is

dKSCðx ¼ y ¼ 0Þ ¼ rcmc2signð�Þðz0Þdz0
�x�y þ �

2

�2
xþ�2

y

�xþ�y
�j�j

þ oð�2Þ:

(29)

In the limit of � ! 1, the beam slice can be treated as a
point particle and

dKSCð� ! 1Þ ¼ rcmc2signð�Þðz0Þdz0
�2�2

: (30)

In general, Eq. (26) cannot be solved in closed form but a
reasonable approximation for space charge calculations
can be obtained by combining the above three limiting
cases using a quadratic in the denominator:

dKSC 	 rcmc2signð�Þðz0Þdz0
�x�y exp½ x2

2�2
x
þ y2

2�2
y
� þ �2

xþ�2
y

�xþ�y
�j�j þ �2�2

: (31)

The factor of �=2 in the linear term in Eq. (29) is dropped
in Eq. (31) since this gives a slightly better fit overall.
While Eq. (31) is not accurate for large transverse displace-
ments (jxj> 3�x or jyj> 3�y), both the actual and ap-

proximate dKSC are small in this region compared with the
kick for particles near x ¼ y ¼ 0 so this inaccuracy will
have a negligible effect on any simulations.
That Eq. (31) is a reasonable approximation is illustrated

in Figs. 4 and 5 which show KSC as a function of z as
computed from an integration of Eq. (26) and from the
approximate Eq. (31) for a round beam and for a beam with
�y=�x ¼ 1=100 aspect ratio. The particular parameters
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chosen for the computation are given in the figure. Two
cases were considered. One where the kicked particle is on
axis, and the other where the kicked particle is displaced by
x ¼ �x or y ¼ �y off axis.

At high energies, the CSR energy kick is independent of
the beam energy as indicated by Eq. (21). On the other
hand, the factors of � in the denominator of Eq. (31) ensure
the KSC will be a decreasing function of �. Above some
energy, the effect of KSC will be small compared to the
effect of KCSR. To estimate that point, consider the maxi-
mum energy kick in a Gaussian bunch of Ne particles with

ðzÞ ¼ Neffiffiffiffiffiffiffi
2�

p
�z

exp

�
� z2

2�2
z

�
: (32)

The space charge kick is maximum at x, y ¼ 0 and using
Eq. (31) gives

KSCð0; 0; zÞ 	 Nercmc2ffiffiffiffiffiffiffi
2�

p
�z

�
Z 1

0
d�

exp½� ðz��Þ2
2�2

z
� � exp½� ðzþ�Þ2

2�2
z
�

�x�y þ �2
xþ�2

y

�xþ�y
�� þ �2�2

:

(33)

The dominant term in the denominator in the integrand is
either �x�y for small � , or �2�2 for large � . As an

approximation, the middle term in the denominator will
therefore be ignored. The approximation sinhðz�=�2

zÞ 	
z�=�2

z will also be made. This approximation is justified
since, as seen below, the region of maximumKSC is around
z 	 �z and for realistic beam parameters, �x�y � �2�2

z .

Therefore, the only significant contribution to the integral
will come in the region � < �z. With these approxima-
tions, Eq. (33) becomes

KSCðzÞ 	
2Nercmc2z exp½� z2

2�2
z
�ffiffiffiffiffiffiffi

2�
p

�3
z

Z 1

0
d�

� exp½� �2

2�2
z
�

�x�y þ �2�2
:

(34)

The integral can be evaluated to ð2�2Þ�1eaEiðaÞ, where Ei
is the exponential integral and a ¼ �x�z=ð2�2�2

zÞ. For
small a, this is approximately � lnðaÞ. The maximum of
KSC occurs at z ¼ �z. Using �x�y � �2�2

z then gives

KSC;max	 � exp½� 1
2�ffiffiffiffiffiffiffi

2�
p Nercmc2

�2
z�

2
log

�
�x�y

2�2�2
z

�

	 �Nercmc2

4�2
z�

2
log

�
�x�y

2�2�2
z

�
: (35)

On the other hand, The maximum CSR kick at large
energies is, from Eq. (14),

KCSR;max	 0:8
Nercmc2

ðR2�4
zÞ1=3

: (36)

The ratio is

KSC;max

KCSR;max
	

�
0:3 log

�
2�2�2

z

�x�y

��
1

�2

�
R

�z

�
2=3

: (37)

KSC=KCSR will be small when

� � M

�
R

�z

�
1=3

; (38)

where

M ¼
�
0:3 log

�
2�2�2

z

�x�y

��
1=2

: (39)
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FIG. 5. (Color) Comparison between the approximation of
Eq. (31) and an exact integration of Eq. (26) for a beam with
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Eq. (31) and an exact integration of Eq. (26) for a round beam.
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M is slowly varying and, for many practical problems, of
order unity. In this case, �z must be interpreted as the
characteristic longitudinal distance over which the bunch
density is changing.

Condition Eq. (38) is similar to the condition for the
validity of the ultrarelativistic Eq. (21). From Fig. 21, The
condition for validity of Eq. (21) is seen to be

� �
�
R

�

�
1=3

: (40)

V. CSR IN BMAD

The above algorithm for simulating CSR and longitudi-
nal space charge (SC) has been implemented as part of the
Bmad [7] subroutine library for relativistic charged-
particle simulations. Bmad simulates a beam as a set of
particles. To simulate CSR, the beam is tracked through a
lattice element by dividing the element into a number of
slices. Tracking through a slice involves first propagating
the particles independently from each other and then ap-
plying the CSR and SC energy kicks. To calculate the
energy kick, the beam is divided longitudinally into Nb

bins as shown in Fig. 6. For the purposes of computing the
charge in each bin, each beam particle is considered to
have a triangular charge distribution. The overlap of the
triangular charge distribution with a bin determines that
particle’s contribution to the total charge in the bin. The
width of the particle’s triangular charge distribution and
the number of bins are set by the user. The bin width is
adjusted at each time step so that the bins will span the
bunch length. Increasing the particle width smooths the
distribution at the cost of resolution.

The charge density �i at the center of the ith bin is taken
to be �i ¼ i=�zb, where i is the total charge within the
bin and�zb is the bin width. The charge density is assumed
to vary linearly in between the bin centers. The CSR
energy kick for a particle at the center of the jth bin after
traveling a distance dsslice according to Eq. (19) is then

dEj ¼ dsslice
XNb

i¼1

ð�i � �i�1Þ

� ICSRðj� iÞ þ ICSRðj� iþ 1Þ
2

; (41)

where

ICSRðjÞ � ICSRðz ¼ j�zbÞ: (42)

Evaluation of ICSRðjÞ involves inversion of Eq. (11) to
obtain d. Because z is a monotonic function of d, Newton’s
method [11] is used to find numbers d1 and d2 which
bracket the root and then Ridders’ method [11] is used to
quickly find d.
In deriving Eq. (41), the approximation

Z ðjþ1Þ�zb
j�zb

dzICSRðzÞ 	 �zb
ICSRðjÞ þ ICSRðjþ 1Þ

2
(43)

has been used. Generally this is an excellent approxima-
tion, except when j ¼ 0 and �zb � R=�3, as shown in
Fig. 3. Here, however, the integral can be done exactly
assuming that the source and kick points lie within the
same element:

Z �zb

0
dzICSRðzÞ ¼ 1

�2
ln

�
2�2�zb
dð�zbÞ

�
� dð�zbÞ2g2

4
: (44)

Once the energy kick at the centers of the bins is
calculated, the energy kick applied to a particle is calcu-
lated via interpolation assuming a linear variation of the
kick between bin centers.
In calculating the energy kick, the computational time

for calculating the charge in the bins scales as Np, the

number of particles in the simulation. The computational
time for calculating the energy kick at the bin centers
scales as N2

b, and the time for calculating the energy kick

of the particles scales as Np.

A. Chamber walls

The Bmad simulation incorporates the shielding of the
top and bottom chamber walls by using image currents.
The Appendix explains why neglecting the width of a
chamber is a good approximation when the width is larger
than the height. Since the image currents are well separated
from the actual beam, there are no singularities to deal
with, and a direct integration of the kick without subtract-
ing offKSC is possible. Using Eqs. (14) and (18), the image
current kick is calculated in Bmad via the equation

dEjðimageÞ ¼ 2 � dsslice
XNi

k¼1

ð�1Þk

�XNb

i¼1

qi � Kðz ¼ ðj� iÞ�zb; y ¼ khÞ; (45)

z

ρ

bins

particle

FIG. 6. (Color) Bmad implementation of the CSR algorithm.
The beam of particles is divided up into a number of bins. The
contribution of a particle to a bin’s total charge is determined by
the overlap of the particle’s triangular charge distribution and the
bin.
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where qi ¼ �i�zb is the charge in a bin, h is the chamber
height, and k indexes the image currents at vertical dis-
placement y ¼ 
kh. The number of image charges Ni

needs to be chosen large enough so that the neglected
image currents do not have a significant effect on the
simulation results. Because the relevant angles are not
small, the image charge kick K must be calculated without
the small angle approximation, as in Eq. (14).

VI. AGOH AND YOKOYA CSR CALCULATION

Agoh and Yokoya (A&Y) have developed a code to
calculate CSR wakefields by directly integrating
Maxwell’s equations on a mesh representing a rectangular
beam chamber [12]. The approach depends on the paraxial
approximation, a rigid Gaussian bunch density, small
chamber dimensions relative to the bending radius, and
ultrarelativistic particles. Using a comoving coordinate
system ðx; y; sÞ in Fourier space, they are able to reduce
the problem to a tractable two-dimensional differential
equation,

@

@s
E? ¼ i

2k

��
r2

? þ 2k2x

R

�
E? � 1

�0
r?0

�
; (46)

where E? is a complex two-dimensional vector related to
the perpendicular electric field, 0 is the charge density, k
is the wave number, and R is the magnet bending radius. It
is solved using a finite-differencing method.

VII. CSR IN ELEGANT

The particle tracking code ELEGANT (version 17.2.2)
uses Eq. (47) to compute CSR kicks without shielding by
a vacuum chamber [13]. The charge distribution �ðzÞ and
its derivative d�=dz are calculated by binning the macro-
particles and then employing a smoothing filter.

VIII. CSR WAKE FORMULA

A. Transient effects at magnet edges

Using retarded fields, Saldin et al. [6] derive, in the
ultrarelativistic limit, a formula for the wakefield due to a
bunch entering from a drift region into a bend�
dE
ds

�
¼ � 2Nercmc2

31=3R2=3

�
�ðs� sLÞ � �ðs� 4sLÞ

s1=3L

þ
Z s

s�sL

1

ðs� s0Þ1=3
d�

ds0
ds0

�
;

sL � R�3

24
;

(47)

where � is the angle traveled into the magnet by the bunch
center. Equation (47) reduces to the free space steady-state
wakefield of Eq. (21) in the limit sL ! 1.

As worked out by Emma and Stupakov [10], synchro-
tron radiation will continue to propagate and affect the

bunch beyond the end of a bending magnet. For a finite
magnet of length Lm, an ultrarelativistic bunch at a dis-
tance x from the end of this magnet experiences the free
space exit wakefield�
dE
ds

�
exit

¼ Nercmc2
�
4
�½s� �sðLmÞ�

Lm þ 2x

�
Z Lm

0

4

lþ 2x
�0½s��sðlÞ� @�sðlÞ

@l
dl

�
; (48)

�sðlÞ � l3

24R2

lþ 4x

lþ x
: (49)

B. Steady-state CSR in a bend

CSR effects in a vacuum chamber have been computed
by the Green’s function of grounded parallel plates [1,2].
These formulas are difficult to compute numerically, due to
the presence of high order Bessel functions, so we will use
an excellent approximation developed by A&Y [12]. The
impedance for the steady state in a dipole with horizontal
plates separated by a distance h is

ZðkÞ ¼ Z0

2�

h

�
2

kR

�
1=3 X1

p¼0

FAYð�2
pÞ; (50)

FAYðxÞ � Ai0ðxÞ½Ai0ðxÞ � iBi0ðxÞ�
þ xAiðxÞ½AiðxÞ � iBiðxÞ�; (51)

�p � ð2pþ 1Þ�
h

�
R

2k2

�
1=3

; (52)

where Z0 ¼ c�0 is the free space impedance, k is the wave
number, and Ai and Bi are Airy functions. The parallel
plate wakefield due to a bunch with longitudinal density
�ðzÞ is obtained by Fourier transform:�

dE
ds

�
pp

¼ �Nercmc2<
�
4

Z0

Z 1

0
ZðkÞ~�ðkÞeiksdk

�
; (53)

~�ðkÞ ¼
Z 1

�1
�ðzÞe�ikzdz: (54)

IX. COMPARISON BETWEEN BMAD, AGOH AND
YOKOYA, AND ELEGANT

In order to validate our method, we compare simulations
from Bmad to those using the A&Y code and ELEGANT. For
ease of reading, all magnet and bunch parameters used are
enumerated in Table I, and will be referred to by the
corresponding letter. Additionally, all wakefields in the
graphs are normalized by

W0 ¼ Nercmc2

ðR2�4
zÞ1=3

; (55)
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which approximately describes the maximum amplitude of
the CSR wake dE=ds.

All simulations used a bunch charge of 1 nC, and an
energy of 1 GeV. For Bmad, the nominal simulation pa-
rameters were Nb ¼ 800 bins, Np ¼ 4� 105 macropar-

ticles, Ni ¼ 32 image charges, a tracking step of
dsstep ¼ 0:1 m, and a triangular bin width, of 16 bins.

Variations in the initial distribution due to statistical noise
and the finite number of particles can have a profound
effect on the results. This is illustrated in Fig. 7 which,
using parameter set A, shows energy loss as a function of
longitudinal position for four different cases. The four
plots of Fig. 7 show the effect of varying the number
particles, the number of bins, as well as the algorithm for

generating the initial distribution. The top left plot, which
used 10 000 particles, had its initial distribution generated
using the pseudorandom number generator RAN from
Numerical Recipes [11]. This is to be compared to the
top right plot which is the same as the top left except the
‘‘quasirandom’’ number generator SOBSEQ [11] is used in
place of RAN. This generator generates a distribution that is
more uniform than the uncorrelated points of the pseudor-
andom generator and virtually eliminates the statistical
noise of the top left plot. The statistical noise can also be
reduced, at the cost of computation time, by increasing the
number of particles as shown in the bottom left. In this case
the number of particles is 100 000 but the noise is still
greater than the case using the quasirandom generator. The
bottom right plot is similar to the bottom left plot except
the number of bins was decreased to 200 and the particle
width was decreased to 8 bins thus keeping the true particle
width constant. As can be seen, this does not materially
affect the results; however, the computation time and the
resolution are reduced by reducing the number of bins.

A. Steady-state case

Figure 8 shows the steady-state CSR kick in a bend as a
function of z for various values of the chamber height. The
parameters used correspond to set A of Table I and are the
same as used for Fig. 1 of A&Y [12].

10,000 particles
800 bins
32 bin particle width
pseudo random

10,000 particles
800 bins
32 bin particle width
quasi random

100,000 particles
800 bins
32 bin particle width
pseudo random

100,000 particles
200 bins
8 bin particle width
pseudo random

FIG. 7. Energy loss versus longitudinal position from a Bmad simulation using parameter set A. The four graphs differ in the number
of particle, number of bins, particle width, and the generator used to initialize the particles.

TABLE I. Parameters used in simulations.

Set

R
(m)

L
(m)

w
(cm)

h
(cm)

�z

(mm)

W0

(keV=m)

A 10.0 3.0 50.0 2.0 0.3 96.4

B 10.0 1.0 34.0 28.0 0.3 96.4

C 10.0 1.0 10.0 10.0 0.3 96.4

D 10.0 1.0 60.0 10.0 0.3 96.4

E 1.20 0.419 0.762 0.3 0.036 6695.5

F 2.22 0.678 1.71 2.54 1.0 52.8

G 87.9 6.574 8.0 4.0 0.3 22.6

DAVID SAGAN et al. Phys. Rev. ST Accel. Beams 12, 040703 (2009)

040703-8



Figure 8 shows excellent agreement among the A&Y
code, Bmad, and the CSR-wake formula Eq. (53).

B. Transient case

Parameter sets B, C, and D are used to explore the
transient case where some of the kick is generated from
particles in the drift region before the bend. Set B corre-
sponds to values used in Fig. 3 of Agoh and Yokoya [12],
which has a chamber of relatively large cross section.
Figure 9 (left) shows agreement between Bmad, the
A&Y code, and the CSR-wake formula Eq. (47).
However, for parameter set C in Fig. 9 (right), where the
chamber is smaller, as in Fig. 4 of Agoh and Yokoya, there
are some differences to be noted for z=�z > 2. The differ-
ence between Eq. (47) and Agoh and Yokoya was noted by
them and is explained by the effect of the finite chamber
size which is not included in Eq. (47). In contrast, Bmad,
which includes the effect of the top and bottom walls but
not the side walls, is in good agreement with A&Y, even
though the chamber height and chamber width are equal.

Parameter set D, which is the same as set C except that
here the chamber width is much larger than the height, is
used to analyze whether the chamber width is responsible
for this difference. Figure 10 shows that the difference,
which is larger for longer magnets, remains and thus is due
to the reduced chamber height. Varying the number of
Fourier coefficients used in the A&Y calculation in
Fig. 11 does not change this result, verifying that we chose
a reasonable number of Fourier coefficients for solving the
Maxwell equations numerically. Reversing the set D height
and width, as in Fig. 12, somewhat reduces the difference.
This indicates that the effect is due to the reduced chamber
height. Practically speaking, the difference in these wake-
fields only becomes appreciable far in front of the bunch,
where there are few particles to affect. How strong the
deviation becomes for especially small chamber heights is
displayed in Fig. 13 which, again using parameter sets B
and C, and using a chamber height of h ¼ 2 cm, shows the
CSR wake as a function of z. Again, Bmad and A&Yare in
fairly good agreement.

C. Realistic magnets

To evaluate how significant the differences are in real-
istic magnets, we use parameter sets E, F, and G which
correspond to the JLab TH2, CESR analyzer magnet, and
Cornell Energy Recovery Linac (ERL) CESR region mag-
nets, respectively. Wakefields for the first two are plotted in
Fig. 14, showing good agreement between the A&Y code
and Bmad. The free space steady-state wakefield Eq. (47)
and results from ELEGANT are plotted for reference.
The principal detrimental effects of the CSR wake in an

accelerator are energy loss and increase in energy spread of
a bunch. The transverse bunch distribution can also be
affected and is mostly influenced by increases of the en-
ergy spread which, through dispersive orbits, couples to
transverse motion. To visualize CSR-driven energy loss
and energy spread in a single magnet, we plot in Fig. 15
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FIG. 9. (Color) Left: The transient case using parameter set B with a relatively large chamber. Right: Set C with a smaller chamber
(right). A&Y code (dots), and Bmad (circles), are generally in good agreement. The CSR-wake formula Eq. (47) (lines), which does
not take into account shielding, agrees in the former case but shows differences in the latter.
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FIG. 8. (Color) The steady state using parameter set A for
varying chamber heights h. The A&Y code (dots), Bmad
(circles), and the CSR-wake formula Eq. (53) (lines) agree
well, and ELEGANT agrees with the data at large chamber heights.
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the average and standard deviation of the CSR wake across
the bunch distribution as a function of distance into the
magnet. This is done using parameter set G, where we
examine how well one can ignore the chamber width, as
done in the Bmad calculation. One sees that, in this
shielded case, the chamber width w in the A&Y code
begins to change the wakefield when it is comparable or
less than 4 cm, the height of the chamber. This effect is

heuristically explained in the Appendix. It again shows that
ignoring the chamber width, as in Bmad, is a reasonable
approximation when the chamber width is significantly
greater than its height.
It is apparent that shielding by a vacuum chamber re-

duces the power emitted by CSR very effectively. It does
not reduce the energy spread nearly as much, and is there-
fore not as effective for preserving bunch properties as one
might have concluded from the reduced radiation power.
Interestingly, the 4 cm wide chamber even produces a
larger standard deviation of WCSR than wider chambers.

D. Exit wake

The method in this paper can correctly account for the
CSR wake in a drift section following a magnet. Using
parameter set A, Fig. 16 shows this wake as a function of
the distance d from the end of the magnet in free space and
with shielding. The free space case shows excellent agree-
ment between Bmad and the CSR-wake formula Eq. (48).
To show that Bmad correctly computes exit wakes with

shielding, we compare Bmad with a numerical solution
using retarded fields. In order to avoid the complication of
computing retarded times and positions of the bunch dis-
tribution and its image charges, we do not use Liénard-
Wiechert fields, but rather Jefimenko’s equations [9]. In
general, the electric field due to a one-dimensional charge
density ðs; tÞ and current density Jðs; tÞ at a position s,
time t, and height h is

Eðs; t;hÞ ¼ 1

4��0

Z
ds0

�
L

L3
½ðs0; t0Þ� þ L

cL2

�
@ðs0; t0Þ

@t0

�

� 1

c2L

�
@Jðs0; t0Þ

@t0

��
; (56)

where L is the vector from position s0 to position s at
height h, L is its magnitude, and the brackets ½ � are
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Free Space Formula
Nk 1024

Nk 128

FIG. 11. (Color) Using parameter set D, varying the number of
Fourier coefficients (Nk) used in the A&Y calculation does not
change the numerical solution of the Maxwell equations, and
therefore does not account for deviations in the presented com-
parison of codes.

L 60cm

4 2 0 2 4 6 8 10

0.6

0.4

0.2

0.0

0.2

0.4

0.6

z z

W
C

SR
W

0

Free Space Formula

elegant

Bmad

A&Y

L 80cm

4 2 0 2 4 6 8 10

0.6

0.4

0.2

0.0

0.2

0.4

0.6

z z

W
C

SR
W

0

Free Space Formula

elegant

Bmad

A&Y

...................................................................................................................................................................................................................................................................................................
...........

..........
...........

..........
..........
..........

.............
...............

.........................
..........................................................................

L 100cm

4 2 0 2 4 6 8 10

0.6

0.4

0.2

0.0

0.2

0.4

0.6

z z

W
C

SR
W

0

Free Space Formula

elegant

Bmad

A&Y

FIG. 10. (Color) Length dependence for the transient cases using
the wide chamber in parameter set D with magnet lengths of
60 cm (top), 80 cm (middle), and 100 cm (bottom). The codes
deviate from the CSR-wake formula of Eq. (47) for longer
magnets, but Bmad (circles) agrees with A&Y.
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evaluated at the retarded time t0 ¼ t� L=c. Compared
with integrating over retarded fields at s0, using
Jefimenko’s equations has the advantage that one never
has to solve for the retarded time in equations of the type
t0 ¼ t� jr� rðt0Þj=s.

The total electric field due to alternating image charges
is then

E imagesðs; tÞ ¼ 2
X1
n¼1

ð�1ÞnEðs; t; nhÞ: (57)

Applying this to the geometry of a bend followed by a drift,
Fig. 16 (bottom) shows excellent agreement with Bmad.

E. Wake from bend to bend

The wake generated from one bend may still be signifi-
cant even when the beam is traveling through successive
bends. This is shown in Fig. 17. This figure shows the
wake, without shielding, in the second bend of a bend-
drift-bend configuration using the parameters from set B of
Table I and with a 1 m drift between the bends.
Shown in the top graph of Fig. 17 is the wake at 1 cm

into the bend as calculated by Bmad and ELEGANT. For
reference, a third curve has been added that shows the
wake, as calculated from Bmad, for a drift-bend configu-
ration. The code of A&Y could not be used since it does
not handle a bend-drift-bend configuration. ELEGANT does
not take into account the wake from one drift into another
so both the Bmad bend-drift and ELEGANT simulations
show a negligible wake. On the other hand, the Bmad
bend-drift-bend simulation shows a substantial wake.
Shown in the bottom graph of Fig. 17 is the wake at

100 cm into the bend as calculated by Bmad and ELEGANT.
Again, for reference, a third curve has been added that
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FIG. 12. (Color) Length dependence for the transient cases using
a tall chamber by reversing width and height in parameter set D
with magnet lengths of 60 cm (top), 80 cm (middle), and 100 cm
(bottom).
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FIG. 13. (Color) The same as Fig. 9, except with the chamber
height reduced to 2 cm. A&Y code (dots), Bmad (circles), and
the shielded steady-state CSR-wake Eq. (53) (line).
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shows the wake, as calculated from Bmad, for a drift-bend
configuration. Here, the wakefield for z=�z & 2 is the
same with and without the initial bend indicating that the
wakefield in this region is principally formed in the second
bend. However, for z=�z * 2 the wake from the first bend
is clearly important.

F. Coherent energy loss

In general, for N particles traveling on the same curve at
different phases �n, the N particle power spectrum is

dPðNÞ

d!
¼

��������XN
n¼1

ei�n

��������2dPð1Þ

d!
¼

�
N þ X

m�n

eið�m��nÞ
�
dPð1Þ

d!

(58)

’ N
dPð1Þ

d!
þ NðN � 1Þ

��������
Z

dz�ðzÞ exp
�
i
!z

�c

���������2

� dPð1Þ

d!
; (59)

where dPð1Þ=d! is the single particle power spectrum, and
�ðzÞ is the longitudinal particle distribution. The first term

in Eq. (59) is the incoherent power spectrum, while the
second is the coherent power spectrum. In the presence of
conducting parallel plates, the single particle power spec-
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FIG. 15. (Color) Average and standard deviation of the CSR
wake across the bunch distribution for parameter set G (the
Cornell ERL’s CE magnet) for various chamber widths using
the A&Y code, compared to Bmad, which has an infinite
chamber width.
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FIG. 16. (Color) Exit wakefield as a function of the length d
from the end of the magnet for free space (top) and with
shielding (bottom). Bmad (dots) shows excellent agreement
with CSR-wake formula Eq. (48) (top lines) in the free space
case, and with numerical integration over image bunches using
Eq. ((47) (bottom lines). Parameters set A is used.
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FIG. 14. (Color) Realistic magnets: Parameter set E (JLab TH2
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Bmad agrees with the CSR-wake formula Eq. (53) better than
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trum is given in Eq. (47) of [1]. Using this, Eq. (59) can be
integrated numerically.

As a test of Bmad, Fig. 18 shows the total coherent
energy lost for various particle energies and chamber
heights as calculated using Bmad and as calculated by

integration of the power spectrum. The figure shows ex-
cellent agreement for energies down to 5 MeV and cham-
ber heights down to 2 mm. At smaller heights, the number
of image layers used in the simulation (Ni ¼ 64 here) is not
sufficient to correctly model the CSR.
In the absence of shielding plates, Eq. (59) can be

integrated exactly for a Gaussian distribution using the
well-known free space single particle power spectrum
(see Ref. [14]). For a bunch length of �z, the total power
lost by N particles is

PðNÞ ¼ Pð1ÞN þ Pð1ÞNðN � 1ÞT
�
3�z�

3

2R�

�
; (60)

where

Pð1Þ � 2

3
rcmc3

�4�4

R2
(61)

is the power lost by a single particle, and

TðaÞ � 9

32
ffiffiffiffi
�

p
a3

exp

�
1

8a2

�
K5=6

�
1

8a2

�
� 9

16a2
: (62)

This result agrees well with Bmad in Fig. 18. The
function TðaÞ can be expanded asymptotically, giving the
leading order coherent energy change in a length L as

�EðNÞ ’ �N2rcmc2
�ð56Þ

61=3
ffiffiffiffi
�

p L

ðR2�4
zÞ1=3

: (63)

This is proportional to W0 in Eq. (55), which is the reason
for using such a scale factor.
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numerical integration of Eq. (59) (curved lines) using the
shielded power spectrum of [1] down to 2 mm. Steady-state
losses computed using Eq. (60) are indicated as horizontal lines.
Parameters set A is used, with the number of image layers Ni ¼
64.
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FIG. 17. (Color) The wake in the second bend of a bend-drift-bend configuration as calculated by Bmad and ELEGANT. For reference, a
third curve has been added that shows the wake, as calculated from Bmad, for a drift-bend configuration. The parameters from set B of
Table I and with a 1 m drift between the bends was used. Top: The wake after 1 cm into the bend. Bottom: The wake after 100 cm into
the bend.
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X. BEAM ENERGY DEPENDENCE OF THE
ENERGY LOSS

In the ultrarelativistic limit, the energy loss due to CSR
is independent of the beam energy [for example, see
Eq. (21)] and, as shown in Eq. (37), the SC loss is negli-
gible. The situation is quite different at lower energies.
This is shown by Fig. 19 which shows the full (CSRþ SC)
steady-state longitudinal kick as a function of longitudinal
position at four different beam energies between 10 and
100 MeV for a Gaussian bunch without shielding. The
parameters chosen in this simulation are appropriate for
the Cornell ERL merger. As can be seen from the figure,
there is an increase in energy loss for z < 0 and increase in
energy gain for z > 0 as the beam energy is lowered.

That this increase in energy variation with decreasing
beam energy is due to the SC kick component is illustrated
in Figs. 20 and 21 which show the steady-state kick with
and without the SC component at energies of 20 and
40 MeV. In fact, the energy variation due to the CSR
component alone decreases with decreasing beam energy.

At 40 MeV the SC component is significant but not
dominant. At 20 MeV the situation is reversed. In this
energy range the variable M from Eq. (39) is 2.7 to a
good approximation, and which according to Eq. (37) gives
a crossover energy of 69 MeV. That the simulation indi-
cates a lower energy for the crossover can be explained by
noting that the CSR calculation assumes that all particles
are on axis and it does not take into account any falloff in
CSR kick with increasing transverse kick.

X. CONCLUSION

A formalism for calculating the longitudinal kick due to
coherent synchrotron radiation originally due to Saldin,
Schneidmiller, and Yurkov has been implemented in
Bmad along with a heuristic formula for the longitudinal
space charge kick. The space charge kick is only significant
at lower particle energies where the neglect of any trans-
verse forces in the formalism may make simulations in-
accurate. However, the formulas developed allow one to
determine if the ultrarelativistic approximation is
warranted.
We show that the longitudinal wakefield compares well

with the code of Agoh and Yokoya [12] and the CSR-wake
formula of Warnock [2] for the steady state, with and
without CSR shielding by parallel plates. In the transient
case where the A&Y code often does not follow the CSR-
wake formula of Eq. (47) exactly, Bmad does agree well
with that of Agoh and Yokoya. This agreement is comfort-
ing but not surprising because related approximations
underlie each of the approaches. Comparison to the CSR-
wake formula may indicate the level of accuracy of the
Bmad approach. A detailed analysis of the accuracy is
presented in [14].
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APPENDIX A: HEURISTIC SHIELDING
ARGUMENT

Initially, it might seem surprising that a vacuum cham-
ber whose width is on the order of centimeters can have a
shielding effect on synchrotron radiation whose wave-
length is much smaller. We therefore add a heuristic ex-
planation here.

Starting with Schwinger [1], shielding by a vacuum
chamber has often been considered by studying infinite
horizontal, conducting plates. But the following heuristic
argument indicates why it is both the vertical and the
horizontal boundary that determines shielding of CSR.

A highly relativistic particle emits synchrotron radiation
within a narrow cone. For the radiation’s component of
wavelength �, the opening angle of this cone is approxi-

mately �� ¼ ð�RÞ1=3 in the horizontal and vertical. The

opening angle in the vertical determines the vertical width
of the radiation load on the vacuum chamber wall.

The radiation field builds up within a radiation buildup

time of �t ¼ R
c ð�RÞ1=3. During this time, the radiation fields

produced by the electron coherently add up to form the full
radiation power. If the radiation does not interfere with an

obstacle, for example, the vacuum pipe, within this time,
the electron loses as much energy as it would without any
vacuum pipe.
The width and height of the radiation cone that builds up

during the radiation buildup time is therefore given by

wr 	 hr 	 c�t�� ¼ Rð�RÞ2=3. Vacuum chambers that

have smaller dimensions interfere with the radiation pro-
cess and shield the part of radiation for which

� * min

�
w

ffiffiffiffi
w

R

r
; h

ffiffiffiffi
h

R

s �
: (A1)

Wavelengths are therefore shielded when they are above a
length that is much smaller than the chamber dimensions.
While we have used a very approximate heuristic argu-

ment, Fig. 22, which shows the CSR induced average
energy change as a function of chamber height and width
as computed by the A&Y code, indeed shows that both
dimensions can lead to shielding. The figure also shows
that, in the first approximation, only the smaller of the two
dimensions is relevant.
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FIG. 22. Numerical results using the A&Y code with varying
dimensions of a rectangular chamber. A 1 m, 7.5� bend with a
2 ps long bunch of 0.82 nC charge was used. Contours represent
the energy change induced due to the CSR wakefield in 2000 eV
increments. The shielding effect is thus primarily due to the
smaller of the two beam-pipe dimensions.
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