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Abstract

The total current that can be accelerated in an Energy Recovery Linear Accelerator (ERL) can be limited by
the longitudinal monopole beam breakup (BBU) instability, the transverse dipole BBU instability and the trans-
verse quadrupole BBU instability. The quadrupole HOMs can be induced by a beam with non-zero quadrupole
moment and they can in turn, alter the beta function and phase advance by providing a focusing effect. In this
paper we study the how the quadrupole BBU threshold current for an ERL can be evaluated and its impact on
the cavity design. An analytic formula is derived for the simple case with a single mode that is oriented in x/y
direction in one cavity. The threshold current for the realistic ERL lattice is computed by simulation. The result
from simulation is also compared with the analytic formula.

1 Introduction

2 Theoretical Analysis of the Quadrupole Beam Breakup Instability
2.1 HOM Voltage Induced by a single Bunch

In an RF cavity, the total HOM energy stored can be written as

U= O‘V2(TOa<PO) (1)

where V (rg, ¢g) is the amplitude of the HOM voltage measured at position (rg, ¢o), and « is a constant determined
by the geometry of the cavity.

Travelling through the cavity at position (r, ¢), a bunch with charge dg can induce more HOM voltage and add
energy to the existing HOM:

U+ dU = aV?3(ro, o) + dqV (r,¢) = aV3(ro, ¢o) (2)

where V2(rg, ¢o) is the new HOM voltage at position (g, ¢g) after the charged bunch traversed the RF cavity. Thus
the new HOM voltage can be calculated as

~ dq dq V(’I’, 50)
= 2 — R —
V(ro, o) = \/V (r0, o) + V(1. 0) = V(ro, o) + o Vro,0) (3)

and the change in the HOM voltage is

dg V(r,p) @)

dV (rg, o) = %V(To,@o) .

Define K (rg, ¢o) as the loss factor for a charged particle traversing the RF cavity at position (rg, ¢g), we have

V(re,¢0)]? 1
K(ro, p0) = L ZU<P0)| - L (5)



Thus the change in the HOM voltage can be written as

V(r,e)
av = 2dgK —_—
(r0, ®0) q (TO’SDO)V(T(),(,O()) )
and the total HOM voltage change induced by the whole charged bunch is
Vir.e)

V(ro, o) = 2K (7o, o) / )p(r, p)rdrdy

V(ro, wo
where ¢ is the total charge of the bunch and p(r, ¢) is the charge density function.

2.2 Quadrupole HOM Voltage
The voltage of a quadrupole HOM can be written as

V(r,¢) = Vor’ cos 2( — ¢o)
and Eq. 7 becomes

2qK (10, o)
7§ cos 2(po — o)

V(ro, 00) = / 2 cos 2 — go)p(r, @)rdrdy |

With z = rcos ¢ and y = rsin ¢, we have
72 cos2(p — o) = (2?2 — y?) cos 2¢9 + 221 sin 2

and Eq. 9 becomes

2qK(
V(ro, o) = aK (1o, ¢0) /{ ) cos 2¢g + 2xy sin 2¢0} p(z,y)dxdy ,
8 cos 2(¢o — ¢o)

Define the normal and skewed quadrupole moment of the beam as
Qn = / (2® = y*)p(x, y)dzdy = (z*)
Qs = / 2zyp(x, y)duedy = 2(zy)

we can find out the quadrupole HOM voltage induced by a beam with @,, and Qs, at (o, o) and to:

2qK (19, ¢o)
7§ cos 2(wo — ¢o)

V(ro, o) = {Qn cos2¢0 + Qs sin2¢0} .

Thus the quadrupole HOM voltage excited by a bunch and observed at r, ¢ and t can be written as

L)Q cos 2(p — o) —z*)\(t—tg)

t—to) .
ro ) cos2(pp — ¢0) coswa( o)

V(r.o.t) = V(ro, o) (

where V (79, ¢o) is the maximum HOM voltage at (g, ¢o).

2.3 Quadrupole Wake Fields
The quadrupole wake function is defined as the work done by the quadrupole HOM on a test charge e:

Wz(x7y7s) = _ev(’rv@at”t:s/c .

We can also write the longitudinal wake function in terms of the HOM voltage at 7, ¢ and to, which gives

L>2 cos 2(> = 60)

—ag5t t
e 2@x" coswy
ro ) cos2(vo — ¢o)

Wz(x,yﬂf) = 76V(7‘03§00) <

eV (ro, o) 2 2 . — g
= _ — 2 2 2 2Q t
7 os2(00 — 00) {(2® — y?) cos 20 + 2y sin 2o } € 2Ix" coswy

(13)

(15)



In order to find the transverse wake function, we can write the longitudinal wake function as the longitudinal gradient
of a scalar potential U:

1
W, =0,¥ ~ -0,V . (17)
c
Thus ¥ can be calculated as

U= c/dth(ac,y,t)

ecV (ro, o) 9 9 . / _@ay
= — — 52 2xy sin 2 dte 2@ Swt
T —— {(z® — y?) cos 2¢0 + 2zy sin 26 } e 293" coswy
1% .
— & (ro, o) {(z* — y®) cos 2¢ + 22y sin2¢y } € 235" sin wyt (18)

wx 18 cos 2(¢o — ¢o)
The transverse wake function can be calculated from ¥
¢ 2V(ro,0)
wy 73 cos 2(¢o — ¢o)

< 2V (ro, o)
wx 7§ cos 2(¢o — ¢o)

W, =0,V =—¢ {2 cos 2¢g + y sin 2¢¢ } P sinwyt

Wy =0,¥ = —e {—ycos2¢g + xsin2¢} ¢ 70y sinwyt (19)

and the transverse force F' can be written as

-,

L1
F=2W (20)

From Eq. 13 we can write the transverse forces in terms of the loss factor

4 K N
F,=— % w—i o COSQ(;(Z;;;OE %0) {Qnaz cos? 2¢0 + Qsysin? 2¢g + (Qny + Qsx) cos 2¢g sin 2¢0} e 2ax b gin wyt
4 K _wa
F,=- % wi,\ = COSQ(;?;;(?O—) 7o) {any cos? 2¢0 4+ Qs sin’ 2¢0 + (Qnr — Q4y) cos 2¢g sin 2¢0} e~ 235 gin wt
(21)
If we choose the loss factor measured at pg = ¢g, we have
w)H R
K(ro, ¢o) = = (—> 22
000 =5 (5). (22)
Define the quadrupole wake function as
c (R 1 _eny
Wit)==(=] —e t 23
and the transverse force can be written as
4
F,=— %W(t) {Qnx cos® 20 + Qsysin® 2¢g + (Qny + Q) cos 2¢ sin 2¢p }
deq 9 . 9 .
F,=- TW(L‘) {—Qny cos” 209 + Qs sin” 2¢0 + (Qnx — Qsy) cos 2¢g sin 2¢>0} (24)

The orientation of the quadrupole mode ¢y depends on the geometry of the RF cavity. For simplicity reasons, we
only consider an upright quadrupole mode in our calculation (¢9 = 0). The transverse force measured F(t) is thus
written as

~ deq

F(t) = -7 {zey —ye, } W(t —t)Qn(t) (25)



2.4 Quadrupole Beam Breakup Instability

Equation 25 shows the quadrupole force at ¢ from the quadrupole mode excited by a beam at ty. The formula can
be extended for the CW beam case, in which the quadrupole mode is excited by all traversing bunches prior to .
For simplicity reasons, we consider a beam with normal quadrupole moment only. For a CW beam, its quadrupole
moment is a function of time @Q,, = @, (') and the force, as a result, can be written as:

F(t) = —% / t {28, — Y&,y W (t —t")Qu(t))dt' (26)
Define the quadrupole wake potential G(t) as
G(t) = /t Wt —t)Q(t')dt (27)
and thus the force becomes
Ft) = =22 (1) {we. — ve,) (28)

The equation of motion for a test charge can be written as

2 = _ 4€qG(t)

=— 2
P 72 kx (29)
where we have
KL= 1 _qr) (30)
YmeC

For an ERL with a single RF cavity the change of the beta function at ¢ as a result of a quadrupole kick at t — ¢,
can be written as

A/BIQ (t) = _kLﬂxl/BxQ sin Z(me - 1%1) = _,yf;quQ G(t - tr)ﬂzlﬁzQ sin 2(¢12 - %:1)
4
ABy(t) = +RLO By 2t — ) = + = HG Gl — 1) B e sin2(vy — ) (31)

For a CW beam, its normal quadrupole moment can be written as

+oo
Qn(t) =Qn Z 5(t —tr = mtb) (32)

m=—0o0

where t; is the bunching period and @, can be calculated as
En
Qn = (2%) — () = 7(51 - By) (33)

where ¢,, is the normalized emittance of the beam.
Assuming the designed beam is round (8, = §,), we have

+oo
En
Qn(t) = 7(Aﬁm —ABy) Y Ot —t, —mty) (34)
Combining Eq. 27 and Eq. 34, we can derive an integral equation of the wake potential G(t) as
4deqey, . . = K / ’ / ’
G(t) = e (81 Bua sin 2%, + B,1By2 sin 241, ] m;m o Wt —t)G(t —t,)0(t' —t, — mty)dt
deqe, L 9A L 9A =

== T (821822 Sin 2A0,, 4+ By18y2 sin 2A1), ] Z W(t — t, — mty)G(mtyp) (35)



With g = Igty, we can derive the formula for I

dee,ty

I(;l = (82182 sin 2%, + By1 By2 sin 2A1/Jy]ei“’""‘tbw(5)

72me c2

where

w(®) =Y W([n+ ot
n=0

¢c (R ity et (6=t gin )\ 5t — 199 sin wy, [6 — 1]ty
=— (=] e
4rd \

Q

where wit, = wty +ie, € = wity/2Q\ and t, = (n — §)t,. For an ERL, we have § = %, and the current is

coswity, — coswyty

I y2meerg e~ Wir coswit, — coswyty
0=— - -
e (E enty Be1 B2 sin QA'(/J:E + ﬁylﬁy2 sin 2A"/’y Ccos w;tb sin WATtb
Q)"

The approximate threshold current with € < 1 and n,e < 1 can be derived as

[ wrxvE. 1 1
0= ec (R Bz1Bz2 8in 284, + By1By2 sin 2A1)y, sinwyt,
2r_4 é Qxrén
0 A

R
where E. is the beam energy, r( is the radius where (—) is measured and @, is the quality factor.
A

3 Simulation Results for Quadrupole BBU Threshold Current
3.1 A Single Cavity with One Quadrupole HOM

Threshold Current Obtained by Tracking and Approximate Analytical Solution
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Figure 1: Threshold current obtained by tracking and by approximate analytical formula (Eq. 39. Parameters:

(R/Q)x = 349, Qx = 10* and wy = 2.575GHz.



3.2 Quadrupole BBU Threshold Current of Cornell ERL

In an RF cavity for Cornell ERL, we have the iris radius ro = 0.035m and the Qg of the fundamental mode is about
10'°. The quadrupole BBU threshold current according to Eq. 39 with parameters listed in Tab. 1 is about 50A.
This result is calculated for electrons with low energy. Because the threshold current is proportional to v2 of the
beam, the estimate for the 5GeV ERL should be higher than 50A.

Table 1: Parameters for an RF cavity with a single quadrupole mode

fr=3256GHz  (R/Q)x = 1.595Q Q» = 2.59 x 106 t, = 6.8132 x 10~ Ss
@1 = 0.258631rad 1 = 0.258631rad @0 = 329.080512rad s = 244.583540rad

Be1 = 17.65734m B, = 17.65734m  fuo = 83.154592m [, = 70.6044042m

The simulation for the full ERL lattice with the dominant modes (No.1, 2, 3, and 5 in Tab. 2) and a reduced
Q = Q, - 1073 gives a threshold current about 200A. If a 0.3% (~ 10MHz) frequency spread is introduced to
the quadrupole HOMs, the threshold current can be increased to about 1200A. Reducing the @) value is necessary
because the high value of @) requires extremely long time to damp the HOM significantly. In order to avoid excessive
simulation time, we run the program for an artificially smaller @ and deduce the threshold current of the high @
according to Eq. 39. The simulation results for the single cavity case and the full ERL lattice case are listed in
Tab. 3.

Table 2: The dominant quadrupole HOMs for the 7-cell ERL cavity.

AIGHZ]  Qx/Qo  (R/Q)A[Q/em’] (R/Q)A[Q] (R/Q)x- QA9

1 2.3052 0.570 0.052267 0.96196 5.4832 x 10°
2 23074 0.572 0.045267 0.82995 4.7473 x 10°
3 2.4896 0.516 0.060044 0.81231 4.1915 x 10°
4 3.2414 0.256 0.154078 0.72540 1.8570 x 10°
5 3.2532 0.259 0.344944 1.60056 4.1454 x 10°
6 3.2670 0.263 0.217078 0.99034 2.6046 x 10°
7 3.4860 0.315 0.106633 0.37527 1.1821 x 10°
8  3.5144 0.328 0.049389 0.16826 5.5190 x 108
9 3.8531 0.251 0.061756 0.14561 3.6549 x 108

Table 3: Simulation results of the quadrupole BBU threshold for the 7-cell ERL cavity.

Qr-1077 Qx
Single Cavity at Low Energy 50A 50 mA
Full ERL Lattice without Frequency Spread 200A 200 mA
Full ERL Lattice with 10 MHz Frequency Spread 1200A 1.2A




4 Higher Order Multipole BBU Instability

2Kloss(w0)

AV (wg,t,t") =
( 0 ) g(wo)

/ Jw, ) £ (1t g (w)duw

dV (wo, t,t") = dV (') g(wo)

Vi) = () Tt | t [ itw st gtwiauar

g*(wo) J_

j()(wvt - tr) = jl(f(w)vt)

Vi) = - (£ ) Heltn) [ t [ ot )11 09T )

o0

9
2I(oss K ad
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