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Abstract

This report has mainly two aims: 1) introduce the concept of the invariant spin field
to accelerator physicists (section 2). 2) give an update on the status of the “polarized
protons at HERA project” including studies on the pre-accelerator (section 3) chain and
recent simulations for crossing the strongest depolarizing resonance directly below the
working energy of 820 GeV (section 4).
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1 General Introduction

Electron/positron polarization has become a routine aspect of operation at HERA, with the 27.5
GeV et beam with usually 50—70% longitudinal polarization being scattered on the internal
gas target at the HERMES experiment. Due to the great success of the HERMES experiment
other collaborations (ZEUS, H1, HERA-N) want to use a polarized 820 GeV proton beam to do
e/p-scattering with the full HERA-kinematics. Not only can the deep inelastic spin structure
functions g;, g2 be measured but also di—jet events, photo production, vector meson production,
diffractive processes and many other processes are expected to have measurable asymmetries
once reasonable polarization and integrated luminosity can be provided [1].

Protons, in contrast to electrons, cannot be polarized at high energy yet. Hence they must be
created in a polarized source and then accelerated through the whole pre-accelerator chain up
to 820 GeV in HERA-p. Not only must the problem of low intensity H~ sources be overcome
but also the many thousand depolarizing resonances that act on the beam at ramp time [2].

In the past several machines have successfully accelerated polarized protons but all of them
were low or medium energy machines. The highest energy reached so far is almost 25 GeV
for the AGS at BNL [15]. In the near future RHIC at BNL will come into operation and in
the year 2000 the first polarized proton runs are planned to start at 2 x 250 GeV. But there
are no other approved plans for high energy accelerators for polarized proton operation. The
customary theories of depolarization are not likely to work in the high energy regime. They
can only make predictions about the polarization losses as long as the strong spin perturbing
energy regions (around “depolarizing resonances”) are well separated. At high energy these
regions become fairly wide. Therefore a new more complete model of polarization in circular
accelerators has to be applied.

2 Introduction to Spin Dynamics in Circular Accelera-
tors

The motion of charged particles in an accelerator is determined by the electromagnetic fields. If
the charged particles have non-zero spin, they have a magnetic dipole moment so that the spin
of a particle moving in electromagnetic fields will precess according to the T-BMT equation
(see section 2.1). At accelerator energies the Stern—Gerlach forces can be neglected. Thus spin
has hardly any effect on the orbital motion, but spin dynamics itself is driven by the changing
fields experienced on a particle trajectory.

In principle spin is a quantum mechanical property, but since we are interested in ensemble
averages only, since a typical proton bunch at HERA consists of 10! particles and since the
typical scales in phase space are large compared to h, we can treat most aspects of spin motion
classically — with two exceptions. First, synchrotron radiation is emitted discontinuously and
the spin flip amplitude for the radiation process is non—zero. This effect can be neglected for
proton beams in all existing accelerators. Second, the gyro-magnetic anomaly (G = % ~ 1.79
for protons) appears in the equations of motion. This quantity can only be computed using
quantum field theory.

With the above restrictions we will from now on treat spins classically, i.e. a classical spin S € Ss
is a unit vector in 3 dimensional space. A fermionic particle with mass m, electromagnetic
charge ¢, gyro-magnetic factor g and spin S has a magnetic moment jig = %9%5.



Beam polarization P is the ensemble average of Pauli matrix expectation values. In the classical
limit we have

—

P(l) = <S>ensemble = / ﬁloc(z7 l)p(g, l)dGZ s (1)
RS

with p being the orbital phase space density normalized to 1 and ]%OC(E, [) being the polarization
at (2,1).

2.1 The T-BMT-Equation

The Lorentz force in a purely magnetic lattice element can be written in the lab frame as
—— = — B(r(1)) xpll) , (2)

where é(f’(t)) indicates that the field has to be evaluated locally at the trajectory of the particle
in configuration space. Therefore, after an infinitesimally short time interval d¢ the momentum
of the particle has changed by % = %HBH dt = borb, when BLlp. When restricting to

transverse magnetic fields the T-BMT equation [3] looks similar

%f) _ 7;_3 (Gy +1) Bu(F(t), j(1) x S(1) (3)

where G = % = }.79 is the gyromagnetic anomaly of the proton and EL(F(t),ﬁ(t)) indicates
that B, = B — ﬁlﬁT'f; is to be evaluated at (7(¢), p(t)). In analogy to the Lorentz force case the

infinitesimal spin precession will be HdgH = (Gy + 1)%”5“\(# = (G5 + 1) dorb. Hence every
transverse magnetic field that acts on the orbit acts on the spin (Gy + 1) times as much! In
a (purely fictitious) ring with only constant vertical magnetic fields i.e. with only horizontal
bends, after one revolution around the ring all spins will have precessed around the vertical
axis by 27 G~y plus one additional full revolution from the particle orbit (— Gy + 1). We will
refer to Gy as the “spin enhancement factor”. From (3) we see that the spin precession due to
a transverse magnetic field is energy independent for v > 1.

In the presence of more general electromagnetic fields the T-BMT equation reads

U~ . ) « S0) .
Q(F(1), jl1) = i% u+awépu1+®§wwG+T%?E£ﬁ (4)

With respect to accelerator coordinates the T-BM'T equation finally becomes

-1

where [ is the arc length, 2 = (z,2',y,y’,7,n) is the 6 dimensional phase space vector of the
particle in Hamiltonian accelerator coordinates, t; is the longitudinal unit vector and &£ is the
vector of curvature of the closed orbit. The orbital motion z(1) is assumed to be known already.

A A

(2(1),1) — &(1) x w()| x $(1) = Q210), 1) x 8(1) (5)
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Note that inside ) the extra rotation from the closed orbit, that was still in ﬁ, has been
subtracted (Gy +1 — G7).

From the structure of all three versions of the T-BMT equation we can conclude that length of
a spin is conserved as well as the initial angle between two spins that travel through the same
field configuration.

L5000, 5a1)) = (51 Uo)s Sallo)) 15 [180)] = comst. 0
Hence the flow of (5) must be an orthogonal map,
Sy = R(ly,1; %) (7)

with R € SO(3). Since (5) is driven by the orbital motion of the particle, the flow in (7)
explicitly contains the initial phase space point Z; and implicitly includes the full trajectory
Z(),l; <1 <ly.

2.2 The Invariant Spin Field

There are many mathematical tools (Twiss functions, emittances (= “actions”), phase advances
(= “angles”), etc.) to describe the orbital motion in accelerators. This section gives an intro-
duction to a powerful mathematical construct to describe spin motion in circular accelerators.

If we restrict ourselves to linear orbit motion, then the orbit flow will be a linear symplectic
map

Zr=T(ly, ;)7 (8)

and all particles that have a set of orbital amplitudes (e1,e2,635) = 2.J will stay on a torus
independent of [. In this paper “emittance” always refers to the orbital amplitude of a particle
moving on a phase space torus. But we often state it in units of ‘¢’ where ¢ is an rms. action
of the beam. The solution of the equations of motion can be written as

L (=) A
Ty =1 qg:@ﬁ%@. 9)

The shape of this torus, transformed to standard phase space coordinates (z,z',y,y’, 7,n), will
usually change during one revolution but it is periodic with period L. If the machine is totally
decoupled, the Cartesian transformation of the normal torus will be the direct product of 3
ellipses in the z-z', y-y’ and 7-n plane. This normal torus is an invariant manifold under the
flow (8).

The spin is transported (7) by R(ls,l;;Z;) which is a function of the phase space. The n—
axis 7 : R® x [0, L[— S3 on an invariant torus Z(j, \I_}(l)) with J = const. is defined as a unit
length invariant spin field under the flow (7) and (8) for constant parameters, in particular for
a constant reference energy.

n(Zy,1g) = R(ly, iy Z2)n (2, 1) (10)
If it exists, it can be periodically extended without discontinuities,

W21+ L) = w(Z1) . (11)
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Figure 1: During particle motion from I; to I; the orbital phase space coordinates (top) stay on ellipse of
constant area, the spin unit vector stays on a unit sphere, and the invariant spin field is transported from the
sphere attached to the initial phase space vector to the sphere attached to the final phase space vector

Hence on a given trajectory z(l) = T'(l,ly)Z, with constant parameters the n—axis is a special
solution of (5)

dn(Z(1),1 -

PEDD _ bz x iz, (12

with periodic boundary conditions. That is why 7 is often called “periodic” solution, although
the periodicity (11) of a single n—axis is visible on a synchro—betatron trajectory only if all
orbital tunes are integers. More generally one could say if there are integers m, m,, m,, Meync
such that m@Q; = m; (1 = z,y,sync) then n(Z,1) is eigenvector of the m—turn spin map for all
Zor n(Z(l+mL),l+mL)=n(Z(),1).

The restriction of n(Z,1) to the closed orbit is the eigenvector with eigenvalue 1 of the one-turn
spin map on the closed orbit,

8y

2(0,1) = no(l) = ho(l + L) = R(I + L, 1;0)io(l) . (13)

For a flat ring with no Siberian Snakes (see section 2.4), no solenoids, and no closed orbit per-
turbations the ng—axis is vertical all over the ring and for the fictitious ring with no quadrupoles,
introduced as an example in section 2.1, n(Z) is independent of Z and equal to ny. Note that
the n-axis has an arbitrary sign, since it is defined as periodic unit vector field of the extended
orbital phase space that is compatible with the T-BMT flow. The spin on the other hand
is a dynamical variable itself and determined by an initial value problem %S = x S and
S(1=10) = So.

Figure 1 depicts the mapping of an initial to a final state (left to right) for the orbital phase
space (top), a simple spin (middle) and an n—axis (bottom). The orbital position moves along



ellipses of constant area, the spin moves on the unit sphere and the n—axis is transported from
one unit sphere attached to the initial phase space point to another unit sphere attached to the
final phase space point.

From (6) we conclude that, as long as the reference energy is fixed, the motion of an arbitrary
spin given at S = S(zz,li) is a rotation on a cone with fixed polar angle around a vector

n(Z(l; Z;),1). This vector n is a function of the extended orbital phase space only and has to be
evaluated on the trajectory of the particle. The invariant

A

J, = 8(1; 2, 8:) - (215 Z),1) = const. = S; - 4(Z;, 1;) (14)
is called the spin action [4].

We can then find a rotating coordinate system [4] (t(2, 1), 7(2,1), ti3(Z, 1)) such that spin motion
in these coordinates is just

g(l):<\/1—stin[1/5( )27” + o), Jss /1 — T2 cosvs( T 27” ¢0]> . (15)

The function Vs(j) is called the amplitude dependent spin tune. Normally it depends on the
reference energy z/s(j) = Vs(j; Ep) but with a few exceptions we will suppress this dependency
since in a large fraction of this paper we assume the reference energy to be constant. In a flat
machine without snakes and solenoids the spin tune on the unperturbed design orbit is just the

spin enhancement factor
flat,perfect __ ﬂat,perfect
Vg = (0 ) Gy . (16)

The two additional unit vector fields ) : R® x [0, L[— S3, can be periodically extended
without discontinuity @ 2)(2,! + L) = t2)(Z,1) but they are not solutions of the T-BMT
equation. In general ;2 are difficult to construct explicitly.

In the case where we neglect all but one plane in phase space the phase space points of successive
revolutions (Z(1;))jen = 2(lo), Z(lo + L), ... are on one elhpse with J = const., ¥; = Wy + 50
rather than on a torus with J = const., \Il = U, + ]Q As long as the n—axis is a smooth
function on a given ellipse, the image of the ellipse under n will be a closed curve on the unit
sphere S3. Figure 2 shows such a closed curve computed with the spin code SPRINT [6]. The
n-axis was computed for one single point Z; and then just transported by tracking for 1000
turns. In figure 2 the calculations were performed for the HERA—p 1996 luminosity lattice
setup at 801.5 GeV. The emittance was 647 mm mrad which is approximately the 4o vertical
emittance. The locus of the n—axis in this example is a closed curve as predicted, but with a
large angular spread and multiply curled up. The complex structure of the curve in this almost
arbitrary example is an indication for the complexity of spin motion at high energy.

For electrons with radiative polarization and depolarization mechanisms (and for protons once
noise, intra beam scattering, etc. is introduced) the n—axis turns out to be (up to some
small deviations [7]) the equilibrium polarization axis. In the quantum mechanical picture
of polarization the n-axis is a function that commutes with all spin operators and defines the
local quantization axis for which the density matrix of spin states becomes diagonal. Thus we
can treat spin states as being eigenstates of & -n(2,1) with & being the vector of Pauli matrices.

2.2.1 The Static Polarization Limit

In this section the position in arc length [ will be fixed and therefore omitted in all equations
for brevity.



Figure 2: The n—axis for HERA—p with a special Siberian Snake arrangement at 801.5 GeV on an invariant
phase space ellipse with 647 mm mrad vertical emittance plotted on the unit sphere.

The local polarization P at a given phase space point 2" is given by
Fioc(2) = Pagn(2)i(Z) (17)

where the dynamical polarization P4y, is the average over spins S, at 7

A

Payn = (Sk(Z) - 2(2))r = (s (D))r (18)

where .J; 1(Z) is the spin action of the k—th particle at z" with respect to n(2). If spin motion
is well behaved at ramp time, then Pgy, i1s a property of the beam that is fixed by more or
less good matching at injection. If spin motion is strongly perturbed (“resonance crossing”)
on the ramp, Pyy, can change. As an example take all spins parallel to their local fi—axis at
injection, then Pyy, is just 1 if there are no losses on the ramp. The total polarization that can
be measured by experiments is therefore

Pt = /R P(2) Payn()n(2) d°F (19)

Now we will transform to action—angle variables (2 — (j, \I_})) In particular we will make the
following assumptions
o 38_@ ~ 0. In a real accelerator small non-linearities of the orbital motion will will smear
out small inhomogeneities on the torus (filamentation). Filamentation generally averages
away the T dependence of p even in a regime where the nonlienarities are so weak that
the orbital motion is still integrable to a good approximation.

9 FPayn

[} =
v

~ 0. Spins on the same torus are supposed to have the same averaged history.



If these assumptions are applicable at least to some extent, then in the worst case we can
replace p by (p)g and Payn by (Payn)g so that the following statements remain approximately
correct. Defining the angle averaged n—axis (for non vanishing norm!)

(1) = <ﬁ( q})>¢' (20)

and the static polarization limit

we obtain the following decomposition
P = [ 07) Panll) Bunl T () 7 22)
Ry

where all normalization and transformation factors have been absorbed into p. Using (22) we
have factorized the observable beam polarization into a dynamic, “history dependent” part (p
and Payn) and static part (ﬁm and Pim). The static part only depends on the emittances, the
energy, and the structure of the lattice . If the T-BMT equation is linear in the orbit, it can
be shown that in a flat ring without solenoids, without closed orbit distortions, and without
snakes or with snakes that make fq vertical i, is independent of J and parallel to £ng. Hence

the total polarization is then +#g [ ﬁ(j)den(j)Plim(j) BJ.

The linear orbital properties of the beam can be described by the g-functions, and the emit-
tances. The B-functions are functions of the lattice only, but the emittances are intrinsic beam
properties. They are adiabatic invariants and deEend on the beam history. In the case of spin

motion we have the lattice function Plim(j) tiny(J ) that can to some extent be regarded as the

—

“spin—f—function” and the beam property Payn(J) that could be called the “spin emittance”
of the beam with the exception that a large dynamical polarization is considered advantageous
whereas a large orbital emittance is normally considered disadvantageous.

A more geometrical property of the n—axis that is somehow complementary to Py, is the
averaged polar opening angle of the invariant spin field on a given torus

ol 1) = (£ (D)1, 9))) (23)

v

It represents the directional spread of the invariant spin field. For small opening angle oo < 1
obviously Plim(j) RS COS a(j) holds. In high energy storage rings like HERA—p the directional
spread of the n—axis can be reasonably large so that the upper limit of polarization i, is
small. If for example the average opening angle is 60°, the total polarization can’t be bigger

than 50% and a = 7 means zero polarization even if Pyy, = 1 all over phase space!

2.3 Spin Orbit Depolarizing Resonances

Consider again a storage ring with only horizontal bending magnets. Then a spin will only
experience vertical magnetic fields. From (3),(4) or (5) we conclude that all spins will rotate
around the vertical axis (u,) G times per revolution and that n(Z,l) = ng(l) = @,. Thus



if we manage to inject with a 100% vertical polarization, we will keep it forever disregarding
the influence of noise, beam-beam effect, etc. Of course we know that every accelerator needs
transverse focusing and, if we want a bunched beam we will have longitudinal focusing too.
Hence the spin experiences radial magnetic fields depending on it’s position in phase space.
Synchrotron motion continuously changes G and feeds into the transverse motion via the
dispersion. Also misalignments of the quadrupole positions leads to closed orbit perturbations.
In particular the vertical betatron oscillations which are focused by horizontal magnetic fields
make the spins tilt away from #,, but they would cancel out on the average unless a certain
coherence condition between spin and orbital motion were fulfilled.

Figure 3 gives an example of how two spins, initially parallel but on different synchro—betatron
trajectories, get rotated differently by the position dependent quadrupole fields of just two
adjacent horizontally defocusing (QD) and focusing (QF) quadrupoles. The small residual

——

B ®—

Figure 3: Spin perturbations form synchro betatron motion

rotations that come from the non—commutation of rotations around different axes add up and
do harm if the spin and orbit motions are coherent, i.e. have the same dominant frequencies. If
a spin on a certain torus is tilted away from the vertical on the average by one milliradian turn
after turn, then after ca. 6000 revolutions it’s locus has traversed the unit sphere. The actual
precession axis changes with U on the torus and the average tilt angle is strongly dependent
on the emittances.

The coherence condition for maximum spin perturbation is

Ve(Foy J) =k + k. Qo + kyQy + kayncQeyne - (24)

Resonances with k, = k;, = kgyne = 0 are called imperfection resonances. They are related to
strong sensitivity to orbit distortions. If the spin tune is an integer, the unperturbed spin one
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Figure 4: First order resonance strengths for “flat” HERA-p with 167 mm mrad vertical emittance in the
interval from 780 to 825 GeV

turn map R is unity and therefore even tiny distortions of the ring dominate the spin motion.
In a flat perfect machine (1y = G'y) the energy difference between too adjacent imperfection
resonances is AF = % ~ 523 MeV. Resonances with at least one of the k,, ky, ksyn. non-—zero
are called intrinsic resonances of order |k;| + |k | + |ksync|. The disruptive effect of a first order

intrinsic spin orbit depolarizing resonance is related to the perturbing T-BMT field defined by
rory = (g g
gf (Z) - wa(\I;(l)v l) + Zwig(ql(l)a l) 3 (25)

where wgi and w?é are those components of J}f(\l_},l) = Q(Z,l) — ﬁ(ﬁ,l) which are linear in
Z, perpendicular to fg and are transformed to the reference system (mq(l), o(!),ms()). This
reference frame is L—periodic and for a machine with ng(l) = 4, it is just the machine frame
(tz (1), ty(l),0,(1)), but generally needs an extra rotation to follow ng. The perturbing T-BMT
field defines the rotation away from the ng—axis that a spin experiences on a synchro-betatron
trajectory. The linear orbit z_'(j, Ty + %l@), is pseudo—periodic with the QWQLperiodicity of
the eigenvectors of the one turn map. If Z(1) = Y ¢ Uk(!)ag, then it transforms under the one

turn map like Z(I+ L) = > v Uk(l+ L)ag = ¢i 7 diag(+Q) > ev Uk(l)ag. The perturbing T-BMT

field which is a function of (Z(/),[) can be decomposed into a Fourier series that contains the
spectrum of 2 only. If we restrict ourselves on linear orbit motion and linear &, we obtain

+oo
=Y Y [ Qi (-]

k=1 M¢&{z,y,sync}

Note that each harmonic & is split into exactly two “side bands” k + Q3 per mode M. The
first order resonance strength is

- 11 [ : 2
MET) = lim 5 — [ (el 0T g (27)

where the infinite domain is introduced due to the fact that (e‘ik%ﬂ)kez is a complete orthogonal
set of functions on [0, L] whereas (e‘i[kiQM%l)k€Z7QMeR is orthogonal on R* only and complete



only on the set of 2wQ)y; pseudo—periodic functions . The above definition includes an arbitrary
complex phase due to the choice of the initial vectors (1(0), 720(0),73(0)). Another method
of computing the resonance strengths is given in [5]. In the case of a flat perfect ring without
Siberian Snakes and without solenoids (19 = Gy) and for sufficiently small orbital amplitudes
(Vs(j) A 1) the depolarizing resonances produce a discrete energy spectrum. If in addition the
resonances are well separated, the opening angle a is almost zero off-resonance and 7 exactly
on a depolarizing resonance.

There is another aspect of (. We can try to generalize (;0 (1) to C;i(é', [), but we know that in
any orthonormal based on the fi—axis and two other unit vectors, the spin is just precessing
around n with S -7 = const for constant energy. Hence C;i(é’,l) = 0 by definition which is

another consistency constraint on the invariant spin field.

Usually the relation eQJi o /Jar holds for intrinsic resonances and the imperfection resonance

strengths are approximately proportional to the rms. closed orbit distortion. The strongest
first order resonances are related to the vertical motion and are driven by the periodic structure
in the arcs [10]. Hence the approximate “super strong resonance condition” is

vo(J) = kP +Q, and v,(J) ~ kPM + Q™ (28)
where P is the ring su(per period and M is the number of identical FODO-like cells of one
super period, and 27 yarcs) is the accumulated synchro-betatron phase advance of all regular

arc sections. Figure 4 shows the intrinsic resonance strengths for a “flat” model of HERA—p in
which the vertical bend sections have simply been switched of. The design orbit spin tune 1/5(6)
is then Gy. The resonance strengths are shown for a vertical emittance of 167 mm mrad and
the energy range is from 780 to 825 GeV. Note that there is one extremely strong resonance at
G~ = 1535 — Qlf/m“ = 1567 — Q°°™P! which corresponds to a momentum of about 803.2 GeV/c.

v
The first order resonance strength (27) is often [10] generalized to the “e—function”

_271'1'

I
E(j,/i) = lim ! £/ Nf?.o(l') e~ T dl’ (29)
0

by inserting the non-linear &(2,1) into (26), and/or using non-linear orbit motion. This is
indicated by writing ¢ instead of (. Whenever the spin tune vs(Fo, j) is close to k = k+ k. Q.+
kyQy 4 Esync@sync spin motion is maximally perturbed and the average opening angle oz(j) is
increased. c(j, k) is then considered the strength of this perturbation. It has to be noted that
for 27 pseudo-periodic orbital motion and linear & the coefficients with |k, |+ |ky |+ [ksync| > 1
do not contribute to the Fourier expansion of (}0 (1). Higher order tune harmonics in the spin
motion arise from non-linear terms in w(Z,/), partly from non-linear orbit motion Z(/) as the
driving term of spin motion (which introduces orbital tune spread Cj(j) to the spectrum of
&), but most of all from the intrinsic non-linearity of the spin map R(l,[; Z) with respect to
the orbital phase space variables. The non-linearity of R(lf,l;;Z) is not included in c(j, k) in
definition (29). But even for linear orbital motion and linear G(!) these non-linearities show up
in the n—axis.

There is an analytically solvable model with exactly one first order resonance in 2+1 dimensions
called single resonance model [8], [9],

dJ
dl



A o2
BT _Qa

dl 7
B, 2
G(1,0,1) = %(G(J)sin\ll,yo,e(J)cos\I/). (30)

Setting

A=l — QP + (I . (31)

one can show that the n—axis is given by

7 —Ml e(.J) sin vy — e(J) cos
n(J,\Il,l)_ |V0—Q|A ( (‘]) \Ila 0 Qv (J) \II) : (32)

The amplitude dependent spin tune is

_ vo — Q)
|V0—Q|

We immediately see that in this simple model the n—axis is vertical far off-resonance where

v(J) A+Q (33)

Vo — @ is big and it tilts over to the horizontal plane at the resonance. Also the spin tune is
linear in vy for big vy — () but makes a step from @) + € to ) — ¢ at vg = Q.

For this model the ratio % after acceleration through a resonance at [ = 0 has been
ynlt=

calculated by Froissart and Stora [11]. If the closed orbit spin tune is vy — @ = a%’rl with the
constant “ramp rate” a, then

Payn(l = +0) _pel?
=2¢ "2 —1 . 34
den(l = —OO) ( )

In the asymptotic regions € < a and €* >> a the ratio in (34) is &~ 1 and ~ —1 respectively.
In the first case the n—axis tilts away from the vertical and back so quickly compared to the
precession of the spin that the spin hardly sees any change of the fn—axis in one revolution. In
the second case the n—axis moves so slowly that at any intermediate time the spin will precess
around it many times before the tilt of the n—axis has significantly changed. Hence the small
changes will almost average away and the projection S will hardly change. In all other cases
polarization will be lost to some extent! This behaviour has been observed in many low energy
accelerators and therefore the model is quite popular and well understood. Unfortunately at
high energy, resonance strengths are increased due to the higher fields needed to focuses the
beam, and as € becomes larger the region in vy — () over which the resonance strongly influences
the spin motion becomes larger too. The single resonance model is based on the assumptions
that the resonances are isolated. At high energy this is no longer true. Also the single resonance
model cannot handle higher order resonances that have to be taken into account at high energy.

2.4 Siberian Snakes

A Siberian Snake, often also called full snake or 180° snake, is a magnetic device that

e rotates the spin by 7 around a particular axis called the snake axis and ideally does this
independent of reference energy and phase space position,

e is optically transparent (almost).



There are two different families of snakes

e Solenoidal snakes:
A solenoid can be used to form a snake via the longitudinal term in (4). The snake axis of
such a snake is always longitudinal. Unfortunately the spin rotation is energy dependent
and the solenoidal snake therefore has to be ramped in order to supply a constant =
rotation. The transverse coupling introduced by the solenoid has to be compensated by a
suitable arrangement of skew quadrupoles. For technical reasons solenoidal snakes, even
with superconducting technology, are almost impossible for energies of more than 3 GeV.

e Dipole snakes:

For big value of v the transverse term in (4) is independent of energy. At sufficiently high
energy an integrated field of 2.74 Tm always rotates the spin by 7. Therefore we can
make a closed combined vertical and horizontal bump that, due to non—commutation of
rotations, rotates the spin by 7 around some axis. The direction of this snake axis can
be chosen almost arbitrarily at the design stage. There are proposals [17] for snakes with
tunable snake axis in operation without changing the spin rotation angle. Dipole snakes
can be operated with fixed current. Snakes with discrete horizontal and vertical or even
45° tilted dipoles are possible as well as snakes with helical dipoles. Usually supercon-
ducting magnets are needed to obtain the necessary large integrated fields. Unfortunately
at low energy the typical integrated fields produce an unbearably large orbit bump so that
dipole snakes cannot be used much below 10 GeV.

long. spin / A -
rad. spin —== |
vert. spin V

after snake_ll

arc 1"="arc 2!

!
~ v

before snake_ 2. after snake 2

Figure 5: The effect of a longitudinal and a radial snake on spin motion on the design orbit: An orthonormal

spin basis is tracked once around the machine. The vertical spin is mapped to itself whereas the radial and

longitudinal spins are reversed. Hence: g = iy and vg = %



There is also the “little brother” of the Siberian Snake — the partial snake. A partial snake
introduces an energy dependent spin perturbation so large that total spin flip on crossing of
imperfection resonances is guaranteed. Since it cannot overcome the depolarizing effects of
intrinsic resonances, we will not go any deeper into its functionality nor the way to build it.

Inserting properly chosen Siberian Snakes into an accelerator has two main effects on spin
dynamics

e The design orbit spin tune 1 can be fixed to % independently of energy.

e The n—axis on the design orbit ny can be fixed into a certain direction independently of
energy.

If we for example take a flat ring with an even number N, of snakes with all their snake axes in
the horizontal plane, then introducing the “Steffen angle” 3 which is twice the angle between
the snake axis and the radial axis, it can be strictly proven that

1. The vertical axis (1,) is an ne—axis.

2. The design orbit spin tune is

N

vo= oo S (15 + () (3)

i=1

where ©; = Gy > dpends is the accumulated precession angle around the vertical direction
of the arc section between snake 7 and 7 + 1.

3. If vy is not an integer then ny = 1, is unique up to its sign all along the ring.

Here the ¢; are the energy dependent spin rotations on the design orbit due to the arc sections
between snakes, i.e. GG times the total horizontal deflection angle of this section. We conclude
that if snakes are placed in such a way that Eé\;sl(—l)jg/)j(E) vanishes, the contributions of the
arcs cancel globally and the spin tune is independent of energy. The best choice of course is to
make two adjacent sections compensate each other: 12,41 = 125, so that the spin perturbations
are hopefully cancelled as locally as possible.

Figure 5 shows how a scheme with a radial and a longitudinal snake placed in between two

identical arc sections works to fix the spin tune at vy = % and make the ng—axis vertical

independently of energy.

Spin motion on synchro-betatron—trajectories unfortunately is not that simple. Even with
carefully chosen snake schemes there is an amplitude dependent spin tune spread over the
particles of the beam. Each torus has a spin tune shifted by some 51/(j)

vo(J) = o+ 6u(J); su(0) =0 . (36)

Furthermore the n—axis will not be vertical all over phase space, although with linear Q(Z) for
a flat machine without closed orbit distortion the averaged n—axis ﬁ(@(j, [) is parallel to ng(l).
In the case of HERA—p which has vertical bends this is no longer true at most energies and
azimuthal positions. Figure (6) shows the static polarization limit Him(j) in the energy range
from 814 to 820 GeV for the flat model of HERA—p with vertical bends switched off (top) and
for the 96 luminosity optics with 4 snakes (bottom). Additionally the vertical bend sections
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pure vertical motion are also plotted. (bottom): 4 snakes were installed and the vertical bends switched on but

the lattice was made flat by switching off the vertical bending magnets. The first order resonance strengths for
partially compensated by six “flattening snakes”.

Figure 6: The static polarization limit Py, for the 96 luminosity optics: (top): No snakes were installed and



were partially compensated by special extra snakes. For the flat HERA Py, is computed on
the invariant torus given by (¢, = 4,6, = 4,6, = 0) x # mm mrad or in beam widths as
lo-10-0c. The relative resonance strengths in arbitrary units are plotted below Fj,. The
polarization drops to zero at the exact positions of resonances as proposed in section 2.3. The
bottom picture shows Py, for HERA—p with a certain snake configuration on the invariant tori
corresponding to the beam widths 1o-10-00 and 20-20-0c. Obviously the energy dependence
of Pjim 1s smoothed out if snakes are introduced. Also there is a periodic structure in the
polarization curve that reflects the periodicity of the resonance structure but is shifted by some
51/(j). With properly chosen snakes the design orbit spin tune is % This shows that snakes
cannot totally compensate accumulation of spin perturbations on betatron trajectories nor will

they fix the amplitude dependent spin tune z/s(j) in the same way that they fix vyg.
Whenever snakes are placed inside a lattice the approximate symmetry of the lattice has to be
taken into account. At least the accumulated horizontal bend angle of the sections between
snakes has to be adjusted to make (35) energy independent. Since HERA-p has approximate
4—fold symmetry, only schemes with 2" snakes seem adequate. Any snake arrangement taken
into account for further studies should at least satisfy the following constraints

1. the spin tune on the design orbit is vy = %

2. the ng—axis is vertical in the arcs.

3. the snake positions must be technically feasible and reflect the approximate four—fold
symmetry of the HERA—p lattice.

design
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Figure 7: The design orbit spin perturbation of the vertical bends sections around the North-, South- and
East—IP is effectively cancelled by inserting radial full snakes in the symmetry points of these sections

Equation (35) is only valid for a flat ring. HERA—p has vertical bend sections around the
North-, Fast- and South—IP. The beam coming from the arc is bent downwards by 5.74 mrad
(= ¢,) then bent horizontally towards the centre by 4 times 15.10 mrad (= 1¢,) and finally it is
bent upwards by 5.74 mrad (= —¢,). In between there are some quadrupoles, but as long as the



design orbit is considered they do not affect the spin motion. The reverse procedure is applied
after the TP. The spin precession on the design orbit of these sections is energy dependent and
can by represented by the concatenated spin maps R;(—Gy¢,) Ry (Gydn) By (Gydn) Bi(Gy o)
and R;(Gy¢y) Ry (Gydn) Ry (Gypn) Ry (—Gyd,) respectively. It can easily be shown [5],[18] that
inserting a radial “flattening” snake R, (m) right in the symmetry point of a vertical bend section
makes it act like a radial snake at the entrance of the straight section

Ri(£Gyd0) By (Gyon) By () By (Gydn) By (F Gy o) = Ry(m) (37)

taking into account only spin motion on the design orbit. Note that the two flattening snakes at
the beginning and the end of the straight sections cancel each others spin rotations on the closed
orbit R.(m)R,(m) = I and that 60.4 mrad (= 2¢) horizontal bend angle have to be subtracted
from the spin precession balance per vertical bend section if the flattening snakes are active. Of
course the accumulated horizontal bend angles of the straight sections in between the vertical
bend sections have to be fixed to 0 in order to fulfill the symmetry constraints for making (35)
energy independent. Figure 7 shows schematically how the “flattening” method works for one
of the six vertical bend sections. In the following we will only consider snake schemes with
6 radial, “flattening” snakes and 2" snakes chosen to optimize polarization. We will restrict
ourselves mainly to n = 2 and therefore a total of Ny = 10 snakes, but will also show some
examples with n = 3 and thus Ny, = 14 snakes. We further assume that the “flattening” snakes
have radial snake axes. Therefore we will speak of “4—snake—schemes” in the case of n = 2
where the snakes are placed in the straight sections close to the IPs, and of “8-snake—schemes”
in the case of n = 3 where we additionally have 4 snakes in the centres of the arcs.

Even with the above restrictions there is a large number of possible snake schemes but only a
small fraction will have good n—axis behaviour over a reasonable energy range. The large num-
ber can neither all be checked by hand nor with time consuming non—perturbative techniques
[9]. Thus for a first scan through the possible options a filtering algorithm [12],[6] is used. After
fixing the snake positions and some set of energies, filtering consists of two principle steps

1. Test whether the constraints ng = u, in the arcs and 1y = % are fulfilled.

2. For the schemes that survived step 1 use a fast linear method for computing the po-
larization at the chosen energies. The linear method is only valid for moderate orbital
amplitudes.

The schemes are than sorted by linear polarization and written to a file. In section 4 we will
show some recent results of tracking analysis for some snake schemes.

2.5 The Acceleration Process

Up to this stage with the exception of the Froissart Stora formula (34) we only considered spin
motion at constant energy Fy. Since there is no mechanism to polarize protons at high energy
that looks half way promising, we have to accelerate polarized protons almost from rest to the
desired working energy of HERA-p. At 820 GeV Gy is about 1570. Note that for Gy = 1570
an orbital deflection of 1 mrad causes a spin precession of 90° ! Hence there are about 1570
imperfection resonances and 2 x 1570 first order vertical resonances to cross. Equation (28)
setting PM = 4 x 26 implies that just about 32 of them are particularly dangerous. However
at a spin enhancement factor of more than 1500 even the weaker vertical resonances plus the



horizontal resonances plus the synchrotron sidebands plus the higher order resonances are wide
enough to collectively perturb polarization in a severe way.

For constant reference energy the spin action J; = S f is an invariant of motion. Every spin
rotates around its local n—axis. Hence Payn(.J ) is a constant for all .J too.

In the case of changing v = % the spin action .Js; can be shown to be an adiabatic invariant
[13]. That means that as long as 4o changes “slowly enough” with respect to some time scale, .J;
will hardly change at all. At the first glance this seems trivial since the n—axis is considered the
“periodic solution” of the T-BMT equation and the angle between two solutions is conserved,
but actually it’s not quite that simple. The T-BMT equation (5) determines the spin motion
as an initial value problem (IVP) for a given trajectory Z(/) and arbitrary Q. If we introduce
an [—-dependent ~q, y0(/), the IVP for the spin reads

PGl _ (), 100)) ¢ G200
S0 (Z0) = (S0 - (38)

whereas the invariant spin field is determined by a periodic boundary problem with constant
internal parameters

8%0(5([),1) aﬁ%(z(l)vl) dz _ 0 (2 =
ol + 07 ) dl Q’YO(Z(Z)7Z) X n.m(z(l),l) )
g (2,04 L) = fuy(Z,0+ L)
Y% = const. . (39)

Therefore each 7o(/) leads to a potentially totally different n—axis! In figure 6 of section 2.4
we could already observe such an effect. The ri—axis on some torus was computed for different
energies independently. Not only does 7., (2,1) differ from 7., (2,1) for different 1,702 but
even the angle averaged polar opening angle on the torus oz(j) and hence the static polarization
limit P]im(j ) are more or less strongly dependent on energy.

\ L —
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Figure 8: The opening and closing of the a-distribution at ramp time. As the energy is increased (from left
to right), the angular spread of the n—distribution will increase in energy ranges of strong spin perturbations
but will decrease again after exiting these regions. A suitable working point is clearly at an energy where the
average opening angle is small so that the static polarization limit is high.

By definition the n—axis distribution does not depend on the acceleration process. In certain
energy regions the opening angle will be large but we can always find a region where it becomes



Figure 9: Polarization loss due to non-adiabatic spin motion at ramp time. As long as the spin motion is
adiabatic the projection S -7 will almost stay constant. At certain energies the n—axis might change so quickly
that the spin cannot follow completely. Hence S - n will change.

moderate again, to some extent even without snakes. The invariant spin field is related to the
lattice and the current energy only — it does not depend on history! Figure 8 illustrates this
property of the n—axis. But .J; and therefore the dynamic polarization Pqy, can suffer. As long
as 1(Zy, (1), 1;70(l)) is well defined for all I we obtain for the change of J;, = S - # during the
history of acceleration,

o [ 42,0 20(0)] = 81 2 ) - TG S0D g

Now we are able to discuss the content of (34) qualitatively. Locally, S rotates around the

n—axis. Since 7 is a unit vector, % has to be perpendicular to n. Hence only S, = 5 — Jn

contributes to (40). If S and therefore S, rotates so quickly compared to the rate of change of
the n—axis that small changes in 7 are almost averaged away in each turn, .J; is therefore almost
constant. In other words the spin can follow the changing rni—axis almost completely. If on the
contrary is zero most of the time except for a very short interval where the n—axis turns by

180° before the spin can follow, then in the integral A.J, = fJf S. %d%, the spin can be taken
as constant and J; almost reverses its sign. In all other cases |.J;| will change and therefore Payn
usually will drop. 3 o = is particularly big in energy regions with strong resonances. Note that in
the Froissart Stora formulation the polarization is measured with respect to a fixed unit vector
namely @, whereas in the invariant spin field formulation the polarization is measured with
respect to . The propagated n—axis i.e. n(2,,(1),/;v0(/)) evaluated along an orbital trajectory
changes its sign at resonance crossing. Hence 72 241, —1 in the invariant spin field formulation

Js1

den (l +OO)
Fayn (I=—c0) ™~
potential loss of .J; for a chosen particle when crossing a resonant region. The above calculations

are based on the assumption that (2, (1),[;70(l)) is well behaved. After crossing an energy
region [y1,7v2] where the n—axis along the particle trajectory n(z,(1),/;v0(l)) is ill-defined i.e.
undefined or multi-valued the difference in AJ; can be arbitrary as long as J, € [—1,1] is
fulfilled.

corresponds to ~ —1,1 in the Froissart Stora formulation. Figure 9 illustrates the



There is another source of depolarization related to the dependence of the spin motio on the
phase space torus. Since the n—axis is defined by a periodic boundary problem rather than by an
initial value problem, the n—axis for fixed vq is only unique up to it’s sign. Usually by convention
the vertical component of 7 is fixed to point upwards, but under static conditions (Z,/ : const.)
n(2,1) is fully equivalent to —n(Z,1). So when computing 7(z(ly),ly) for one point in phase
space we have the freedom to choose its sign. If we require 1 to be smooth, then by using (10)
the signs of n at all other points (Z(),[) on the trajectory starting at (Z(lo),lo) are already
fixed. If all tunes are incommensurable, for [ — oo the torus will be filled densely with unit
vectors continuously connected to n(Zz (lo) lo) on the trajectory Z(l Z(lo)) Hence only the initial
sign is actually free and the distribution 7z, : [0,27[— S, U - n(J — const, U, [ = const)

can fill the whole sphere. Now imagine an ensemble of N particles with spin (S.(VO)(J, Ui))i<icn
on the torus J = const. with all spins upward parallel to their n—axis (J;; = 1¥1) initially. The

distribution might be tightly bundled around the vertical upward axis, which implies o < 1,
Pim ~ 1, and 4,y ~ t,. It is ramped through an energy region where we can neglect all
non-adiabatic changes in the J;;, but the distribution nJl(\Il) fills the whole unit sphere Ss.
We look at it at an energy where the distribution is tlghtly bundled again. There are two

possibilities

1. The spin ensemble spread out all over the unit sphere while crossing the region of o = 7
but comes back to the vertical upward direction afterwards.

2. The spin ensemble opens and in the end closes back to the vertical downward direction.

Case 1 is trivial but in case 2 the ensemble average has reversed its projection on the static
polarization axis i), defined for constant energy. Therefore J;; = —1 with respect to the static
polarization axis and the ensemble average Pyy, has become —1 too. Aslong as only one torus is
considered this “spin flip” does not do any harm, but the total polarization contains contribution
from all tori (22). Some might have “flipped” some might not. Hence the contributions from
“flipped” and “non—flipped” tori have to be subtracted. Of course this can happen only after
crossing a region with oz%(j) = Z. In principle this “spin flip” is reversible since it is an
adiabatic process, but most likely the number of tori with different orientations of i, (up or

down) will increase rather than decrease after each energy range with a%(j’) = 7. Mainly

because the .J where branching occurs depends on the resonance structure which is not likely
to be repeated exactly since resonances tend to get stronger with increasing energy. Therefore
an additional serious topic in preserving polarization is minimizing the number of energies with

3T € [0, Jmax)® : a%(.f_’) ~ L

2

3 The HERA-—p pre—accelerator chain

Polarized protons have to be produced in the source. Then on accelerating up to the working
energy the polarization should be preserved as much as possible. There seems to be no way of
recovering from depolarization at high energy. Furthermore the experiments demand that the
luminosity for polarized runs should not less than for unpolarized runs.



3.1 The H™ source

Currently DESY only has an unpolarized magnetron source that is able to produce about 60
mA of H™—ions. A pulsed optically pumped polarized ion source (OPPIS) is under construction
at TRIUMF [14]. The goal for the operational parameters is

H~ current > 20 mA
polarization > 80 %
emittance (transv.) || < 27 mm mrad
pulse duration 100 ps
repetition rate .25 Hz

With this or a similar source and an optimized match to the RF(Q and LINAC-III the injection
current into DESY—III, which is roughly 10—20 mA in 10 bunches at the moment, could almost
be conserved. With the 98 run period the DESY H~ injection will have a switch—-able MEBT
connecting two LEBTs and RFQs with LINAC-III. So changing from polarized to unpolarized
operation could be done without long down—times. The polarization direction produced by
the OPPIS is longitudinal, hence mounting the polarized source on the straight arm of the
switch—yard is preferable from this point of view.

3.2 RFQ, LEBT, LINAC-III and transfer lines

Spin dynamics in the straight parts of the pre—accelerator chain is considered almost harmless
for the following reasons:

1. The spin enhancement factor G~ is small.

2. At these energies the directional distribution of the invariant spin field at the entrance/exit
of the following/preceding circular accelerator will be tightly bundled i.e. o <« 1 since
the transfer energy can be chosen to be off-resonance.

3. The strongest spin perturbations in circular accelerators arise from adding up small per-
turbations turn by turn. This is excluded for linear structures by definition.

4. The transfer lines and the LEBT don’t change the particle’s reference energy. They can
be spin matched for exactly one energy.

Whether point number 1 still holds for the transfer line PETRA to HERA—p (PR-Weg) has to

be analyzed separately. But anyway there are still some things to care about

1. In order to preserve luminosity the transfer efficiency has to be optimized.

2. The transfer lines from LINAC-IIT to DESY-III (HEBT), from DESY-III to PETRA (P-
Weg), and PR-Weg include horizontal, vertical, and otherwise tilted bends. Hence they
will apply an energy dependent rotation to the polarization. Since the projection S is
constant in periodic structures and for constant energy, the spin transfer function must be
matched from the preceding to the following accelerator to maintain polarization. Note
also that the polarization from the source is longitudinal, but in the circular machines it
is preferably vertical.



Spin direction tuners are needed to tune the polarization axis and compensate the effect of
interleaved horizontal and vertical bends. Spin direction tuners are snake-like devices operated
at a single energy. This implies for the following different stages

e LEBT, RFQ, and LINAC-IIT: We must check whether some spin match for longitudinal
polarization is necessary at all. Improving on transfer efficiency would help to maintain
luminosity.

e HEBT: Most likely the best place to rotate polarization vector into vertical direction.

o P-Weg and PR-Weg: The polarization axis must be tuned to overcome the rotation from
the tilted and vertical bends.

3.3 DESY-III

DESY-IIT is a strong focusing flat synchrotron with a super period of 8. Each period consists of
3 cells with 2 focusing and defocusing combined function magnets (BD, BF). Additionally each
period has 4 independent quadrupoles (QD1, QF1, QD2, QF2). Multi—turn injection is done
through a stripping foil. In standard operation 10 out of 11 RF-buckets are filled. Since the
injection is at 50 MeV kinetic energy and ejection energy is 7.5 GeV, there are 14 imperfection
resonances in the DESY-III energy range. DESY-III has 4 weak intrinsic resonances with
strength .002—.01 corresponding to 4m mm mrad vertical emittance [16]. The resonances are
well separated so that the single resonance model seems applicable. The imperfection resonances
can probably be overcome with a partial snake [14]. In order to overcome the intrinsic resonances
either the method of tune jump can be applied [14], or resonance excitation with a vertical RF-
dipole [15] can be used to ensure full spin flip at resonance crossing. To decide which of these
methods seems more promising, a more detailed analysis is necessary. The large space charge
tune spread at injection as well as the observed emittance blow up on the ramp have to be
taken into account, both for spin as well as orbital stability.

3.4 PETRA-p

PETRA-p consists of 8 identical arcs with 13 FODO cells each. There are 4 long straight section
(N, O, L, S) and 4 short straight sections (NO, SO, SW, NW). In standard operation 60 out of
400 RF-buckets are filled. Considering polarization it is unfortunate that the protons have to
be bypassed around the electron RF in the South straight section. Hence the superperiodicity
of PETRA—p is just 1. But there is mirror symmetry with respect to the North—South axis.
There are many more intrinsic resonances in PETRA and they are up to 5 times stronger than
in DESY-III. Therefore at the high energy part of the ramp they are close to overlapping [16].
In that region only Siberian Snakes are expected to preserve polarization. At the low energy
end solenoidal snakes are already impossible and dipole snakes make large orbit distortion. It
was proposed [14] to use two Siberian Snakes in PETRA. Problems arise from the length of
warm snakes, estimated to be 13 m [14]. This has to be compared to the typical length of a
drift space between quadrupoles of 7.5m. For superconducting snakes problems arise from the
liquid helium which would be necessary.



3.5 Polarimeters

Clearly a high energy polarimeter suitable for 820 GeV is needed to supply the experiments with
polarization data. But polarimeters are also needed at almost all stages of the pre—accelerator
chain for diagnostics. Even if the LEBT-RFQ-LINAC section is spin transparent, polarimeters
are needed at the following places and energies

e Source polarization: the polarization must be surveyed either directly after the source or
somewhere before the HEBT implying an operating energy for the polarimeter somewhere

in the region of a few keV to 50 MeV.

e The polarization must be measured after the HEBT or directly after injection into DESY—
[T in order to adjust the matching of the polarization direction. The required working

energy is 50 MeV

e The polarization at DESY-III ejection must be measured to optimize orbit correction,
snake and tune—jump or RF-dipole settings. At an energy of 7.5 GeV polarization mea-
surements (e.g. with elastic p—p scattering) already take a significant time. In order to
adjust for compensating the intrinsic resonances step by step a procedure to eject the
beam at energies other than 7.5 GeV is necessary.

o A polarimeter is needed at the end of the P-Weg or at injection into PETRA.

e [t must be possible to measure polarization at different energies on the PETRA ramp
from 7.5 to 40 GeV. If the P-Weg polarimeter is placed in PETRA, it could possibly
handle the low energy end of this range. Note that PETRA cannot be cycled as quickly
as DESY so that the time for a polarization measurement should be not much more than
the beam lifetime in PETRA at the required energy.

e Since polarimetry at high energy takes longer and longer, there cannot be a polarimeter
inside the PR-Weg and thus the spin transfer through the PR-Weg can only be controlled
with the HERA “low energy” polarimeter.

e The spin perturbations are expected to be worst in HERA. Therefore at any stage of the
ramp there must be an opportunity to measure the polarization. It is not clear yet how
many polarimeters are needed to cover the whole energy range from 40 to 820 GeV. Most
probably at least one more polarimeter is needed at the high energy end of the ramp.

A more detailed analysis on the pre-accelerator chain can be found in [14], but it has to be
mentioned that a complete analysis including spin tracking with snakes in PETRA has not yet
been carried out.

4  Conservation of Polarization when Ramping with Var-
ious Snake Schemes

In this section we will report on the latest results of simulations for the polarized protons project
at HERA-p with the code SPRINT [6]. The static polarization limit in the energy region around
820 GeV was extensively studied [19]. Here we will concentrate on the polarization losses while
ramping through the 803 GeV resonant region.



Various snake schemes based on a slightly modified 820 GeV separation optics from ’96 (called
hp96se820y) will be discussed. The slight modifications are equivalent to those applied to the
'96 luminosity optics in [19]. They are introduced to make the ring close to a high degree
of accuracy and to make the interaction regions exactly 90° apart from each other. The 3x2
vertical bend sections around the North-, East- and South—-IP where compensated (on the
design orbit) with “flattening snakes”. The 4 main Siberian Snakes where placed in the octants
NL, OR, SR directly after the superconducting vertical BV magnet as seen from the interaction
point (IP)and in the straight section around the West IP. The snake positions are at places
where drift spaces of about 10 m can be created without too much effort.

Four schemes with 4 snakes plus flatteners where tested and one scheme with 8 snakes. The 4
additional snakes are placed in the centres of the arcs, i.e. “on” the cryo supplies. The 8—snake
scheme is mainly of theoretical interest, but there are proposals for “bending snakes” that could
replace dipoles in the arcs [20]. The schemes are (see [19] for naming convention).

e ‘3111° : A longitudinal snake in the East and radial snakes in the North, West and South
straight sections.

e ‘1blb’ : Radial snakes in the East and West straight sections and 45°—snakes in the North
and South. Figure 10 gives a schematic view of ‘31117 as well as ‘1b1b’.

e ‘3elb’: A longitudinal snake in the East a radial snake in the West and two +45°—snakes
at the South and North IPs. This scheme minimized the linear opening angle averaged

over the interval from 39.5 GeV to 821.5 GeV.

e ‘1d3c’ : A radial snake in the Fast, a longitudinal snake in the West and +67.5°—snakes
at the South and North IPs. This scheme minimized the linear opening angle in the same
energy range but with the luminosity optics! ‘3elb’ and ‘1d3c¢’ are shown in figure 14.

e ‘33el11b3’ : Actually means ‘3elb’ plus 2 radial and 2 longitudinal snakes in the centres
of the arcs. It minimized (among the 8-snake schemes) the linear opening angle from
39.5 GeV to 821.5 GeV with the luminosity optics and was tested with the luminosity
optics. The configuration is shown in figure 18.

The ramp simulation was made for all schemes in the following way:

1. 1y is at the East IP.

2. A particle with initial phase space coordinates Z; = 5(£,\ﬁg) on a torus with all 3
normalized emittances equivalent to the same beam-o (namely 1, 1.5, 2 and 2.5) and
azimuthal position /o was chosen.

3. In the energy region from 785 to 788 GeV the ni—axis was scanned in order to find a good
starting energy where the accuracy for the computation of the initial fi—axis is high. Let
F; be this optimal energy.

4. A spin 5}3(50, lo; E;) was set parallel to fig, (2o, lo).

5. The spin was tracked some number of turns with constant energy. The average direction
of the tracked spins at (J,; E,ly)

Sa(Z(lo + kL), lo + kL Ei)>k

H (84(2o + L), lo + KL; E)>kH

ﬁ(s)(jcr; E.ly) = (41)



and the average projection of the tracked spins on this direction
Pisy(Jo; B, o) = (Si (o + kL), lo + kL; E) - dusy (o3 B, 1)) (42)

was computed and plotted. Note that if the spin stays parallel to n all over the ramp,
these parameters are just 4,y and Fjm respectively. We will refer to P(sy as the “one
particle multi turn” polarization.

6. The one spin system was ramped over some energy range AF, . = .5 GeV. The energy
increase per turn was taken to be 13 keV which is the average energy increase on the

HERA-p ramp.

7. Step 5 to 7 were repeated with 9ﬁ(50,l0; E;) being replaced by grmp(grmp7l0; Frmp) until
825 GeV were reached.

This simulates an energy ramp that starts somewhere in between 785 and 788 GeV with
den(j;;Ei,lo) = 1. In figures 11, 12, 13 15, 16, 17, 19 and 20 the “one particle multi turn”
polarization P<5>(J_;; E) is plotted versus reference momentum for the above snake schemes
and various invariant phase space tori. The plots also include the static polarization limit
Plim(.]_:,; F) and as a reference the resonance structure for flat HERA-p.

Figure 11 shows the ramp simulation for the ‘3111" scheme on the lo-1o-10 torus (top) and
the 1.50-1.50-1.50 torus (bottom). The static polarization limit Py, was computed with the
non-perturbative stroboscopic averaging algorithm [9] and is therefore called “non—perturbative
polarization” in the figures. The ramped “one particle multi turn” polarization stays close to
the static polarization limit until the ramp hits the resonant area around 803 GeV. The ramped
polarization drops by 5% in the 1o case and by 40% in case of the 1.50-1.50-1.5¢ torus. Note
that this is the strongest resonance but that there are at least 31 resonances with comparable
strength and comparable density of neighbouring resonances to cross before reaching the 803
GeV region! Note also that the existence of depolarizing effects at the energy of strong first
order resonances in the presence of snakes can have two main reasons: First the amplitude
dependent spin tune shift 5V(j, F) might suffice to fulfill the resonance condition

% Y6 E)=k+Q, , (43)
or second the snake scheme might itself enhance the strength of higher order resonances (“snake
resonances” ) close to the linear resonance. In figures 12 and 13 we see the ramp simulation
for the ‘Ib1b’ scheme on the lo-lo-1o torus (fig. 12 top), the 1.50-1.50-1.50 torus (fig. 12
bottom) and the 20-20-20 torus (fig. 13). We see that this scheme, although it has a higher
snake super period (2 instead of 1 for ‘31117), fails already at 1o. The polarization drops to
30% after resonance crossing. In the 1.50 case one might believe that polarization recovers, but
after a closer look at the tracking data it becomes obvious that this is an artifact of the single
particle simulation. Actually at 1.50-1.50-1.50 a neighbouring resonance (at approximately
807 GeV) is enhanced so much that the spin is pushed back closer to the n—axis of the static
system. The average spin direction ﬂ<5>(£; F) is reversed twice in the 1o and 3 times in the
1.50 case. In a real spin ensemble an additional spin kick would tend to destroy the angular
coherence of the ensemble instead of kicking all spins back to their n-axis.  The worst case
for the i—th particle occurs when 5}072’(5([1),[1) is perpendicular to n(Z(l1),l1;v0(l1)) which is
equivalent to |.Js;(l1)| = 0. Then the next “depolarizing kick” at Iy > I; can only increase the
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Figure 10: The snake schemes ‘3111’ and ‘1b1b’
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absolute value of it’s projection on the n-axis , hence |.Js;(l2)| = J* > 0 afterwards. But even
if all spins 1 < ¢ < N at (Z,1);,<i<1, receive a kick towards +n of the same absolute strength,
their projections (.J5);(l2) will be almost symmetrically distributed in [—J*,4+.J%]. Therefore
the ensemble average Payn(Z(l2),[2) = <5AY%7Z'(Z(Z2), l3) - 7(Z(l3), l2;70(l2))): will probably vanish.
When dynamic polarization is lost it is lost for ever! At 20 the resonance width or the number
of neighbouring snake resonances is enhanced so much that the polarization immediately decays

on the ramp even far from the nominal resonance position.

Figures 15 and 16 show the result of the ramp simulation for the filtered ‘3elb’ scheme. For
the lo-1o-10 torus (fig. 15 top) the vertical scale has been zoomed in order to show the almost
exact preservation of the polarization. Unfortunately when going to 1.50-1.50-1.50 (fig. 15
bottom) about 30% polarization is lost. For 20-20-20 (fig. 16 top) there is large polarization
loss already around 795 GeV. The “recovery” around 800 GeV has to be viewed with suspicion
— it is an artifact of single particle tracking similar to the case of the ‘1blb’ configuration.
Finally at 2.50-2.50-2.50 (fig. 16 bottom) already the static polarization limit (Pim) is low.
The polarization vanishes immediately after starting the ramp. Figure 17 shows the optimal
scheme from filtering with the luminosity optics, ‘1d3c¢’. Although the configurations ‘3elb’
and ‘1d3c’ look quite similar (North<»South, £67.5° <+ £45°), the ‘1d3c¢’ totally fails with the
separation optics. The polarization drops to roughly 20% even in the 1o case (top). On the
1.50-1.50-1.50 torus (bottom) the polarization seems to oscillate but a closer look at the data
again shows that also the average spin direction is flipping at many additional resonances after
crossing the major resonance at 803 GeV. Hence the oscillating polarization is again an artifact
from single spin analysis. The results would be easier to interpret with a large spin ensemble.
But that would increase computation time significantly.
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Figures 19 and 20 show the ramp simulation for the 8—snake scheme ’33el11b’. It is obvious
from figure 19 that in case of the lo-lo-1o torus (top) the polarization is conserved for the
full energy range of the simulation. The vertical axis of the upper plot has been zoomed. On
the 1.50-1.50-1.50 torus (bottom) the polarization drops by 3%, but a few percent loss on the
strongest resonance in the whole range of 40 to 820 GeV seems tolerable. In the 20 case (figure
20 top) there are already four steps at which losses occur before the 803 GeV region

1. a drop of ca. 5% directly at the beginning of the ramp,
2. around 792 GeV the polarization drops by ca. 20%,
3. around 796 GeV the polarization drops by another 40% and

4. around 800 GeV the polarization drops to 0.

Each of these is separated by 4 GeV. If we assume an intrinsic resonance structure width of
= = 523 MeV which is the separation of integer resonances if the ring was flat, then with
a snake sequence of 8 per turn we generally observe [19] an approximate resonance period of
4 GeV. For 2.50-2.50-2.50 polarization vanishes immediately at the beginning of the ramp.
Therefore it does not seem as if doubling the number of Siberian Snakes (not including the
flatteners) doubles the beam width with acceptable spin stability. The largest stable torus with
four snakes in the schemes ‘3eld” and ‘31117 is 1o in all three planes corresponding to normalized
emittances of e} = ¢ = 47 mm mrad and ¢} = 1.78 10*r mm mrad (which means an energy
spread of +107*). The largest stable torus with eight snakes (‘33e111b3’) is 1.50-1.50-1.50,

corresponding to e = &7 = 97 mm mrad and &7 = 4.00 10*7 mm mrad.
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5 Conclusion

This report shows the power of the invariant spin field for studying polarization in high energy
accelerators. It offers a consistent formulation for various phenomena observed in tracking
simulations. So far no high energy accelerator runs with polarized protons so a practical proof
of applicability still remains. Hopefully in the year 2000 the RHIC polarized proton runs will
begin and first experimental results on spin stability can be obtained.

To summarize the results of the simulations for HERA—p we conclude the following:

e Modifications to the pre-accelerator chain will be necessary. Problems in the low and
intermediate energy region, although considered less severe than at HERA are not fully
analyzed yet.

e Crossing of the strongest resonant area at 803 GeV seems possible with negligible polar-
ization losses only for the inner part of the beam (up to about 1 or 1.5 o).

e The outer parts up to the 95% emittances are still critical.

— The static polarization limit Fj;, on the outer tori is low, typically 50% on 20-20-20
with 4-snakes schemes and up to 65% with the best 8—snake scheme ‘33e111b3’ [19].

— The dynamic polarization Pyy, drops to zero even with the best schemes on the
20-20-20 torus when crossing 803 GeV.

e 8 snakes, properly chosen, seem to relax the situation slightly. But one can actually misuse
the additional degrees of freedom to make an 8—snake scheme less efficient than a 4—snake
scheme.

o It will be necessary to tune the optics of HERA—p in order to allow polarized proton
operation.

In the future we will mainly have to work on the following subjects:

e Tuning of the optics at the resonant regions to conserve Pgy, and at the high energy
working point to maximize Pjpy,.

e Our studies so far only take into account synchro-betatron motion in an undistorted
machine. The final prove of feasibility has to include closed orbit distortions.

e spin stability under perturbations like noise, beam—beam effect, etc. have to be analyzed.
The static invariant spin field 7(Z,[;v9) and the spin action S, - 1(Z,[;y9) seem to be the
right starting points for perturbative expansions.

e non-linear orbital effects like chromaticity have to taken into account.

e Even if stable operation is feasible with the 96 luminosity—optics at 820 GeV one still
has to show whether polarization can be maintained with the “luminosity upgraded”

HERA-p and/or at 920 GeV !
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