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Abstract

ERL-06-04

The total current that can be accelerated in an Energy Recovery Linear Accelerator (ERL) can be limited
by the longitudinal recirculating beam-breakup instability (BBU), as well as the transverse BBU instability. In
this report we discuss a simple model of the longitudinal BBU instability that can be solved analytically. More
complicated cases are analyzed by means of numerical simulation. It should be noted that the discussion in this
report applies to all recirculation linacs and the ERL is a special case with recirculation phase π. The theory
and simulation are compared and they agree with each other very well in the simple model case. Similar to the
transverse case, the influence of the higher order modes (HOM) frequency spread among different RF cavities is
also discussed. Moreover a theory of the longitudinal HOM power growth is presented and the analytical result
agrees well with the simulation.

1 Longitudinal Beam Breakup Instability

When an electron bunch passes through an RF cavity, it can excite both transverse and longitudinal HOMs. Previous
papers have described how the recirculation of electron bunches can cause the exponential growth of tansverse HOM
power leading to transverse BBU instability [1, 2, 3, 4]. Similar to the transverse case, longitudinal HOMs excited
by electron bunches can lead to the longitudinal BBU instability [5]. Such longitudinal HOMs can disturb the beam
motion in the longitudinal direction and a potential feedback loop can be formed if electrons return to the same RF
cavity with a certain phase. The time of flight term r56 plays an important role in the longitudinal BBU, which is
similar to the role of T12 element in the transverse BBU instability. The main effect of a longitudinal HOM on an
electron bunch is changing the bunch energy. Such a deviation from the design energy is translated into a change of
arrival time through the r56 term. Below the threshold current, the longitudinal HOM power is driven only by the
current generated by the unperturbed sequence of bunches. Above the threshold, the beam current is modulated
by the longitudinal HOMs with frequency matching the HOM frequency. Thus the longitudinal HOMs can be
enhanced by this modulated beam current, which in turn leads to an even larger current modulation. Eventually
such self-enhancement leads to the longitudinal BBU instability.

It should be noted that, unlike the transverse phase space motion, which is mainly determined by the linear
optics, the longitudinal phase space motion is quite nonlinear due to the sinusoidal RF potential and the nonlinear
time of flight term. Thus the longitudinal BBU instability saturates at a large but limited HOM power. It is this
saturation behavior that distinguishes the longitudinal BBU from its transverse counterpart.

In the following discussion, the derivation in [5] is repeated in a more detailed form and the numerical simualtion
is done by a code mainly derived from “bi” code written by Ivan Bazarov. Consider a sequence of bunches with
bunching frequency ωb = 2π/tb. Disregarding the finite bunch length, the current is of the form

I(t) = I0tb

+∞
∑

n=−∞

δ(t− ntb) (1)

It’s useful to find the Fourier decomposition of the current. Notice that the current is a periodic function with period
T = tb, so the Fourier decomposition coefficient In can be calculated as

In =
1

T

∫ T
2

−T
2

dte−inωbtI0tb

+∞
∑

n=−∞

δ(t− ntb) = I0 (2)
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So the Fourier decomposition of the current is of the form

I(t) = I0

+∞
∑

n=−∞

eiωbnt (3)

This result implies that a uniform sequence of point bunches produces a signal at all harmonics of the bunching
frequency.

When the instability starts, the arrival time of the bunches on their second turn has a small amplitude modulation
at a frequency νωb. So the modulated current can be written as

I(t) = I0tb

+∞
∑

n=−∞

δ (t− tr − ntb − ∆t sin(νωbntb + φ)) (4)

where tr is the return time of a bunch, ∆t is the small amplitude of the perturbation and φ is an arbitrary phase of
the perturbation. Similarly we can get the Fourier transform of this function instead of the Fourier decomposition

Ĩ(ω) =
I0tb√

2π

+∞
∑

n=−∞

∫ +∞

−∞

dteiωtδ (t− tr − ntb − ∆t sin(νωbntb + φ))

=
I0tb√

2π

+∞
∑

n=−∞

eiωtreiωntbeiω∆t sin(νωbntb+φ)

Using the identity

eix sin y =
+∞
∑

µ=−∞

Jµ(x)e
iµy (5)

we can write the Fourier transform of the current in the form of

Ĩ(ω) =
I0tb√

2π

+∞
∑

µ=−∞

ei(ωtr+µφ)Jµ(ω∆t)

+∞
∑

n=−∞

ei(ω+µνωb)ntb

=
I0tb√

2π

+∞
∑

µ=−∞

ei(ωtr+µφ)Jµ(ω∆t)ωb

+∞
∑

n=−∞

δ(ω + µνωb − nωb) (6)

1.1 The Wake Potential in a RF Cavity

From the general theory of wake fields in a cavity, the wake potential at time t is given by

V (t) =

∫ +∞

−∞

dt′I(t′)W (t− t′)

W (t− t′) = 0, t− t′ < 0 (7)

where I(t′) is the current at t′ and W (t− t′) is the wake function.
The longitudinal impedance Z̃(ω) is defined as the Fourier transform of the wake function W (t).

Z̃(ω) =
1√
2π

∫ +∞

−∞

dteiωtW (t) (8)

So the Fourier transform of the longitudinal wake potential can be written as

Ṽ (ω) = Ĩ(ω)Z̃(ω) (9)

Since Z̃(ω) is independent of the current and only related to the shape of the cavity, we can send a single bunch
through the cavity and calculate the longitudinal impedance and then use this impedance to calculate wake potentials
under other currents.

Considering a charge q passing through a cavity at t = 0, hence the current is

I(t) = qδ(t) (10)
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So the Fourier transform of this current is in the form of

Ĩ(ω) =
q√
2π

∫ +∞

−∞

dteiωtδ(t) =
q√
2π

(11)

The HOM voltage V (t) induced by the traversal of this charge through the cavity is given by

V (t) =
qωλ
2

(

R

Q

)

λ

cosωλte
−

ωλ
2Qλ

t
(t > 0) (12)

where ωλ is the resonant HOM frequency, (R/Q)λ is the shunt impedance and Qλ is the quality factor.
The Fourier transform of this HOM voltage is given by

Ṽ (ω) =
i√
2π

(

R

Q

)

λ

qωλ
4

{

1

ω + ωλ + i ωλ

2Qλ

+
1

ω − ωλ + i ωλ

2Qλ

}

(13)

The longitudinal impedance Z(ω) can be calculated by Eq. (9):

Z̃(ω) =
Ṽ (ω)

Ĩ(ω)

Thus we have

Z̃(ω) = i

(

R

Q

)

λ

ωλ
4

{

1

ω + ωλ + i ωλ

2Qλ

+
1

ω − ωλ + i ωλ

2Qλ

}

(14)

1.2 Voltage Induced by a Modulated Current

Let there be an excitation V (t) of a HOM of the cavity at frequency νωb. As the bunches pass through the cavity
their energy can be modulated at the HOM frequency.

Define the slip factor η by the relation

∆Tf = ηtr
∆E

E
(15)

where ∆Tf is the time offset of a bunch of energy offset ∆E/E for an on-energy recirculation time tr and first pass
energy (at the cavity) of E.

The energy modulation varying as sin(νωbt + φ) induced on the first pass will through η cause a modulation of
the arrival time of bunch m for the second pass of the form

tm = mtb + tr + ∆t sin(νωbmtb + φ) (16)

This modulation can generate the current

Ĩ(ω) =
I0tb√

2π

+∞
∑

µ=−∞

ei(ωtr+µφ)Jµ(ω∆t)ωb

+∞
∑

n=−∞

δ(ω + µνωb − nωb) (17)

This current can induce a HOM voltage given by

V (t) =
1√
2π

∫ +∞

−∞

dωe−iωtĨ(ω)Z̃(ω)

= i

(

R

Q

)

λ

I0ωλ
4

+∞
∑

µ=−∞

∑

n

Jµ((n− µν)ωb∆t)e
i((n−µν)ωb(tr−t)+µφ)

·
{

1

(n− µν)ωb + ωλ + i ωλ

2Qλ

+
1

(n− µν)ωb − ωλ + i ωλ

2Qλ

}

(18)
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1.3 Analysis of Longitudinal Multipass BBU

In the limit of a small coherent modulation of the bunching frequency, ω∆t is a small quantity. Thus only the low
order terms of it are important. So the J0 and J1 terms of the expansion will dominate because they contains the
constant and the linear terms. The J0 term to the lowest order is independent of the amplitude of the modulation
and describes simple energy loss to the HOM. Since it does not provide feedback with respect to the modulation
amplitude, it can not at this level of approximation contribute to a possible instability [5].

Jn(x) =

∞
∑

m=0

(−1)m

m!(m+ n)!

(x

2

)2m+n

J0(x) = 1 − x2

4
+
x4

64
+ · · ·

J1(x) =
x

2
− x3

16
+

x5

384
+ · · ·

J−n(x) = (−1)nJn(x) (19)

The J±1 to the lowest order is a linear function of the ampulitude of the modulation. Therefore the J±1 terms on
the other hand do provide such a feedback mechanism.

If a narrow resonance is presumed, only one particular term in V (t) such that |n∗ − ν|ωb ≈ ωλ will dominate.
Define the tuning angle ψn of the HOM

tanψn =
ωλ − (n− ν)ωb

ωλ/2Qλ
(20)

Thus we can simplify the formula of V (t) in terms of ψn.

1

(n− ν)ωb − ωλ + i ωλ

2Qλ

=
2Qλ
iωλ

1

1 + i tanψn
=

2Qλ
iωλ

e−iψn cosψn

1

(n− ν)ωb − ωλ − i ωλ

2Qλ

=
2Qλ
iωλ

1

−1 + i tanψn
= −2Qλ

iωλ
eiψn cosψn (21)

V (t) at bunch-crossing times mtb is given by

V (mtb) = i

(

R

Q

)

λ

I0ωλ
4

+∞
∑

µ=−∞

+∞
∑

n=−∞

Jµ((n− µν)ωb∆t)e
i((n−µν)ωb(tr−mtb)+µφ)

·
{

1

(n− µν)ωb + ωλ + i ωλ

2Qλ

+
1

(n− µν)ωb − ωλ + i ωλ

2Qλ

}

(22)

When |(n−µν)ωb∆t| << 1, the main contribution is from J1 and J−1 terms. For a narrow resonace, only |n∗−ν|ωb ≈
ωλ contributes to the HOM voltage. Thus by keeping the J1 term, we have

V J1(mtb) =

(

R

Q

)

λ

QλI0
2

J1((n
∗ − ν)ωb∆t)e

i((n∗−ν)ωb(tr−mtb)+φ−ψn∗ ) cosψn∗ (23)

For the J−1 term, we have

V J−1(mtb) =

(

R

Q

)

λ

QλI0
2

J1((n
∗ − ν)ωb∆t)e

−i((n∗−ν)ωb(tr−mtb)+φ−ψn∗ ) cosψn∗

= V J1(mtb)
∗ (24)

Therefore we can get

V (mtb) = V J1(mtb) + V J−1(mtb)

=

(

R

Q

)

λ

QλI0J1((n
∗ − ν)ωb∆t) cos {(n∗ − ν)ωb(tr −mtb) + φ− ψn} cosψn∗ (25)

4



When x� 1, J1(x) ≈
x

2
.

V (mtb) =

(

R

Q

)

λ

QλI0
2

(n∗ − ν)ωb∆t cos {(n∗ − ν)ωb(tr −mtb) + φ− ψn∗} cosψn∗ (26)

Therefore the induced time delay is

∆Tf = tr

(

R

Q

)

λ

ηQλI0
2E0

(n∗ − ν)ωb∆t sin (νωbmtb + ϕ) cosψn∗

ϕ =
π

2
+ (n∗ − ν)ωbtr + φ− ψn∗ (27)

Thus the induced time delay has the same frequency as the initial perturbation ∆Ti = ∆t sin(νωbmtb + φ), but
with a phase shift. The feedback coefficient is defined as the absolute value of the ratio of ∆Tf and ∆Ti.

r =

∣

∣

∣

∣

∆Tf
∆Ti

∣

∣

∣

∣

=

∣

∣

∣

∣

tr cosψn∗

(

R

Q

)

λ

ηQλI0
2E0

(n∗ − ν)ωb

∣

∣

∣

∣

r < 1, Stable;

r = 1, Threshold;

r > 1, Unstable, BBU (28)

For the growth of instability, the induced time delay should have the same phase as the initial perturbation. Such
phase conformity is essential for building up the longitudinal HOM power. In order to find a stable oscillation at the
threshold current, we need r = 1 and ϕ = φ, which indicates.

tr cosψn∗

(

R

Q

)

λ

ηQλI0
2E0

(n∗ − ν)ωb = 1

π

2
+ (n∗ − ν)ωbtr + φ− ψn∗ = φ+ 2pπ p is an arbitrary integer. (29)

Define ω = (n∗ − ν)ωb, then we have

cosψn∗

(

R

Q

)

λ

ηQλI0
2E0

ωtr = 1

ωtr +
π

2
= ψn∗ − 2pπ (30)

These two equations indicate that if the system is self-sustained, I0 and ω are constrained by these equations. Recall
the definition of ψn∗

tanψn∗ =
ωλ − (n∗ − ν)ωb

ωλ/2Qλ
(31)

and define

εr =
ωλ

2Qλ
tr

δω =
ω − ωλ
ωλ

, (32)

we have

tan(ωtr +
π

2
) = tan(ψn∗ − 2pπ)

1

tan {(1 − δω)ωλtr}
=
δω
εr
ωλtr (33)

For a narrow resonance δω � 1 we only keep linear terms of δω, thus we have

1 − δωωλtr tanωλtr =
δω
εr
ωtr tanωλtr . (34)
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Table 1: The four dominant longitudinal HOMs in the 7-cell ERL cavity
fλ(GHz) Qλ (R/Q)λ[Ω]

1 3.85763 13728 31
2 2.45658 1778.8 134.5
3 5.93396 27887 5.99
4 3.85758 40172 2.94

Therefore δω can be solved as

δω =
εr

(1 + εr)ωλtr tanωλtr
(35)

Since

|cosψn∗ | =
1

√

1 + tan2 ψn∗

=
1

√

1 +
(

δω

εr
ωλtr

)2
≈ 1 − 1

2

(

δω
εr
ωλtr

)2

+ · · · (36)

the solution of I0 is

I0 =
1

1 + δω

2E0

ηtrωλ

(

R
Q

)

λ
Qλ

(37)

The worst case is |(n∗ − ν)ωb| = ωλ, thus δω = 0 and

Ith =
2E0

ηtrωλ

(

R
Q

)

λ
Qλ

(38)

In the simulation that will be discussed in the next section we have fλ = 3.85763GHz, tr = 4.738328773 × 10−6s
and Qλ = 13728 thus we can calculate εr and δω according to Eq. (32) and Eq. (35).

εr = 4.183 , δω = 1.376 × 10−6

It is clear that if δω is very small compared to 1, it hardly has any contribution in the formula of the threshold
current. In theory δω could become a large number if tanωλtr is very small. But for a real resonance, the frequency
ω does not deviate from the HOM frequency ωλ more than ωb itself. Thus it is safe to assume that δ < 1 and the
threshold current we get from Eq. (38) does not deviate from the result of Eq. (37) by more than I0/2.

1.4 The Comparison between Theory and Simulation

In the simulation of longitudinal BBU, we are using BMAD standard. That is






z = −βc∆t
Pz =

∆E

E0

if z ∼ r56Pz, =⇒ ∆t ∼ r56
βc

∆E

E0
∼ ηtr

∆E

E0

thus
r56
βc

= ηtr (39)

In the code we have fλ = 3.85763GHz, (R/Q)λ = 31Ω, Qλ = 13728, which are obtained from cavity simulation, and
r56/βcE0 = 2.249× 10−18, which is taken from ERL lattice simulation. Thus we can get the theoretical value of the
threshold current as

Ith =
2E0

ηtrωλ(R/Q)λQλ
=

2
r56
βcE0

· 2πfλ(R/Q)λQλ
≈ 8.6 × 104mA (40)
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Figure 1: The HOM voltage with different beam currents in a single-cavity linac

In the simulation we use different beam currents and track the bunch motion until the HOM voltage in the cavity
becomes stable. At the end of simulation the HOM voltage is recorded. The simulation result is shown in Fig. 1.
We can see that the threshold current is about 8.6 × 104mA, just as the theory predicts.

For a full CESR lattice simulation, the results of up to four modes in each cavity are shown in Fig. 2. We can
see from the simulation that the mode with f1 = 3.85763GHz is dominant in this case. When we add the other
two modes with significantly different frequencies, the threshold current is not affected. When the fourth mode with
f4 = 3.85758GHz is added, the threshold current decreases by about 50mA because f4 is very close to f1, equivalent
to increasing the (R/Q) of the dominant mode.

In the simulation for CESR lattice we can observe the changing behavior of the average power in one cavity with
respect to the tracking time. When the beam current is as low as 100mA, the equilibrium can be quickly established
and the HOM voltage is stablized at about 110eV as Fig. 3 shows. When we increase the beam current, it takes longer
to establish the equilibrium. But before the instability occurs, the equilibrium HOM voltage is always proportional
to the beam current. For example,

U600

U100
=

668.2eV

111.3eV
≈ 6 =

600mA

100mA
(41)

The instability occurs at about 800mA, amid an extremely long relaxation time and a sudden jump of the equilibrium
HOM voltage. As we can see in Fig. 3

U900

U100
=

197611eV

111.3eV
≈ 1775 � 900mA

100mA
(42)

1.5 Simulation Results for the New CESR Lattice

In the new CESR lattice the threshold current is significantly reduced to 82 mA because of the large r56 of the
CESR ring(r56 = −1.055 × 103cm), as is shown in Fig. 4. This raises a critical issue in the lattice design. In order
to suppress longitudinal BBU, we must build a return loop with small r56. In order to study the influence of the
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Figure 2: The HOM voltage with different beam currents in the CESR lattice
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r56, we carry out simulation by putting different artificial r56s into the lattice and the result is shown in Fig. 5. It
is very clear that the threshold current is proportional to the inverse of the r56, which is predicted by the theory in
Eq. (38).
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Similar to the transverse BBU case, the longitudinal BBU threshold current is also influenced by the frequency
spread of HOMs in different RF cavities. Figure 6 shows that the threshold current increases almost linearly with
the frequency spread. Thus introducing frequency spread should be a good way to boost the threshold current in
both longitudinal and transverse cases.

1.6 The Theory of Longitudinal HOM Power

In a real accelerator the beam current is often limited to below the BBU threshold current because of HOM heating.
Thus the HOM power is analyzed for a single-cavity linac with beam currents below the BBU threshold. As we
discussed before, below the threshold the longitudinal HOM voltage should be proportional to the beam current.
Above the threshold the beam current is modulated and the Fourier component that has the same frequency as
the HOM is enhanced. The electron bunches should behave like they are at resonance with the HOM. Thus it is
important to study how the HOM voltage depends on the current and HOM frequency.

Here we want to derive an analytical formula of the longitudinal HOM power in a single cavity for a certain beam
current that is below the BBU threshold. We assume that the beam current can be written as

I = I0tb

∞
∑

n=−∞

δ(t− ntb) (43)

The longitudinal HOM voltage is in the form of

V (t) =

∫ ∞

−∞

dt′I(t′)W (t− t′)

W (t− t′) = 0, t− t′ < 0 (44)

We know the formula of the voltage excited by a single bunch, which is

V (t) =
qωλ
2

(

R

Q

)

λ

cosωλte
−

ωλ
2Qλ

t
(45)

This formula is derived under the current I(t) = qδ(t), with which we can derive the formula of the wake function.

V (t) =

∫ ∞

−∞

dt′I(t′)W (t− t′)

=

∫ ∞

−∞

dt′qδ(t′)W (t− t′)

= qW (t) t > 0 (46)

Thus we have

W (t) =
ωλ
2

(

R

Q

)

λ

cosωλte
−

ωλ
2Qλ

t
, t > 0 (47)

In the case where the beam current is I = I0tb

∞
∑

n=−∞

δ(t−ntb), we can derive the HOM voltage by the wake function

above.

V (t) =

∫ ∞

−∞

dt′I(t′)W (t− t′)

= I0tb

∞
∑

n=−∞

ωλ
2

(

R

Q

)

λ

cosωλ(t− ntb)e
−

ωλ
2Qλ

(t−ntb), ntb ≤ t (48)

If we define the average power P̄ as the average power over one bunch period, and we start injecting bunch at
t = −∞, then the average power will become stable at time t = 0, thus the analytical formula of the stablized HOM
power can be derived by computing the average power in the period containing t = 0.

P̄ =
1

tb

∫

tb
2

−
tb
2

dt′I(t′)V (t′)

= I0V (0)

= I2
0 tb

ωλ
2

(

R

Q

)

λ

∞
∑

n=0

e
−

ωλ
2Qλ

ntb cosnωλtb (49)
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∞
∑

n=0

e
−

ωλ
2Qλ

ntb cosnωλtb =
1 − e

−
ωλ
2Qλ

tb cosωλtb

1 − 2e
−

ωλ
2Qλ

tb cosωλtb + e
−

ωλ
Qλ

tb
(50)

Thus we have the average power

P̄ = I2
0 tb

ωλ
2

(

R

Q

)

λ

1 − e
−

ωλ
2Qλ

tb cosωλtb

1 − 2e
−

ωλ
2Qλ

tb cosωλtb + e
−

ωλ
Qλ

tb
(51)

There are two scenarios that need detailed investigation. One is the bunching frequency being close to the resonant
frequency of the HOM, the other one is the bunching frequency being far away from the resonant frequency of the
HOM.

In an ERL it is always true that Qλ � ωλtb, under which different approximations are made in the two scenarios.
It is convenient to define

ε =
ωλtb
2Qλ

. (52)

In our discussion, ε� 1 always holds.
The first scenario is that the bunching frequency is close to the resonance frequency of the HOM, which means

ωλtb ≈ 2nπ, n = 1, 2, 3, · · · . Under this condition, cosωλtb can be expanded in the vicinity of 2nπ to the second
order as

cosωλtb = 1 − (ωλtb − 2nπ)2

2
+ · · · (53)

Thus the formula of the average power becomes

P̄ = I2
0 tb

ωλ
2

(

R

Q

)

λ

1 − e−ε(1 − (ωλtb−2nπ)2

2 )

1 − 2e−ε(1 − (ωλtb−2nπ)2

2 ) + e−2ε

= I2
0 tb

ωλ
4

(

R

Q

)

λ

{

1 +
1 − e−2ε

(1 − e−ε)2 + e−ε(ωλtb − 2nπ)2

}

(54)

Since ε� 1 we have

P̄ = I2
0 tb

ωλ
4

(

R

Q

)

λ

{

1 +
eε − e−ε

(1 − e−ε)2eε + (ωλtb − 2nπ)2

}

= I2
0 tb

ωλ
4

(

R

Q

)

λ

{

1 +
1 + ε+ ε2

2 + · · · − 1 + ε− ε2

2 + · · ·
(ε− ε2

2 + · · · )2(1 + ε+ ε2

2 + · · · ) + (ωλtb − 2nπ)2

}

≈ I2
0 tb

ωλ
4

(

R

Q

)

λ

{

1 +
2ε

ε2 + (ωλtb − 2nπ)2

}

(55)

At resonant frequencies, which means ωλtb = 2nπ, we have

P̄ ≈ I2
0 tb

ωλ
4

(

R

Q

)

λ

{

1 +
2

ε

}

≈ I2
0

(

R

Q

)

λ

Qλ (56)

This result is also confirmed by directly making cosωλtb = 0 in Eq. (51).

P̄ = I2
0nπ

(

R

Q

)

λ

1

1 − e
− nπ

Qλ

(57)

P̄ = I2
0nπ

(

R

Q

)

λ

1

1 − 1 + nπ
Qλ

= I2
0

(

R

Q

)

λ

Qλ (58)
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The second scenario is that the bunching frequency falls in bewteen resonant frequencies, in which we have

P̄ = I2
0 tb

ωλ
2

(

R

Q

)

λ

1 − (1 − ε+ ε2

2 − · · · ) cosωλtb

1 − 2(1 − ε+ ε2

2 − · · · ) cosωλtb + 1 − 2ε+ 2ε2 − · · ·

≈ I2
0 tb

ωλ
4

(

R

Q

)

λ

(1 − cosωλtb) + ε cosωλtb
(1 − cosωλtb)(1 − ε)

≈ I2
0 tb

ωλ
4

(

R

Q

)

λ

{

(1 + ε+ · · · ) + (ε+ ε2 + · · · ) cosωλtb
1 − cosωλtb

}

(59)

Since the bunching frequency is not close to any resonant frequency,
cosωλtb

1 − cosωλtb
is not large enough to overcome

the effect of a small ε. Thus we only need to keep terms of the lowest order of ε, which are the constant terms.

P̄ ≈ I2
0 tb

ωλ
4

(

R

Q

)

λ

(60)

These results indicate that when the system is off resonance, the power load of HOMs is proportional to the HOM
resonant frequency. When the bunching frequency approaches to one of the HOM resonant frequencies, the power
load becomes a Lorentz curve peaked at the resonant frequency.

An interesting point is at the same average beam current, the ratio between the HOM power on and off resonance
is

P̄on

P̄off
≈ 4Qλ
ωλtb

(61)

In an ERL there are two beams in the accelerator at the same time. The effective current in such a case can be
written as

I = I0tb

∞
∑

n=−∞

δ(t− ntb) + δ(t− tr − ntb) (62)

where tr is the return time and can be written as

tr = nrtb + δtb , 0 ≤ δ < 1 (63)

Thus the current can also written in terms of δ

I = I0tb

∞
∑

n=−∞

δ(t− ntb) + δ(t− ntb − δtb) (64)

Similar to the single beam case the HOM voltage can be written as

V (t) =

∫ ∞

−∞

dt′I(t′)W (t− t′)

= I0tb

∞
∑

n=−∞

W (t− ntb) +W (t− ntb − δtb) (65)

According to Eq. (44) we have

V (t) = I0tb
ωλ
2

(

R

Q

)

λ

(n+δ)tb≤t
∑

n=−∞

e
−

ωλ
2Qλ

(t−ntb) cosωλ(t− ntb) + e
−

ωλ
2Qλ

(t−ntb−δtb) cosωλ(t− ntb − δtb) (66)

Again we assume that the beam is turned on at t = −∞ and the HOM voltage becomes stable eventually. Thus
we will only calculate the HOM voltage at time t = δtb, when the returning bunch arrives at the cavity. (In the
simulation code we only record the HOM voltage when a bunch passes through the cavity.)

V (δtb) = I0tb
ωλ
2

(

R

Q

)

λ

0
∑

n=−∞

e
−

ωλ
2Qλ

(δtb−ntb) cosωλ(δtb − ntb) + e
ωλ
2Qλ

ntb cosωλ(ntb)

= I0tb
ωλ
2

(

R

Q

)

λ

∞
∑

n=0

e
−

ωλ
2Qλ

(ntb+δtb) cosωλ(ntb + δtb) + e
−

ωλ
2Qλ

ntb cosωλ(ntb) (67)
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Table 2: The HOM voltage for the four dominant longitudinal HOMs in the 7-cell ERL cavity
fλ[GHz] Qλ (R/Q)λ[Ω] HOM Voltage [V]

1 3.85763 13728 31 39.5988
2 2.45658 1778.8 134.5 39.5529
3 5.93396 27887 5.99 4.1437
4 3.85758 40172 2.94 3.7534

According to Eq. (50) and

∞
∑

n=0

e
−

ωλ
2Qλ

(ntb+δtb) cosωλ(ntb + δtb)

= e
−

ωλ
2Qλ

δtb

∞
∑

n=0

e
−

ωλ
2Qλ

ntb cosωλ(ntb + δtb)

=
e
−

ωλ
2Qλ

δtb
[

cosωλδtb − e
−

ωλ
2Qλ

tb cosωλ(1 − δ)tb

]

1 − 2e
−

ωλ
2Qλ

tb cosωλtb + e
−

ωλ
Qλ

(68)

the HOM voltage at time t = δtb can be written as

V (δtb) = I0tb
ωλ
2

(

R

Q

)

λ

1 − e
−

ωλ
2Qλ

tb cosωλtb + e
−

ωλ
2Qλ

δtb
[

cosωλδtb − e
−

ωλ
2Qλ

tb cosωλ(1 − δ)tb

]

1 − 2e
−

ωλ
2Qλ

tb cosωλtb + e
−

ωλ
Qλ

(69)

In Fig. 9 we can see that if an ERL is operating at δ = 0.5, the effective current becomes

I = I0t0

∞
∑

n=−∞

δ(t− ntb/2) (70)

and the resonance at ωλtb = 6π disappears because the effective period becomes tb/2. We also calculate HOM
voltages for the four dominant modes in the 7-cell ERL cavity and the results are listed in Tab. 2.
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