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Abstract

ERL-07-10

The total current that can be accelerated in an Energy Recovery Linear Accelerator (ERL) can be limited by
the longitudinal monopole beam breakup (BBU) instability, the transverse dipole BBU instability and the trans-
verse quadrupole BBU instability. The quadrupole HOMs can be induced by a beam with non-zero quadrupole
moment and they can in turn, alter the beta function and phase advance by providing a focusing effect. In this
paper we study the how the quadrupole BBU threshold current for an ERL can be evaluated and its impact on
the cavity design. An analytic formula is derived for the simple case with a single mode that is oriented in x/y
direction in one cavity. The threshold current for the realistic ERL lattice is computed by simulation. The result
from simulation is also compared with the analytic formula.

1 Introduction

2 Theoretical Analysis of the Quadrupole Beam Breakup Instability

2.1 HOM Voltage Induced by a single Bunch

In an RF cavity, the total HOM energy stored can be written as

U = αV 2(r0, ϕ0) (1)

where V (r0, ϕ0) is the amplitude of the HOM voltage measured at position (r0, ϕ0), and α is a constant determined
by the geometry of the cavity.

Travelling through the cavity at position (r, ϕ), a bunch with charge dq can induce more HOM voltage and add
energy to the existing HOM:

U + dU = αV 2(r0, ϕ0) + dqV (r, ϕ) = αṼ 2(r0, ϕ0) (2)

where Ṽ 2(r0, ϕ0) is the new HOM voltage at position (r0, ϕ0) after the charged bunch traversed the RF cavity. Thus
the new HOM voltage can be calculated as

Ṽ (r0, ϕ0) =

√

V 2(r0, ϕ0) +
dq

α
V (r, ϕ) ≈ V (r0, ϕ0) +

dq

2α

V (r, ϕ)

V (r0, ϕ0)
, (3)

and the change in the HOM voltage is

dV (r0, ϕ0) =
dq

2α

V (r, ϕ)

V (r0, ϕ0)
. (4)

Define K(r0, ϕ0) as the loss factor for a charged particle traversing the RF cavity at position (r0, ϕ0), we have

K(r0, ϕ0) =
|V (r0, ϕ0)|

2

4U
=

1

4α
. (5)
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Thus the change in the HOM voltage can be written as

dV (r0, ϕ0) = 2dqK(r0, ϕ0)
V (r, ϕ)

V (r0, ϕ0)
, (6)

and the total HOM voltage change induced by the whole charged bunch is

V (r0, ϕ0) = 2qK(r0, ϕ0)

∫

V (r, ϕ)

V (r0, ϕ0)
ρ(r, ϕ)rdrdϕ , (7)

where q is the total charge of the bunch and ρ(r, ϕ) is the charge density function.

2.2 Quadrupole HOM Voltage

The voltage of a quadrupole HOM can be written as

V (r, ϕ) = V0r
2 cos 2(ϕ− φ0) (8)

and Eq. 7 becomes

V (r0, ϕ0) =
2qK(r0, ϕ0)

r20 cos 2(ϕ0 − φ0)

∫

r2 cos 2(ϕ− φ0)ρ(r, ϕ)rdrdϕ , (9)

With x = r cosϕ and y = r sinϕ, we have

r2 cos 2(ϕ− φ0) = (x2 − y2) cos 2φ0 + 2xy sin 2φ0 (10)

and Eq. 9 becomes

V (r0, ϕ0) =
2qK(r0, ϕ0)

r20 cos 2(ϕ0 − φ0)

∫

{

(x2 − y2) cos 2φ0 + 2xy sin 2φ0

}

ρ(x, y)dxdy , (11)

Define the normal and skewed quadrupole moment of the beam as

Qn =

∫

(x2 − y2)ρ(x, y)dxdy = 〈x2〉

Qs =

∫

2xyρ(x, y)dxdy = 2〈xy〉 (12)

we can find out the quadrupole HOM voltage induced by a beam with Qn and Qs, at (r0, ϕ0) and t0:

V (r0, ϕ0) =
2qK(r0, ϕ0)

r20 cos 2(ϕ0 − φ0)
{Qn cos 2φ0 +Qs sin 2φ0} . (13)

Thus the quadrupole HOM voltage excited by a bunch and observed at r, ϕ and t can be written as

V (r, ϕ, t) = V (r0, ϕ0)

(

r

r0

)2
cos 2(ϕ− φ0)

cos 2(ϕ0 − φ0)
e
−

ωλ
2Qλ

(t−t0) cosωλ(t− t0) . (14)

where V (r0, ϕ0) is the maximum HOM voltage at (r0, ϕ0).

2.3 Quadrupole Wake Fields

The quadrupole wake function is defined as the work done by the quadrupole HOM on a test charge e:

Wz(x, y, s) = −eV (r, ϕ, t)|t=s/c . (15)

We can also write the longitudinal wake function in terms of the HOM voltage at r, ϕ and t0, which gives

Wz(x, y, t) = −eV (r0, ϕ0)

(

r

r0

)2
cos 2(ϕ− φ0)

cos 2(ϕ0 − φ0)
e
−

ωλ
2Qλ

t
cosωλt

= −
eV (r0, ϕ0)

r20 cos 2(ϕ0 − φ0)

{

(x2 − y2) cos 2φ0 + 2xy sin 2φ0

}

e
−

ωλ
2Qλ

t
cosωλt (16)
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In order to find the transverse wake function, we can write the longitudinal wake function as the longitudinal gradient
of a scalar potential Ψ:

Wz = ∂sΨ ≈
1

c
∂tΨ . (17)

Thus Ψ can be calculated as

Ψ = c

∫

dtWz(x, y, t)

= −
ecV (r0, ϕ0)

r20 cos 2(ϕ0 − φ0)

{

(x2 − y2) cos 2φ0 + 2xy sin 2φ0

}

∫

dte
−

ωλ
2Qλ

t
cosωλt

= −e
c

ωλ

V (r0, ϕ0)

r20 cos 2(ϕ0 − φ0)

{

(x2 − y2) cos 2φ0 + 2xy sin 2φ0

}

e
−

ωλ
2Qλ

t
sinωλt (18)

The transverse wake function can be calculated from Ψ

Wx = ∂xΨ = −e
c

ωλ

2V (r0, ϕ0)

r20 cos 2(ϕ0 − φ0)
{x cos 2φ0 + y sin 2φ0} e

−
ωλ
2Qλ

t
sinωλt

Wy = ∂yΨ = −e
c

ωλ

2V (r0, ϕ0)

r20 cos 2(ϕ0 − φ0)
{−y cos 2φ0 + x sin 2φ0} e

−
ωλ
2Qλ

t
sinωλt (19)

and the transverse force ~F can be written as

~F =
1

L
~W (20)

From Eq. 13 we can write the transverse forces in terms of the loss factor

Fx = −
4eq

L

c

ωλ

K(r0, ϕ0)

r40 cos2 2(ϕ0 − φ0)

{

Qnx cos2 2φ0 +Qsy sin2 2φ0 + (Qny +Qsx) cos 2φ0 sin 2φ0

}

e
−

ωλ
2Qλ

t
sinωλt

Fy = −
4eq

L

c

ωλ

K(r0, ϕ0)

r40 cos2 2(ϕ0 − φ0)

{

−Qny cos2 2φ0 +Qsx sin2 2φ0 + (Qnx−Qsy) cos 2φ0 sin 2φ0

}

e
−

ωλ
2Qλ

t
sinωλt

(21)

If we choose the loss factor measured at ϕ0 = φ0, we have

K(r0, φ0) =
ωλ

2

(

R

Q

)

λ

(22)

Define the quadrupole wake function as

W (t) =
c

2

(

R

Q

)

λ

1

r40
e
−

ωλ
2Qλ

t
sinωλt (23)

and the transverse force can be written as

Fx = −
4eq

L
W (t)

{

Qnx cos2 2φ0 +Qsy sin2 2φ0 + (Qny +Qsx) cos 2φ0 sin 2φ0

}

Fy = −
4eq

L
W (t)

{

−Qny cos2 2φ0 +Qsx sin2 2φ0 + (Qnx−Qsy) cos 2φ0 sin 2φ0

}

(24)

The orientation of the quadrupole mode φ0 depends on the geometry of the RF cavity. For simplicity reasons, we
only consider an upright quadrupole mode in our calculation (φ0 = 0). The transverse force measured ~F (t) is thus
written as

~F (t) = −
4eq

L
{x~ex − y~ey}W (t− t′)Qn(t′) (25)
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2.4 Quadrupole Beam Breakup Instability

Equation 25 shows the quadrupole force at t from the quadrupole mode excited by a beam at t0. The formula can
be extended for the CW beam case, in which the quadrupole mode is excited by all traversing bunches prior to t.
For simplicity reasons, we consider a beam with normal quadrupole moment only. For a CW beam, its quadrupole
moment is a function of time Qn = Qn(t′) and the force, as a result, can be written as:

~F (t) = −
4eq

L

∫ t

−∞

{x~ex − y~ey}W (t− t′)Qn(t′)dt′ (26)

Define the quadrupole wake potential G(t) as

G(t) =

∫ t

−∞

W (t− t′)Q(t′)dt′ (27)

and thus the force becomes

~F (t) = −
4eq

L
G(t) {x~ex − y~ey} (28)

The equation of motion for a test charge can be written as

x′′ = −
4eqG(t)

γmec2L
x = −kx (29)

where we have

kL =
4eq

γmec2
G(t) (30)

For an ERL with a single RF cavity the change of the beta function at t as a result of a quadrupole kick at t− tr
can be written as

∆βx2(t) = −kLβx1βx2 sin 2(ψx2 − ψx1) = −
4eq

γmec2
G(t− tr)βx1βx2 sin 2(ψx2 − ψx1)

∆βy2(t) = +kLβy1βy2 sin 2(ψy2 − ψy1) = +
4eq

γmec2
G(t− tr)βy1βy2 sin 2(ψy2 − ψy1) (31)

For a CW beam, its normal quadrupole moment can be written as

Qn(t) = Qn

+∞
∑

m=−∞

δ(t− tr −mtb) (32)

where tb is the bunching period and Qn can be calculated as

Qn = 〈x2〉 − 〈y2〉 =
εn

γ
(βx − βy) (33)

where εn is the normalized emittance of the beam.
Assuming the designed beam is round (βx = βy), we have

Qn(t) =
εn

γ
(∆βx − ∆βy)

+∞
∑

m=−∞

δ(t− tr −mtb) (34)

Combining Eq. 27 and Eq. 34, we can derive an integral equation of the wake potential G(t) as

G(t) = −
4eqεn

γ2mec2
[βx1βx2 sin 2∆ψx + βy1βy2 sin 2∆ψy]

+∞
∑

m=−∞

∫ t

−∞

W (t− t′)G(t′ − tr)δ(t
′ − tr −mtb)dt

′

== −
4eqεn

γ2mec2
[βx1βx2 sin 2∆ψx + βy1βy2 sin 2∆ψy]

n
∑

m=−∞

W (t− tr −mtb)G(mtb) (35)
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With q = I0tb, we can derive the formula for I0

I−1
0 = −

4eεntb
γ2mec2

[βx1βx2 sin 2∆ψx + βy1βy2 sin 2∆ψy]eiωnrtbw(δ) (36)

where

w(δ) =
∞
∑

n=0

W ([n+ δ]tb)e
iωntb

=
c

4r40

(

R

Q

)

λ

e−iωδtb
eiω†(δ−1)tb sinωλδtb − eiδω†tb sinωλ[δ − 1]tb

cosω†tb − cosωλtb
(37)

where ω†tb = ωtb + iε, ε = ωλtb/2Qλ and tr = (n− δ)tb. For an ERL, we have δ = 1
2 , and the current is

I0 = −
γ2mecr

4
0

e

(

R

Q

)

λ

εntb

e−iωtr

βx1βx2 sin 2∆ψx + βy1βy2 sin 2∆ψy

cosω†tb − cosωλtb

cos ω†tb

2 sin ωλtb

2

(38)

The approximate threshold current with ε� 1 and nrε� 1 can be derived as

I0 = −
ωλγEe

2
ec

r40

(

R

Q

)

λ

Qλεn

1

βx1βx2 sin 2∆ψx + βy1βy2 sin 2∆ψy

1

sinωλtr
(39)

where Ee is the beam energy, r0 is the radius where

(

R

Q

)

λ

is measured and Qλ is the quality factor.

3 Simulation Results for Quadrupole BBU Threshold Current

3.1 A Single Cavity with One Quadrupole HOM
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Ith
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tr/tb

Threshold Current Obtained by Tracking and Approximate Analytical Solution

Analytic Formula
Simulation

Figure 1: Threshold current obtained by tracking and by approximate analytical formula (Eq. 39. Parameters:
(R/Q)λ = 34Ω, Qλ = 104 and ωλ = 2.575GHz.
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3.2 Quadrupole BBU Threshold Current of Cornell ERL

In an RF cavity for Cornell ERL, we have the iris radius r0 = 0.035m and the Q0 of the fundamental mode is about
1010. The quadrupole BBU threshold current according to Eq. 39 with parameters listed in Tab. 1 is about 50A.
This result is calculated for electrons with low energy. Because the threshold current is proportional to γ2 of the
beam, the estimate for the 5GeV ERL should be higher than 50A.

Table 1: Parameters for an RF cavity with a single quadrupole mode

fλ = 3.256GHz (R/Q)λ = 1.595Ω Qλ = 2.59 × 106 tr = 6.8132 × 10−6s

ϕx1 = 0.258631rad ϕy1 = 0.258631rad ϕx2 = 329.080512rad ϕy2 = 244.583540rad

βx1 = 17.65734m βy1 = 17.65734m βx2 = 83.154592m βy2 = 70.6044042m

The simulation for the full ERL lattice with the dominant modes (No.1, 2, 3, and 5 in Tab. 2) and a reduced
Q = Qλ · 10−3 gives a threshold current about 200A. If a 0.3% (≈ 10MHz) frequency spread is introduced to
the quadrupole HOMs, the threshold current can be increased to about 1200A. Reducing the Q value is necessary
because the high value of Q requires extremely long time to damp the HOM significantly. In order to avoid excessive
simulation time, we run the program for an artificially smaller Q and deduce the threshold current of the high Q
according to Eq. 39. The simulation results for the single cavity case and the full ERL lattice case are listed in
Tab. 3.

Table 2: The dominant quadrupole HOMs for the 7-cell ERL cavity.

fλ[GHz] Qλ/Q0 (R/Q)λ[Ω/cm4] (R/Q)λ[Ω] (R/Q)λ ·Qλ[Ω]
1 2.3052 0.570 0.052267 0.96196 5.4832 × 109

2 2.3074 0.572 0.045267 0.82995 4.7473 × 109

3 2.4896 0.516 0.060044 0.81231 4.1915 × 109

4 3.2414 0.256 0.154078 0.72540 1.8570 × 109

5 3.2532 0.259 0.344944 1.60056 4.1454 × 109

6 3.2670 0.263 0.217078 0.99034 2.6046 × 109

7 3.4860 0.315 0.106633 0.37527 1.1821 × 109

8 3.5144 0.328 0.049389 0.16826 5.5190 × 108

9 3.8531 0.251 0.061756 0.14561 3.6549 × 108

Table 3: Simulation results of the quadrupole BBU threshold for the 7-cell ERL cavity.

Qλ · 10−3 Qλ

Single Cavity at Low Energy 50A 50 mA

Full ERL Lattice without Frequency Spread 200A 200 mA

Full ERL Lattice with 10 MHz Frequency Spread 1200A 1.2A
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4 Higher Order Multipole BBU Instability

dV (w0, t, t
′) =

2Kloss(w0)

g(w0)

∫

∞

j(w, t′)fz(t, t
′)g(w)dw (40)

dV (w0, t, t
′) = dV (t, t′)g(w0) (41)

V⊥(t) = −

(

c

ωλ

)

2Kloss(w0)

g2(w0)

∫ t

−∞

∫

∞

j(w, t′)f⊥(t, t′)g(w)dwdt′ (42)

j0(w, t− tr) = j1(~T (w), t) (43)

V⊥(t) = −

(

c

ωλ

)

2Kloss(w0)

g2(w0)

∫ t

−∞

∫

∞

j0(w, t
′)f⊥(t, t′)g(~T (w))dwdt′

= −

(

c

ωλ

)

2Kloss(w0)

g2(w0)

∫ t

−∞

∫

∞

j
(0)
1 (~z, t′)f⊥(t, t′)g(~T (T−1~z))d~zdt′ (44)

~T (w) = T(~z + ~n(w)) (45)

g(~T (T−1~z)) = g(~z + T~n(T−1~z)) = g(~z) + (∇⊥g)
T
T~n(T−1~z) (46)

~n(~z) =
e

c
∇⊥g(w)V⊥(t) (47)

V⊥(t) = −

(

e

ωλ

)

2Kloss(w0)

g2(w0)

∫ t

−∞

∫

∞

j
(0)
1 (~z, t′)f⊥(t, t′)(∇⊥g)

T
T∇⊥g(T

−1~z)V⊥(t− tr)d~zdt
′ (48)
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