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Abstract
Minimization of surface fields for a given accelerating

rate is the subject of cavity optimization because high elec-
tric and magnetic fields lead to field emission or thermal
breakdown, respectively. The ratio between peak electric
and magnetic fields is a function of geometry and the de-
sired ratio depends on application. For each application the
optimal geometry may be different. The elliptic shape of
the cavity have been found evolutionarily: starting from a
pill-box with beam-pipes having rounded corners. No at-
tempts up to now are known for a search of non-elliptical
optimal shapes. Here we describe the search for a cavity
shape that has the lowest surface fields, not restricting to
the conventional elliptical cavity shapes.

INTRODUCTION
The commonly used superconducting cavity shape for

high relativistic β values has been a result of evolution from
a pillbox RF cavity with the beam tubes added and rounded
walls – to decrease the peak electric field – to a shape con-
sisting of elliptic arcs to prevent multipacting [1]. The re-
lationship between the parameters of these arcs is a subject
of a cavity optimization in search of the minimal magnetic
surface field for a given peak electric surface field. The ra-
tio between these peak fields depend on applications. All
other figures of merit of a cavity also depend on the arc
parameters but either they are defined by different require-
ments – aperture radius should be big enough to reduce the
wakefields, or are connected with low magnetic fields: wall
losses are minimal for a cavity optimized for lowest peak
magnetic field [2].

So, in the present paper the attempt will be done to find
the shape of a cavity with minimal peak magnetic field, or,
more definitely, with minimal value of Hpk/Eacc for given
values of Epk/Eacc, wall slope angle α, and the aperture
radius Ra. Hpk and Epk are peak magnetic and electric
fields, Eacc is the accelerating field.

As it was shown in [2] and [3], if these 3 parameters
are given: Epk/Eacc, α, and Ra, the minimal value of
Hpk/Eacc can be found. If no limitations are used for the
wall slope angle α, we will come to the reentrant shape
having the minimal Hpk/Eacc from all possible for given
Epk/Eacc and Ra [4]. It is worthy to note that Hpk/Eacc

is a monotone function of any of these 3 parameters: it de-
creases for smaller α and Ra, and for bigger Epk/Eacc.
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ELLIPTIC GEOMETRY AND SURFACE
FIELDS

All the optimizations for minimal Hpk/Eacc have usu-
ally been done under the assumption that the components
of the shape are elliptic arcs connected with a straight seg-
ment, – we are talking about one only element of periodic-
ity – one half-cell, Fig. 1.

Figure 1: Geometry of the elliptic half-cell: non-reentrant
– a), and reentrant – b) and c).

As an example, three known geometries of the central
half-cells are shown in Fig. 2: TESLA [5] from DESY, the
low-loss cavity [6] from JLab, and the reentrant cavity by
Cornell [4].

Figure 2: Comparison of three geometries of the elliptic
half-cells.

The surface electric and magnetic fields in these cavities
are shown in Figs. 3 and 4. One can see that the electric
field has irregularities in the points P and Q on the surface
of non-reentrant cavities, – where the arcs conjugate with
the segment of the straight line. The best shape (just aes-
thetically) should have a more regular dependence for these
curves. In the case of the reentrant cavity, the maximum is
not flat as it is on non-reentrant geometry. One can suppose
that flattening of this maximum will decrease the peak elec-
tric field but the Eacc should not change significantly.
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Figure 3: Surface electric field of the cavities from Fig. 2.

Figure 4: Surface magnetic field the cavities from Fig. 2.

Comparing the magnetic fields of the TESLA cell and
the reentrant cell having the same aperture we can see
that decrease of the maximal field is obtained through the
lengthening of the maximal field region. Again, better flat-
tening of the maximal values of this field could decrease the
peak field though not much. The area under these curves
is approximately the same in both cases. In the case of the
Low Loss cavity the decrease of the maximal field is ob-
tained due to smaller Ra as was noted above.

Let us remind that the record accelerating field obtained
in the reentrant cavity [7] was achieved due to 10% lower
magnetic peak field at the same Eacc compared to the
TESLA geometry, though the value of Epk/Eacc was 20%
higher.

Because of a high cost of the superconducting cavities
even a several percent further decrease of Hpk/Eacc is
worth the candle, and we see that that this decrease is pos-
sible. On the other hand we have an interesting problem
to find the shape with a given distribution of fields on its
surface.

USAGE OF MAXWELL’S EQUATIONS
The elliptic shape is a lucky choice because fields have

nearly flat maxima, are multipactor resistant, and techno-
logical, but it would be interesting to obtain the shape from
the first principles.

Using the first Maxwell’s equation

∮
l

Hdl =

∫
s

∂D

∂t
ds =

∫
s

∂(ε0E)

∂t
ds

for the circular contours 1 and 2 (Fig. 5) with surface fields
Hs and Es, we have:

(Hs + ∆Hs) · 2π(R+ ∆R) −Hs · 2πR =

Hs · 2π∆R+ ∆Hs · 2πR = −ωε0Es2πR∆L. (1)

From (1) we have:

Figure 5: Geometry for the first Maxwell’s equation.

∆R

R
= −ωε0Es

Hs
∆L− ∆Hs

Hs

and the expressions for the cavity shape:

R(L) = Req · exp

[
−ωε0

∫ L

0

e(s)

h(s)
ds−

∫ L

0

1

h(s)

(
d

ds
h(s)

)
ds

]

= Req ·
h(0)

h(L)
· exp

[
−ωε0

∫ L

0

e(s)

h(s)
ds

]
, (2)

Z(L) =

∫ L

0

√
1 − (dR(s)/ds)2ds. (3)

Here, we presented Es and Hs as functions of the coordi-
nate along the profile line:

Es = e(s), Hs = h(s).

We can note that the fields in (2) appear in ratios only,
this is because the optimal shape doesn’t depend on the
fields strength. So, we can introduce two new functions:

eh(s) = e(s)/h(s) and hh(s) = h(s)/h(0)

and change (2) to the following

R(L) =
Req

hh(L)
· exp

[
−ωε0

∫ L

0

eh(s)ds

]
. (4)

From this we can obtain:

dR

dL
= R(L)

[
−ωε0 eh(L) − 1

hh(L)
· dhh
dL

]
. (5)

.
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FIELDS ON THE SURFACE OF A
PILLBOX CAVITY

Fields on the surface of a pill-box cavity (Fig. 6) can be
presented in the form

e(L) =

{
0, L < a

E0 · J0(kr), a < L < a+Req,

h(L) =

{
(E0/Z0) · J1(ν01), L < a

(E0/Z0) · J1(kr), a < L < a+Req,

where k = ω/c, r = a+Req −L, J0 and J1
are Bessel’s functions of the first kind and ν01 is the first
zero of J0(x).

0
0

0
0

0.5

1

E(L)

H(L)

Req

a a a+Req

L

arb.

units

L

Figure 6: Fields on the surface of a pillbox cavity.

Substituting these fields into (2) and (3) we have

R(L) = Req, Z(L) = L for 0 < L < a.

For a < L < a+Req we will have

R(L) = Req
J1(kr)

J1(ν01)
· exp

[
−ωε0Z0

∫ r

Req

J0(ks)

J1(ks)
ds

]
=

= r = a+Req − L,

Z(L) = a.

So, the formulae (2) and (3) proved correct for the pill-box
cavity.

Analogously, the formulae were checked for a spherical
cavity which also has an analytic solution for fields.

IN SEARCH OF THE IDEAL SHAPE
So, any cavity shape, R(L) and Z(L), produces sur-

face fields, e(L) and h(L), and this shape can be restored
from these fields using (3) and (4). Unfortunately, the in-
verse problem is not so simple: arbitrarily prescribed sur-
face fields can not lead to a shape at all, these two pairs
of functions should be self-consistent. Some additional re-
quirements should be defined, e. g. maximal wall slope
angle, Epk/Eacc, etc. Because of the exponential depen-
dence of R(L) on the fields even small deviations of these
fields change the shape dramatically.

A good approximation for hh(L) can be

hh(s) = 1 − exp[−α(Lmax − L) − β(Lmax − L)2]. (6)

This approximation is very flat in the region where we want
to correct the magnetic field of the elliptic cavity and coin-
cides with this field when L is close to Lmax.

A possible approximation for eh(L) is

eh(L) =
P · L

L2
max − L2

. (7)

Here, P = 2/ωε0. For small ∆ = Lmax − L we have

eh(L) =
P

2∆
− P

4Lmax
,

and, substituting (7) for dR/dL = 0 in (5) we obtain:

1

2Lmax
=
α

2
− β

α
, or β =

α2

2
− α

2Lmax
. (8)

The integral in (4) can be taken for eh(L) from (7):∫ L

0

eh(s)ds =
P

2
ln

L2
max

L2
max − L2

. (9)

Substituting (9) into (4) for L = Lmax we have:

R(Lmax) = Ra =
2Req

αLmax
, or α =

2Req

RaLmax
. (10)

These values of α = 0.0562 and β = 0.00130 from (10)
and (8) are close but not exactly the same as obtained for
the optimized cavity with the slope angle of 90◦: 0.0549
and 0.00173, respectively.

Comparison of the approximation (7) with the ratio
E/H of the optimized elliptic cavities shows that their dif-
ference is defined by the wall slope angle and some cor-
rection functions should be added to (7) for each chosen
angle.

CONCLUSIONS
The first attempt to find an ideal cavity shape from first

principles is undertaken. A formula connecting the cavity
shape and field distribution along the surface is found. Fur-
ther efforts are needed to find self-consistent solutions of
the problem.
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